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ON THE ASYMPTOTIC NORMALITY OF CERTAIN RANK ORDER
STATISTICS!

By MEYER Dwass

Northwestern University

1. Summary. Let (R, ---, Rx) be a random vector which takes on each of
the N! permutations of the numbers (1, - -- , N) with equal probability, 1/N!.
Sufficient conditions are given for the asymptotic normality of Sy = Z’}'.,lambmi ,
where (ax1, : -+, axn), (by1, « -+, bwn) are two sets of real numbers.given for
every N. These sufficient conditions are apparently quite different from those
given by Wald and Wolfowitz [9] and extended by various writers [4, 7]. In some
situations the conditions given here may be easier to apply than those given
previously. The most general conditions available to date appear to be those of
Hoeffding [4]. In the examples below, however, is given a case of an Sy which
does not satisfy the conditions required by Hoeffding’s theorem but which is
asymptotically normal by our results.

2. Statement of theorem and its proof. We will assume hereafter that

N N N
Zam=zbm=0, Eai-.-=l.

P =1 i=1
THEOREM. Suppose for an integer £ = 1 there is a random variable X satis-
fying the following conditions:

(a) X has a continuous cdf F(z),
(b) if X;, -+, Xy are independent random variables each with the cdf

F(z) and Zy, < --+ £ Zyn are the ordered values of X;, ---, Xy then
N
bvi = EZy; — 3, EZy,/N
=1

for all N and <.
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(¢ E|X[* < w.

(d) Either X% is normal or (e) maxgicy |an:i|— 0 as N — oo,
Then Sy is asymptotically normally distributed.

ProoF oF THEOREM. Associate *with the random vector X;, ---, Xy the
random vector R;, ---, Ry where R; = number of X; < X;.

Let gn(X) = gn(X1, -+ -, Xx) be the random variable gy(X) = D_1yanbyz,; .
Hence, for every N, the distribution of gy(X) is identical with that of Sy, for
each assumes the same set of values with the same probabilities. Write

N N
gAv(X) = Zl GN;XI: - (; aNz'X,; - gn(X)) .
If it can be shown that
N
(1) ;mﬁ—mm

converges in probability to zero, then if 1=, ax:X% has a limiting distribution,
gn(X) will approach that same limiting distribution (as N — «) ([1], p. 254).

That 3 &, ax:X" has a limiting normal (0, 1) distribution is seen by applying
the condition of Liapounoff that

(fjl |ax;: °E | X* — EX* |3>*
(E(X* — EX*)?)

as N — . This is so, since

—0

N N
Z [ ax: |3 < max |ax;| E (azvj)2 = max |aw;].
1<i<N =1 1<isN

fa=]
To show that (1) converges in probability to zero, it will be sufficient to show
that limy.., EQ % ax:X% — gn(X))? = 0. Denote by Uy the expression

Uv=E @1 an: X5 — gN(X)>2 =E (2 av{Xi — EXY — gN(X))z
' [( [ i‘{ ani(X: — EXY) I)_JI1 dF(a:,-))

: Z AN bNr.-:l + ngv(X)

: 2
_ ko kY2
= E(X" — EX") i

where the integral is over that part of the space where R; = r; (i = 1, -+- , N).
and 7y, ---, ry is one of the N! permutations of 1, - -+ | N and where the sum-
mation .’ is over all such permutations.

By condition (b) and by the fact that N~ D\, EZ%; = EX", it follows that
Uy = E(X* — EX"" — Egx(X). By straightforward algebra,

\ 1 N 2 1 yoo
Egy (X) = —]v*,z (; an; an’) = ﬁ__l'; by
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1 .
N1 ; (BZx)" ~ N(N (Zi EZ”')
— 1'?;; (BZy)* —

By a theorem of Hoeﬂding [3]

N

@) lim L 3 (BZL)? = EX* fork = 1
N - N =1

Hence limy_.., Uy = 0, which proves the theorem.

3. Applications.

ExampLE 1. Consider the test studied by Hotelling and Pabst [5] based on the
statistic Sy = 21~ iR; . This statistic was shown to0 be asymptotically normal
in [5]. If we set ax: = (6 — (N +1)/2)/N(N* — 1)/12and by; = 3/(N + 1) — 1/2,
then it is easy to see that the random variable X which has uniform distribution
on the unit interval satisfies the conditions of the theorem with ¥ = 1. Hence
Sy is asymptotically normal and therefore so is Sy .

ExampLE 2. The statistic Sy = Z¥=1 an:EZyg: , where the Zy; are order sta-
tistics from a normal (0, 1) population and the a; satisfy certain conditions,
has been studied by Hoeffding and others [8] and shown to be asymptotically
normal. Our theorem shows Sy to be asymptotically nérmal not only for the case
of normal order statistics but also when the Zy; are order statistics from any
population satisfying conditions (a), (¢c) and (e). The last will be satisfied, for
instance, when

{\/n/(mN) G=1,---,m)
(3) an: =

— vVm/(mN) G=m+1,---,m+ n),

where m + n = N aud m and n both approach infinity as N approaches in-
finity. This type of a; is commonly used in the “two-sample problem.”

ExaMmpLE 3. When aN,[Z.=1 (EZyi — 231 EZys/ NV} = EZy; — D Y1 EZni/N
and by; = EZy; — 21 EZy:/N, this Sy has been studied by Hoeffding [2] for
the case of Zy; from a normal (0, 1) population. In this case he showed Sy to
be asymptotically normal. Our theorem shows this is also true whenthe Zy; are
order statistics from any population satisfying (a) and (c), (k = 1), since (e)
holds. This i is so since maxi<icw | ani | is given for either the index 1 or N. As-

sume it is N We have EZjyx = N [ ZF¥ Y (x)dF(z), (j = 1, 2), and an easy

argument gives that limy_, EZjx/N = 0. This and the fact that (EZyy)’ 2
EZ%x together with (2) proves the assertion. If the index is 1, the proof
is analogous.

ExampLE 4. When the ay; are given by (3) and by; = 3/(N + 1) — 3 the
statistic Sy is, for every N, linearly related to the Wilcoxon statistic, further
'discussed by Mann and Whitney [6], which, as is well known, is asymptotically
normal. This is also seen from our theorem for reasons stated in Examples 1 and 2.
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ExampLE 5. In a thesis by Terry [8], the statistic m — 1= EZwz, (where the
Zy. are the order statistics from a normal (0, 1) population) is proposed against
the alternative that the X; are normal with common mean, the first m having
one variance, the remaining M — n another. This statistic is linearly related to
an Sy where the ay; are given by (3) and by; = EZy; — 2_}-1 EZ%;/N. No con-
sideration of the asymptotic distribution of this statistic is made in [8]. We see
that this Sy is asymptotically normal when the Zy; are order statistics from
any population satisfying (a) and (c).

By way of example of a case not covered by earlier theorems (for instance,
see Theorem 4 of [4]) we take Sy = Ef-; axiEZyr; where the Zy; are order
statistics from a normal (0, 1) population and where condition (13) of [4] is not
satisfied. We can construct su¢h a case as follows. Let the ax; be given by (3)
but let the integer m be fixed and independent of N. Then condition (13) of
[4] says that

N
m 2 —-n 7/2 ZIEZ;H/N
@ ) G e
N mN N r/2
" [Z Ezf,,-/N]
) =1
must approach zero as N approaches infinity for r = 3, 4, --- . From [3] we
have that > EZj:/N has for its limit the jth moment of a normal (0, 1) vari-
able. Hence for even r, (4) does not approach zero. However, we see from our

theorem that Sy is asymptotically normal.
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