NOTES

THE MONOTONICITY OF THE RATIO OF TWO NONCENTRAL t DENSITY FUNCTIONS¹

By WILLIAM KRUSKAL

University of Chicago

- 1. Summary. The ratio of two different noncentral t density functions with the same number of degrees of freedom is strictly monotone, with sense depending on the relative values of the two noncentral constants.
- **2.** Background. The ratio of two noncentral t density functions has arisen in several statistical connections. First, in the proof that the Student t-test is uniformly most powerful invariant, the ratio of a noncentral t density function to a central t density function arises. This is discussed by Lehmann ([4], chap. 4) who gives a proof of monotonicity.

Second, the same ratio arises in the study of sequential *t*-tests; a discussion of this is given by Arnold in [1].

Third, the case in which both numerator and denominator are noncentral t density functions arises in connection with a sequential test for (one-sided) fraction defective. A discussion of this is given by Rushton [5], and an earlier reference to the same sequential test appears in Selected Techniques of Statistical Analysis ([2], p. 83, footnote). In this case, as well as in that of the above paragraph, monotonicity of the ratio is of interest because it implies that at any stage of sampling the continue-sampling values of the natural test statistic—Student's t—form an interval.

The purpose of this note is to give a very simple proof of the monotonicity of such ratios. The method is similar to that used by Wald ([6], Section A.8.2).

3. Statement. The noncentral t density function with ν degrees of freedom and noncentral parameter δ is

$$(3.1) \quad \phi(t; \nu, \delta) = \frac{\Gamma(\nu+1)}{2^{\frac{1}{2}(\nu-1)}\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu}} \left(\frac{\nu}{\nu+t^2}\right)^{\frac{1}{2}(\nu+1)} e^{-\frac{1}{2}[\nu\delta^2/(\nu+t^2)]} Hh_{\nu}\left(\frac{-\delta t}{\sqrt{\nu+t^2}}\right)$$

where

(3.2)
$$Hh_{\nu}(x) = \int_{0}^{\infty} \frac{z^{\nu}}{\Gamma(\nu+1)} e^{-\frac{1}{2}(z+x)^{2}} dz.$$

Received 5/11/53.

¹ Based on research supported by the Office of Naval Research at the Statistical Research Center, University of Chicago.

This quantity is the density function for $(U + \delta)/\sqrt{W/\nu} = t$ where U and W are independent random variables having respectively unit-normal and $\chi^2(\nu)$ distributions. (The noncentral t density function is readily derived from the joint distribution of U and W. It may be of interest to mention two minor misprints in the statement of this function by Johnson and Welch [3]. In their (2) the function should be divided by $\sqrt{\nu}$; and in their (3) a minus sign should appear in the exponent.)

If we consider two such density functions for the same ν but with $\delta = \delta_0$ and δ_1 respectively the natural logarithm of the ratio of the two is

(3.3)
$$\ln \frac{\phi(t; \nu, \delta_1)}{\phi(t; \nu, \delta_0)} = -\frac{1}{2} \frac{\nu}{\nu + t^2} (\delta_1^2 - \delta_0^2) + \ln H h_{\nu} \left(\frac{-t\delta_1}{\sqrt{\nu + t^2}} \right) - \ln H h_{\nu} \left(\frac{-t\delta_0}{\sqrt{\nu + t^2}} \right).$$

I shall prove the following

Theorem. If $\delta_0 \neq \delta_1$, (3.3) is strictly monotone, increasing if $\delta_0 < \delta_1$ and decreasing if $\delta_0 > \delta_1$.

4. Proof. Replace the independent variable t by the following strictly increasing function of it:

(4.1)
$$u = \frac{t}{\sqrt{\nu + t^2}}, \quad t = u \sqrt{\frac{\nu}{1 - u^2}}$$

so that $\nu + t^2 = \nu/(1 - u^2)$ and we may write (3.3) in the form

Differentiate (4.2) with respect to u and observe that the stated theorem is equivalent to the statement that the sign of

$$\int_{0}^{\infty} z^{\nu} e^{-\frac{1}{2}z^{2} + u\delta_{0}z} dz \int_{0}^{\infty} \delta_{1} z^{\nu+1} e^{-\frac{1}{2}z^{2} + u\delta_{1}z} dz
- \int_{0}^{\infty} z^{\nu} e^{-\frac{1}{2}z^{2} + u\delta_{1}z} dz \int_{0}^{\infty} \delta_{0} z^{\nu+1} e^{-\frac{1}{2}z^{2} + u\delta_{0}z} dz$$

is the same as the sign of $\delta_1 - \delta_0$. By rewriting each of the above terms as a double integral in (z_0, z_1) and combining, we see that the desired result is further

equivalent to showing that the sign of

(4.4)
$$\int_0^\infty \int_0^\infty (z_0 z_1)^{\nu} e^{-\frac{1}{2}(z_0^2 + z_1^2) + u(\delta_0 z_0 + \delta_1 z_1)} (\delta_1 z_1 - \delta_0 z_0) dz_0 dz_1$$

is the same as the sign of $\delta_1 - \delta_0$.

From (4.4) the truth of the theorem is immediate if either δ_1 or δ_0 is zero, or if δ_0 and δ_1 have opposite signs. Now suppose for simplicity that both δ_0 and δ_1 are positive.

