COMBINATORIAL PROPERTIES OF GROUP DIVISIBLE INCOMPLETE
BLOCK DESIGNS

.

By R. C. BoseE anp W. S. ConNoOR!
Unaversity of North Carolina

1. Summary and introduction. Group divisible incomplete block designs are
an important subclass of partially balanced designs [1], [2] with two associate
classes, and they may also be regarded as a special case of intra- and inter-group
balanced incomplete block designs [3], [4]. They may be defined as follows.

An incomplete block design with v treatments each replicated r times in b
blocks of size k is said to be group divisible (GD) if the treatments can be divided
into m groups, each with n treatments, so that the treatments belonging to the
same group occur together in A; blocks and treatments belonging to different
groups occur together in A; blocks. If A, = A, = A (say), then every pair of
treatments occurs in A blocks, and the design becomes a balanced incomplete
block design, which has been extensively studied [5], [6], [7], [8]. We shall there-
fore confine ourselves to the case Ny # As-.

The object of this paper is to study the combinatorial properties of these
designs. It is shown that the GD designs can be divided into three exhaustive
and mutually exclusive classes:

(a) Singular GD designs characterized by r — A, = 0;

(b) Semi-regular GD designs characterized by r — Ay > 0, vk — v\ = 0;

(¢) Regular GD designs characterized by r — A > 0, rk — vAy > 0.

Certain inequality relations between the parameters necessary for the ex-
istence of the design have been derived in each case. Some other interesting
theorems about the structure of these designs have also been obtained. Methods
of constructing GD designs will be given in a separate paper.

2. Group divisible designs regarded as special cases of partially balanced
and intra- and inter-group incomplete block designs. A partially balanced design
with two associate classes is defined as follows.

(i) There are v treatments, each replicated r times in b blocks of size .

(ii) There can be established a relation of association between any two treat-
ments satisfying the following conditions. (a) Two treatments are either first
associates or second associates. (b) Each treatment has n; first associates and n.
second associates. (c) Given any two treatments which are ¢th associates, the
number of treatments which is common to the jth associates of the first and kth
associates of the second is p and is independent of the pair of treatments with
which we start (3,7, k = 1,2). Also phk = pl.

(iii) Two treatments which are 7th associates occur together in exactly A;
blocks (i = 1, 2).
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It is known [1] that the following relations hold among the parameters:

(2.0) bk = vr,v = n + np 4: 1, i\ + nehe = (kb — 1),
2.1) 1 + pin + piz = Pt + pls = m,

(2:2) pu + pu = 1+ pau + P = ma,
(2.3) TuPla = NaPhr, P = NaPis .

If in a GD design with parameters v, b, 7, k, A1, A2 , m, n, treatments belonging
to the same group are considered as first associates, and treatments belonging
to different groups are considered as second associates, then it is easy to see that
it is a partially balanced design with two associate classes for which

24) m=n-—1, ny = n(m — 1),
(2'5) p:l =n- 2’ p:2 = Ox p;2 = n(m - 1))
(2.6) ph =0, pa=mn—1, P = n(m — 2).

Conversely suppose for a partially balanced design piz = 0. Then . from
(2.1), pi1 = nmy — 1. The relation of first association between two treatments is
by definition commutative. We shall show that in the present case it is also
transitive. Let the treatments 6, and 6, be first associates. Let the other first
associates of 6, be 6;, 03, - -+ ,"0,, . Now since 6, and 6, have n; — 1 common
first associates, they can be no other than 6, 6;, ---, 6,,. Also since 6; has
exactly ny first associates, so all its first associates are 6y, 62, 03, « -, On,.
This shows that any first associate of 6 (other than 6) is also a first associate
of 6,. These conditions are sufficient to insure that the v treatments can be
divided into groups of n; + 1 such that two treatments in the same group are
first associates, and two treatments in different groups are second associates.
Hence the design is a GD design where the treatments of the same group are
first associates. Similarly if p’;s = 0, we can show that the partially balanced
design is a GD design, the treatments of the same group being second associates.
We can therefore state

TueorEM 1. The necessary and sufficient condition for a partially balanced
design to be group divisible is the vanishing of piz or piz. If pis = O then the
treatments in the same group are ith associates (1 = 1, 2).

A GD.design is also a special case of intra- and inter-group balanced incom-
plete block designs which have been defined by Nair and Rao [3] in the following
manner.

(i) there are v treatments arranged in b blocks of size k.

(ii) the v treatments fall into m groups consisting of v; ,vs, - - - , vm treatments,
treatments of the ¢th group being replicated r; times (z = 1, 2, - -+ , m).

“(iii) every pair of treatments of the 7th group occurs in \; blocks (7 = 1,
2, ---, m), and every pair of treatments belonging to the 7th and jth groups,
7 # j, occurs in A;j blocks (7,5 = 1,2, - -+ , m).
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If in particular
ri=r, )\ii=)\l (i=1,2,---,m),
N Aij =N (z';éj;i,j=1,2,---,m),
then the design reduces to a GD design.

GD designs may therefore be characterized as the class of designs which are
partially balanced and intra- and inter-group balanced at the same time.

3. Relations between the parameters, and the classification of GD designs.
Clearly
(3.0) v = mn, bk = vr.
Any given treatment 8 occurs in r blocks. Since each of these blocks contains
k — 1 other treatments, there are r(k — 1) pairs of which one member is 6.
But 6 must form A; pairs with each of the n — 1 treatments belonging to the
same group as 6, and N, pairs with each of the n(m — 1) treatments not in the
same group as 6. Hence

3.1) (n— DM+ nlm— 1 =rk — 1).
Also
(3.2) r N\, r= A

The eight parameters v, b, 7, k, A, A2, m, n are therefore connected by the
three relations (3.0) and (3.1), so that only five parameters are free.

Let n:; = 1 or 0 according as the 7th treatment does or does not occur in the
jth block. Then the matrix

33) N = (n)

is defined to be the incidence matrix of the design. From the conditions satisfied
by the design, it is easy to see that

(3.4a) Snk =,
j=1
(34b) Z Nij Nuj = )\1 or )\2,
j=1
according as the 7th and uth treatments (¢ % «) do belong or do not belong to the
same group.

If in numbering the treatments we follow the convention that the Ith group
consists of the treatments number n(l — 1) 4+ 1, n(l — 1) 4+ 2, -+, nl, thén
from (3.4) and (3.5) we can write

A B --- B
B A --- B

(3.5) NN’

B B - A4
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where N’ is the transpose of the matrix N, and A and B are n X n matrices
defined by

[ D VR W Ao A e N

Mo e N LY R PRI )
(3.6) A = R B =|. . .

Al xl cee r )\2 xz P xz

Each row or column in the matrix on the right-hand side in (3.5) contains 4 in
the diagonal position, and contains B in the other m — 1 positions.

To evaluate | NN’ | proceed as follows.

(i) Add the 2nd, - - - , mnth rows in | NN’ | to the fitst row, every element of
which now becomes r + (n — 1)\, 4+ n(m — 1)\, = 7k (cf. (3.1)).

(ii) Take rk outside the determinant, and subtract the first row multiplied
by A; from all other rows. Then

1 1 cee 1

M—A =N -+ AN—X\
|NN'| ="rk . .

)\1—7\2 )\1—7\2 e 7‘—)\2

P—A M—2A -0 A —A|™
)\1—)\2 7‘—)\2 ve e )\1—)\2

)\1—7\3 7\1—‘)\2 e 'I’—xz
1 1 “ee I

7\1—-)\2 7'—)\2 e )\1—)\2
=71k {(r —N) + (0 — DO — M)} - -

| M—A M—DX - 1=
Using (3.0) and (3.1) we can finally write

(3.7) l NN’ I = Tk(rlc - v)‘z)m—l(r _ Al)m(n—l).

The quantity rk — v\, occurring above is nonnegative. Here we shall prove
this statement for the case r — A > 0, and complete the proof later in Section 4.
Let N1 be the submatrix formed from the matrix N given by (3.3), by taking
the first 2n rows (which correspond to the treatments of the first two groups).
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Then

, [4 B
(3.8) NN, =[ J
. B A

(39) |NWNi|={r+4 (— DM+ nde} 0 — M)k — o).
Since | NNy | = 0, it follows that rk — »As = 0if r — A, > 0.

Hence we can divide all GD designs into three exhaustive and mutually
exclusive classes:

(a) Singular GD designs characterized by r» = A\ ;

(b) Semi-regular GD designs characterized by r > A, rk — v\, = 0;

(¢) Regular GD designs characterized by r > N\, vk — Ay > 0.