Rewrite (4.4) in the following way:

$$(4.5) \int_{\delta_{1}z_{1} > \delta_{0}z_{0} > 0} (z_{0}z_{1})^{\nu} e^{-\frac{1}{2}(z_{0}^{2} + z_{1}^{2}) + u(\delta_{0}z_{0} + \delta_{1}z_{1})} (\delta_{1}z_{1} - \delta_{0}z_{0}) dz_{0} dz_{1}$$

$$- \int \int_{0 < \delta_{1}z_{1} < \delta_{0}z_{0}} (z_{0}z_{1})^{\nu} e^{-\frac{1}{2}(z_{0}^{2} + z_{1}^{2}) + u(\delta_{0}z_{0} + \delta_{1}z_{1})} (\delta_{0}z_{0} - \delta_{1}z_{1}) dz_{0} dz_{1}$$

and make the following changes of variable:

First Double Integral Second Double Integral
$$z_0 = s_0/\delta_0$$
 $z_0 = s_1/\delta_0$ $z_1 = s_1/\delta_1$ $z_1 = s_0/\delta_1$

to obtain

(4.6)
$$\left[\exp\left(-\frac{1}{2} \left(\frac{s_0^2}{\delta_0^2} + \frac{s_1^2}{\delta_0^2}\right) - \exp\left(-\frac{1}{2} \left(\frac{s_1^2}{\delta_0^2} + \frac{s_0^2}{\delta_1^2}\right)\right) - \exp\left(-\frac{1}{2} \left(\frac{s_1^2}{\delta_0^2} + \frac{s_0^2}{\delta_1^2}\right)\right) \right] ds_0 \cdot ds_1.$$

Hence the desired conclusion would be implied by the result that the sign of

$$\frac{s_0^2}{\delta_0^2} + \frac{s_1^2}{\delta_1^2} - \frac{s_1^2}{\delta_0^2} - \frac{s_0^2}{\delta_1^2}$$

is opposite to that of $\delta_1 - \delta_0$ so long as $s_1 > s_0 > 0$. But (4.7) may be written as

$$\left(\frac{1}{\delta_0^2}-\frac{1}{\delta_1^2}\right)(s_0^2-s_1^2)$$

whose sign is that of $\delta_0 - \delta_1$. This completes the proof for every case except that of δ_0 , δ_1 both negative. But this goes through with obvious minor modifications in (4.5) and the subsequent manipulations.

I should like to thank Charles M. Stein for helpful comments made after reading a draft of this note.

REFERENCES

- [1] KENNETH J. ARNOLD, Tables to Facilitate Sequential t-Tests, National Bureau of Standards, Applied Mathematics Series 7, 1951, pp. v-xiii.
- [2] W. Allen Wallis, "Use of variables in acceptance inspection for percent defective,"

Selected Techniques of Statistical Analysis, chap. 1, Statistical Research Group, Columbia University, New York, McGraw-Hill Book Co., 1947.

- [3] N. L. JOHNSON AND B. L. WELCH, "Applications of the noncentral t-distribution," Biometrika, Vol. 31 (1939-1940), pp. 362-389.
- [4] ERICH LEHMANN, Theory of Testing Hypotheses, Mimeographed notes recorded by Colin Blyth, ASUC Bookstore, University of California, Berkeley, 1948-1949.
- [5] S. Rushton, "On a sequential t-test," Biometrika, Vol. 37 (1950), pp. 326-333.
- [6] ABRAHAM WALD, Sequential Analysis, John Wiley and Sons, Inc., New York, 1947.

AN EXTENSION OF THE BOREL-CANTELLI LEMMA

By STANLEY W. NASH

University of British Columbia

1. Introduction. Consider a probability space $(\Omega, \mathfrak{F}, P)$ and a sequence of events $\{A_n\}$, $A_n \in \mathfrak{F}$, $n = 1, 2, \cdots$. The upper limiting set of the sequence is defined to be

$$\lim_{n\to\infty} \sup_{k\geq n} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

It is the event that infinitely many of the A_n occur. The purpose of this paper is to find necessary and sufficient conditions for $P(\limsup A_n) = 1$.

The general problem of finding the probability of an infinite number of a sequence of events occurring was considered by Borel [1], [2] and Cantelli [3]. In what follows we shall use the following notations. Let $\alpha_n = I(A_n)$, the indicator of the event A_n (or characteristic function of the set A_n), that is

$$\alpha_n = \begin{cases} 1 \text{ when } A_n \text{ occurs} \\ 0 \text{ when } A_n \text{ fails to occur.} \end{cases}$$

Let $P(A_n \mid \alpha_1 \alpha_2 \cdots \alpha_{n-1})$ denote the conditional probability of the event A_n , given the outcomes of the previous n-1 trials. When n=1, the expression is taken to represent the unconditional probability $P(A_1)$. The 1912 Borel criterion stated:

If $0 < p'_n \leq P(A_n \mid \alpha_1 \alpha_2 \cdots \alpha_{n-1}) \leq p''_n < 1$ for every n, whatever be α_1 , α_2 , \cdots , α_{n-1} , then $\sum_{j=1}^{\infty} p''_j < \infty$ implies that $P(\limsup A_n) = 0$, and $\sum_{j=1}^{\infty} p'_j = \infty$ implies that $P(\limsup A_n) = 1$. Cantelli proved that $\sum_{j=1}^{\infty} P(A_j) < \infty$ always implies that $P(\limsup A_n) = 0$.

Cantelli proved that $\sum_{i=1}^{\infty} P(A_i) < \infty$ always implies that $P(\limsup A_n) = 0$. Paul Lévy [4] clarified the general problem by proving the following theorem. The subset K (or K') of the sample space Ω for which

$$\sum_{j=1}^{\infty} P(A_j | \alpha_1 \alpha_2 \cdots \alpha_{j-1}) < \infty \text{ (or } = \infty)$$

and the subset H (or H') of Ω for which $\limsup A_n$ fails to occur (or occurs) differ at most by a set of probability 0. In other words P(KH') = P(K'H) = 0 and P(KH) + P(K'H') = 1. The hypothesis of the theorem proved in the next