The main combinatorial properties of each of these three classes will be given

in the succeeding sections.

4. Singular GD designs. Consider a balanced incomplete block design with
v* treatments, each replicated r* times in b* blocks of size k*, such that any two
treatments occur together in A* blocks. Replace each treatment with a group of
n treatments. Now there are v = nv* treatments divided into »* groups (each
group corresponding to one of the original treatments). Two treatments belong-
ing to the same group now occur together 7* times and two treatments belonging
to different groups occur together A\* times. We thus get.a GD design with
parameters

v = m¥, b = b¥, r = r¥ k = nk*,
(4.0)
M=% A = N¥ m = v¥ n =n,
which belongs to the singular class since r — \; = 0.

Conversely consider a singular GD design with parameters v, b, 7, k, A1,
N2, m, n, where r = A;. Let 6 and ¢ be any two treatments belonging to the
same group. f occurs in r blocks, and since r = A;, ¢ must occur in each of
these r blocks and nowhere else. Hence if a treatment occurs in a ceitain block,
every treatment belonging to the group occurs in that block. Let each group of
treatments be replaced by a single treatment in the design, then there are
v* = m treatments in the new design, and because any two treatments belonging
to different groups occur together A, times in the original design, the new design
is a balanced incomplete block design with parameters

@1) v=m, b*=b =1, K =k/m, A=k,

We may therefore state

THEOREM 2. If in a balanced incomplete block design with parameters v*, b¥,
¥, k*, N* each treatment is replaced by a group of n treatments, we get a singular
GD design with parameters given by (4.0). Conversely, every singular GD design
18 oblainable in this way from a corresponding balanced incomplete block design.
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CoROLLARY. For a singular GD design b = m.

For example, consider the balanced incomplete block design with parameters
=br=7r*=F=3\=1. The plan for this is given below, the columns
representing the blocks.

If n = 2, then we may replace the treatment @ by a;, a2, and do the same
for the other treatments. We then get the singular GD design with the pa-
rameters

v = 14, b =171, r =3, E = 6,
M=3 N=1 m=17 n=2
the plan for which is shown below.

a by C1 a1 (5] f 1 0
az ba o b e fi g
b Cy di (4] f 1 0N a
b, C2 dp €2 fe g (2]
dy ee N 0 o by ¢
ds € fe g2 ay b Co

As before the columns represent the blocks.

The relation rk — vA; = 0 is true by definition for semi-regular and regular
GD designs. We shall show that it holds for singular GD designs also.

Let the parameters of a singular GD design be given by (4.0). Then remember-
ing the relation A*(v* — 1) = r*(k* — 1) which holds for a balanced incomplete

block design
rk — vy = n(r¥*k* — v¥\*)
= n(r* — A¥)
2 0.

Hence we may state
TaEOREM 3. For any GD design rk — vAy = 0.
5. Semi-regular GD designs. For a semi-regular GD design we have by defi-
nition
(5.0) r—M> 0, rk — vAg = 0.
Hence
5.1) r+ (n — DA\ = nhs.
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We shall now prove the following

TuEOREM 4. For a semi-regular GD design k is divisible by m. If k = cm then
every block must contain ¢ treatments from every group.

Let ¢; treatments from the first group occur in the jth block (Gj=12---,b).
Then

b
(5.2) Zl e = nr,
b
5.3) g ei(e; — 1) = nln — 1N,

since each treatment from the first group occurs in r blocks, and every pair
of treatments from the first group occurs in A; blocks. Using (5.1), (5.2) and

(5.3), .
b
Z e? = ’nz)\z.
Je=1
Let
I N
t=px9=3
_k
m
from (3.0). Hence
2 2 bk?
(5.4) Z{ (6 — &) = n’\ — po
=0
from (3.0) and (5.0). Therefore
_ k
(5:5) a=a=-=a=i=t

Since e; must be integral, k¥ must be divisible by m. If ¥ = c¢m then
ej=c(j=1,2,--,b). The same argument applies to treatments of any other
group. This proves our theorem.

The relation (3.7) shows that the v X v matrix NN’ given by (3.5) is singular,
for the case of semi-regular GD designs. We shall now show that its rank is not
less than » — m + 1. Without changing the rank of NN’ we can transform it
into M, and then into M., where

M,

~
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where D = A + (m — 1)B, and

D 0

B 4 -—-B
My =] . ‘.

B 0

where 0 is the null » X n matrix.

R. C. BOSE AND W. S. CONNOR

A—-B

If we strike out the last row and column from A — B we get the (n — 1) X

(m — 1) matrix C given by

r—A M— X
AM— X r— X
C =
A — A M — N
From (5.0) and (5.1)
[D|=rk(r—\)"", |C]

If from M, we strike out the 2nth, - - -
determinant of the resulting matrix is

M= e
AL — A
r — A

=\ — M) — M)

, mnth rows and columns, then the

lD | l C l m—1 —_ Tk()\z — >\1)m—1(7' _ )\l)mn—zm+1 » 0,

since M £ N and r — A\; ¥ 0. Hence

n+ m-—1)n—1)

(5.6) Rank M, =
=y —m+4 1.
But
6.7 Rank M, = Rank NN’ £ b.

Hence the following theorem.

THuEOREM 5. For a semi-regular GD design b = v — m + 1.
If the design is resolvable, that is, the blocks can be divided into r groups, of
b/r blocks each, such that each group of blocks gives a complete replication, then

(5.8)

Rank NN’ = Rank M, < b —r + 1,

since in N the sum of the columns corresponding to a complete replication must

give ‘a column consisting of unities. Thus

not more than b — r + 1 column

vectors are independent. Hence the following corollary.
.COROLLARY. For a resolvable semi-regular GD design b = v — m + r.
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6. Regular GD designs. For a regular GD design we have by definition

(6.0) r> A, rk — vhe > 0.
From (3.7),| NN’| > 0. Henge

(6.1) v = Rank NN’ = Rank N £ b.
This gives

THEOREM 6. For a regular GD design b = v.

If the design is resolvable then as before Rank N < b — r 4 1. Hence we can
state the

CoroLLARY. For a resolvable regular GD design b = v + r — 1.

A GD design is said to be symmetrical if b = v, and in consequence r = k.
Shrikhande [9] and Chowla and Ryser [10] have obtained conditions necessary
for the existence of symmetrical balanced incomplete block designs. We shall
extend their results to symmetrical regular GD designs. With this in view we
give a brief resume of the important properties of the Hilbert norm residue
symbol (a, b), , where a and b are rational numbers and p is a prime, and of the
Minkowski-Hasse invariant [11], [12] C,(4) of a symmetric matrix with rational
elements. We shall use these symbols in the sense defined by Pall [13]. Detailed
proofs and a more general theory are available in a book by Jones [14].

7. The Hilbert norm residue symbol (a, b), . If @ and b are any nonzero ra-
tional numbers, we define the Hilbert symbol (a, b), to have the value 41 or
—1 according as the congruence

(7.0) az’ + by’ = 1(mod p7)

has or has not for each value r, rational solutions z, and y, . Here p is any prime
including the conventional prime p, = «.

It is clear that the value of (a, b), is unchanged if we replace a and b by their
square-free parts, that is, if s and ¢ are rational numbers then

(7.1) (as’, b, = (a, ), .

Pall [13] has given the following formulae for calculating (a, b), in general,
where (a | p) is the well known Legendre symbol, and m and m’ are prime to p.

(7.2) (a,b), = —1, if and only if a and b are negative;
(7.3) @*m, p*'m), = (=1|p)*'(m | p)* (m’ | p)*if p > 2;
(7.4) (2°m, 2%'m")e = (2| m)*' (2| m’)*(— 1) DI

The following propelties of (a, b), stated by Pall can be easily verified.
(7.5) (a,0), = (b, a)p ;
(7.6) (@, —a)y =1, (a,a), = (a, —1)p;

(77) (a; blb?)p = (a’ bl)z’(ay b2)1’ ) (ala? ’ b)p = (al ’ b)p(a2 ’ b)p .
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jror any odd prime p, (a, b), is evidently 41 unless p actually appears in
a ¢« b. For a given a, b, (a, b), is —1 for only a finite even number (possibly
zer: ; of primes p counting in p, = . This is expressed by writing

(7.8 IL.¢a, ), = +1.

§. The Hasse-Minkowski invariant C,(4). Instead of considering invariants
of «iadratic forms f = D axx; we might consider the invariants to refer to
the corresponding symmetric matrices (a.;).

Let A = (a;;) be any n X n matrix with rational elements. The matrix B
is said to be rationally congruent to A, written A ~ B, provided there exists a
nonsingular matrix C with rational elements such that

(8.0) 4 = ('BC,

where (" is the transpose of C. If D; (+ = 1, 2, ---, n) denotes the leading
principal minor determinant of order 7 in the matrix A, then if none of the
D; vanishes, the quantity

n—1

(8'1) Cp = CP(A) = (_1, - Dn)pg (D,', -D i+l)p

is juvariant for all matrices rationally congruent to 4 [11].
The invariant C, may be expressed in a more symmetrical form as follows:

n—1

Cp(4) = (=1, =1), (Dn, —mg (Ds, Diya)o(Di, — 1),
(8.‘,,2. = (—'1, _l)p(Dl) _l)p i:[: (Di{-l; Di)p(DiH’ _l)p
= (=1, =1, [T Des, =D,

wheore Dy = 1.

¥{ A, denotes the matrix obtained by leaving out the last row and column
of 4, we at once get from (8.2)
(553) cp(A) = Cp(An—-l)(Dna _Dn—l)p .

I'zom this and the properties of the Hilbert symbol we can at once deduce
the following Lemma, stated by Pall [13] in equivalent form.
Lemma 1. If A and B are symmetric matrices with rational elements, and

A
{8.33) U=
[ B]

45 the direct sum of A and B, then
(8.4) Co(U) = (=1, =1),Co(A)Co(B)(| A |, [ B|)s.
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Lemma I1. If A, is the direct sum of A taken m times, where A is a symmelric
matriz with rational elements, that is,

K 7
A
(8.45) An = ’ ,
i 4
then
(8.5) Coldm) = { Cp(A) } ™ (| A ], =15 (=1, =13

Proor. From Lemma I
Co(Ag) = (=1, =1), { Co(4) } (1A, 41)s
= (-1 =1, {Co(A) } (1 4], —=1).
Hence the lemma holds for m = 2. Supposing it to hold for m — 1, we have
Co(Am) = Cop(An1)Cr(A)(| A 1™ | A )p(=1, = 1),
(8.6) = Cy(An0)Cr(A)(| A |, =157 (=1, = 1),
= (G (AL, =D5"(=1, =3

COROLLARY. If d is a rational number and A 18 the diagonal matriz of order m
given by

d
d
(8.65) A, = . ’
i a]
then .
(8.7) Co(Am) = (—1, —1),(d, —1)""D",

This follows at once from the main lemma by noting that
Cp(d) = (=1, —1),(d, = 1),

when d is regarded as a matrix of order one (cf. (8.2)).
~ We shall prove another lemma on a property of the Hilbert symbol which
“we shall use later.
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Lemma II1. For any two rational numbers a 5 0, b 5% 0, and any prime p,

(8.8) (a,0)p = (—ab,a + b)y.

Let
a 0] [a+bd b
A= ~ .
0 b b
Hence from (8.2)

('—17 _l)P(a) _I)P(ab7 _a)P = (_1’ _l)p(a + b, _1)?(abi —a'—b)p 3
or
(‘,1’ _1)P<b’ a)p(b7 _l)P = (a + b; _1)P<ab3 _l)P(ab7 a+ b)P ’
or
(a; —'1)1,((1, b)r’(b7 '—1)1’ = (a + b> _ab)P<a7 _1)P(b 7—1)17 ]
or
(a, b)y = (~ab, a +b),.
Putting a = n 4+ 1, b = —1 we obtain the following result given as a lemma

by Bruck and Ryser [15].
COROLLARY.

(8.9) (n+1,—-1),=®+1mn),.
9. Necessary conditions for the existence of symmetrical regular GD designs.

Consider a symmetrical regular GD design with parametersv, b, r, k, m, n, A1, Az,
where

(9.0) v =b = mn, r =k,
9.1) (m— DN+ n(m — D = r(r — 1),
(92) Q=T—)\1>O, P=r2—v)\2>0.

Sinee the incidence matrix N given by (3.3) is now a square matrix it follows
from (3.7) that

(9.3) ‘ |NN'| = | N | = PP @m0,

It follows that P™'Q™"™™ must be a perfect square. Hence the theorem
THEOREM 7. A mecessary condition for the existence of a symmetrical regular
GD design with parameters v, b, r, k, m, n, A, A2 satisfying-(9.0), (9.1) and (9.2)
is that P™'Q™ ™™ {s a perfect square.
Let X = NN’ be the matrix given by (3.5), then X is rationally congruent
to the unit matrix I. Hence a necessary condition for the design to exist is that
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C,(X) = C,(NN') = Cp(I) for every prime p. In order to calculate C,(X) we
shall start by obtaining C,(Y), where Y is the n X n matrix given by

r— A A — A o Al— A

VD VA D VR W
(9.4) Y = . .

A — A2 A1 — A2 e r— A2

Referring to the derivation of (3.7) it is readily seen that | ¥ | = PQ"™.
Let us set
Y
Y, = ,
—A

Co(Y)(=APQ™, —PQ"™),
Co(Y)(=X, =D)p(=X, P)o(=\, Q)5

If we add the last row in Y7 to each of the other rows, and then the last column
to each of the other columns, we get

where N = A\ — Ao
Hence from (8.3),

(Y1)

(9.45)

[r—xn 0 e 0 -\
0 r—A - 0 —A
Vi~ Y, = :

0 0 r— A —A

| - e R W
Since | Yy | = | Y1 | = —APQ"™" it follows from (8.3) and (8.7) that
Co(Y1) = Cp(Y2) = (=1, =1)5(Q, =13 ™ (=2PQ"™, —Q"),

(9.5) = (=1, =1),@Q, = 1™ (=X, =15(—), Q)7

(P, =1),(P, @3@Q, —1)5
Comparing (9.45) and (9.5) we finally get
9.6) oY) = (-1, =1),(@ —1)3;" P, Np(@ Nu(P, @3,

where A = N\, — g
To calculate C,,(X) = C,(NN') we now proceed as follows. Set
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From (8.3) and (9.3),
Co(X1) = CoX)(—Nr'P Q0 —ripmigri ),

= P(X)( Az ’ 1)1) ’
Qm(n —1f .

(9.65)

since from Theorem 7 P™* is a perfect square.

Again we may transform X to the rationally congruent matrix X, , by adding
the last row of X; to each of the other rows, and then the last column of X; to
each of the other columns. Thus

Y L
Y L

Xi~ X, = . o,
Y L

L o I =

where Y is given by (9.4), L is an n X 1 column matrix with each element as
—Xz and L’ is the transpose of L. We note that

| X2 | = | Xa| = =\"P7IQT0,
Hence from (8.3) and (8.5),
Co(X1) = Cp(X3) = {Co(D)}"(PQ™, =13 (=1, —1)77
.(_>‘ T2Pm-1Qm(n—l) __Pm m(n—l))
= {C(M}"PQ™, —1)F" " (=1, =13 (=N, =1)s(—Ne, P)y,

since P™ Q™™™ is a perfect square.
Comparing (9.65) and (9.7)

Cy(X) = C,(NN") = {C(N)}™(PQRQ™™, —1)5" (=1, —1)57 (=N, P),.
Substituting from (9.6),
CHVN) = (=1, —1)y(@, — )32 Dix(p, — 1yl

9.7)

9.8)
“(PQ, M — M) 3(P, Q3" (P, =), .
Now
(P, =177 P, @57 = (P, P"™),(P, Q""™),
(9.85) = (P, P"Q"" ),

= +1.
Also from (9.1)
n()\1 —)\2) =P — Q.
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Therefore,
PR M — M)y = (PQ, P — Q),(PQ, n),
= (P, —Q)s(P, n)5(Q, n),
from (8.8), whence
(PQ M = M)y = (P, —1),(P, @)p(P, n)5(Q, 1)y .
Hence finally
CoVN") = (—1, —1),(Q, — 1)~ Dimtn=Dizp _ 1ymin=biz

(9.9)
* (P, n)5(Q, n)5(P, M)y .

We thus get

THEOREM 8. A necessary condition for the existence of a symmetrical regular GD
design with parameters v, b, r, k, m, n, A1, s satisfying (9.0), (9.1) and (9.2) s that
Co(NN’), given by (9.9), is equal to Cp(I) for all primes p, where I is the unit
matrix.

Note that from (7.2), (7.4), (7.6) and (8.2),

CP(I) = (_1; _1)1? = —1 ifp = 2 0 Pw,

(9.35) e . .
= +1 if p is an odd prime.

Confining ourselves only to the case when p is an odd prime, we can combine
Theorems 7 and 8 into the following single theorem.

THEOREM 9. If a symmetrical regular GD design with parameters v, b, r, k, m, n,
A1, A2 satisfying (9.0), (9.1) and (9.2) exists then

(a) if m is even P must be a perfect square and if further m = 4t + 2 and n s
even (Q, —1), = 1 for all odd primes p;

(b) #f m is odd and n is even Q is a perfect square, and ((—1)*n)z, P), = +1
for all odd primes p, where a = m(m — 1)/2;

(c) ¢ m and n are both odd ((—1)°n)s, P),((—1)’n, Q), = +1 for all odd
primes p, where a« = m(m —1)/2 and 8 = n(n — 1)/2.

Proor.

(a) If m is even then in P™'Q™™ ™ the index of Q is even and the index of
P is odd. Hence from Theorem 7, P must be a perfect square. Noting that
(=1, —1), = +1 for all odd primes p, C,(NN’) reduces to

(Q, _ 1)1;(n-—1)(m+n—1)/2.

If now m is of the form 4¢ + 2 and = is even, then the index of (Q, —1), is odd.
Theorem 8 shows that (@, — 1), = + 1.

(b) If m is odd and n is even then in P™ Q™™ the index of P is even and
the index of @ is odd. Hence from Theorem 7, @ is a perfect square. Also C,(NN')
reduces to ((—1)“nAe, P), for all odd primes p, if « = m(m — 1)/2. The result
follows from Theorem 8.
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(¢) The result follows from Theorem 8 by noting that if m and n are both
odd then for all odd primes p

Cp(NN') = (nh2, P),(n, Q)

= (_n>‘2 ) P)p(") 4Q)P
= (n)‘2 ’ P)P(_n7 Q)P
= (_n)‘2 ) P)P(_n7 Q)P

ifm =

ifm =
ifm =
ifm =

4t + 1,
4 + 3,
4 + 1,
4t + 3,

S 333

= 4t + 1;
=4t 4+ 1,
= 4t 4 3;
= 4¢ + 3.

We give below a table of some symmetrical regular GD designs whose im-
possibility can be proved by using Theorem 9. The last column gives the reason
for impossibility. Thus for the design ‘“Ref. no. 1,” the statement P = 5, Th.
9(a) in the last column means that P = 5 contradicts Theorem 9(a). Hence the
design is impossible.

Some tmpossible symmetrical regular GD designs

Ref. no. v=b r=k m

n

M

Az

Reason for impossibility

1 44
2 92
3 56
4 88
5 20
6 18
7 30
8 22
9 42

10 90

11 30

12 33

13 93

14 95

15 39

16 27

17 69

18 65

19 15

20 35

21 33

7
10

— —
ot O

—_ =

—
QOO O IJTOOSHWON WU ©

22
46
28
22
10

2

2
11
21
45
15
11
31
19
13

3
23
13

5

7
11

p—

WOt WOUTW®O©WOUTWWNNNN U O N B DN DN

S WWWWWWOOOONNODWWNNINO O

QN DN o e bt b e e DN = e D) DD e b e e

=

Il
% 90 g
=EE

It

=

I

I
Q0 O OU D) = QU =~

~

HBEHa3
==¥

R
=

==
<=3

I

e o uk ulisviaviacBaciaciis -l
[

. 9(a)
. 9(a)
.9(a)
.9(a)
. 9(a)
. 9(a)
. 9(a)
. 9(b)
.9(b)
Th.
= 8, Th.
(—nAg, P)s(—n, Q)3
(=ndg, P)s(—n, Qs
(—n>‘2 ) P)5(7’L, Q)5
(mhg, P)s(—mn, Q)s
(—nAz, Plu(n, Qu
(—nhy, P)s(—n, Q)

9(b)
9(b)

(nhz, P)s(n, Q)s

(nhz, P)s(—n, Q)s
(—nhy, P)s(n, Q)s
(_n)\Za P)5(__n1 Q)5

= —1, Th.
= —1, Th.
—1, Th.
—1, Th.
—1, Th.
—1, Th.
—1, Th,
~1, Th.
= —1, Th.
= —1, Th.

Il

Il

It

Il

9(c)
9(c)
9(c)
9(c)
9(c)
9(c)
9(c)
9(c)
9(c)
9(c)
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