NOTES

THE MONOTONICITY OF THE RATIO OF TWO NONCENTRAL ¢
DENSITY FUNCTIONS!

By WiLLiaM KRUSKAL
University of Chicago

1. Summary. The ratio of two different noncentral ¢ density functions with
the same number of degrees of freedom is strictly monotone, with sense depend-
ing on the relative values of the two noncentral constants.

2. Background. The ratio of two noncentral ¢ density functions has arisen in
several statistical connections. First, in the proof that the Student i-test is
uniformly most powerful invariant, the ratio of a noncentral ¢ density function
to a central ¢ density function arises. This is discussed by Lehmann ([4], chap. 4)
who gives a proof of monotonicity.

Second, the same ratio arises in the study of sequential {-tests; a discussion of
this is given by Arnold in [1].

Third, the case in which both numerator and denominator are noncentral ¢
density functions arises in connection with a sequential test for (one-sided)
fraction defective. A discussion of this is given by Rushton [5], and an earlier
reference to the same sequential tést appears in Selected Techniques of Statistical
Analysis ([2], p. 83, footnote). In this case, as well as in that of the above para-
graph, monotonicity of the ratio is of interest because it implies that at any
stage of sampling the continue-sampling values of the natural test statistic—
Student’s —form an interval.

The purpose of this note is to give a very simple proof of the monotonicity
of such ratios. The method is similar to that used by Wald ([6], Section A.8.2).

3. Statement. The noncentral ¢ density function with » degrees of freedom and
noncentral parameter § is
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This quantity is the density function for (U + 8)//W/» = t where U and W
are independent random variables having respectively unit-normal and x’(»)
distributions. (The noncentral ¢ density function is readily derived from the
joint distribution of U and W. It may be of interest to mention two minor mis-
prints in the statement of this function by Johnson and Welch [3]. In their (2)
the function should be divided by v/»; and in their (3) a minus sign should
appear in the exponent.)

If we consider two such density functions for the same » but with § = §
and §; respectively the natural logarithm of the ratio of the two is

1n¢(i v, 8) _ -1 (83 — &) + In Hh, (\/ tj_tz)

¢(t v, 50) v + 2
— tdo
I shall prove the following

TueEOREM. If 8 # 81, (3.3) is strictly monotone, increasing if 8, < 8, and de-
creasing if 8 > 61 .

(3.3)

4. Proof. Replace the independent varlable t by the following strictly increasing
function of it:

_t - v
@1 =Vt ‘*“4/?—7

so that v + £ = »/(1 — «*) and we may write (3.3) in the form

@
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(4.2)

zve—§z2+u6 0 ds
0

Differentiate (4.2) with respect to u and observe that the stated theorem is
equivalent to the statement that the sign of
/ao v —§z2+u60z de 81 zv+1 —3224+udyz dz
0

(43)
__f —-lz2+u812 de aozv+le—!z2+usoz dz
0

is the same as the sign of 6, — & . By rewriting each of the above terms as a
»double integral in (2 , 2;) and combining, we see that the desired result is further
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equivalent to showing that the sign of

(44) 'l j; (202y)” G DHuBosobdisd) (5.0 5020) deo d2n

is the same as the sign of &, — & . °

From (4.4) the truth of the theorem is immediate if either &, or & is zero, or if
% and &; have opposite signs. Now suppose for simplicity that both & and §, are
positive.

Rewrite (4.4) in the following way:

- 2 2 t] ']
ff (zozl)v e 1(z3+29)+u(Soz0+0121) (61z1 _ 5020) dzo dz
8121>8020>0

(4.5)

—§ (22422 Sozo+d N
- (zozx)' e Hegeptuosotdizn) (6020 — 6121) dzo d2y
0<8121<8¢z¢

and make the following changes of variable:

First Double Integral Second Double Integral
2 = /6o 2 = 8/
2= 81/& 21 = 8/6

to obtain

(606) ™ f f (sos1)"e ™oV (s — s0)
81>80>0

ex/lsﬁ I LA P
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Hence the desired conclusion would be implied by the result that the sign of

4.6)

4.7)

is opposite to that of 8 — & so long as s; > s > 0. But (4.7) may be written as

1 1
(5% - g> (8% - si)

whose sign is that of 6) — 8, . This completes the proof for every case except that
of & , 8, both negative. But this goes through with obvious minor modifications
in (4.5) and the subsequent manipulations.

I should like to thank Charles M. Stein for helpful comments made after
reading a draft of this note.
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AN EXTENSION OF THE BOREL-CANTELLI LEMMA

By StanrLeEy W. Nasus
University of British Columbia

1. Introduction. Consider a probability space (2, ¥, P) and a sequence of
events {A,}, A» e F,n = 1,2, --- . The upper limiting set of the sequence is

defined to be

lim sup 4, = N U 4,.

n—wo k>n A=l ke=n
It is the event that infinitely many of the A, occur. The purpose of this paper is
to find necessary and sufficient conditions for P(lim sup 4,.) = 1.

The general problem of finding the probability of an infinite number of a
sequence of events occurring was considered by Borel [1], [2] and Cantelli [3].
In what follows we shall use the following notations. Let a, = I(4,), the indi-
cator of the event A4, (or characteristic function of the set A,), that is

1 when A, occurs
Op =
0 when A, fails to occur.

Let P(A, | aioy -+ - o) denote the conditional probability of the event A4, ,
given the outcomes of the previous n — 1 trials. When n = 1, the expression is
taken to represent the unconditional probability P(4,). The 1912 Borel criterion
stated:
If0 < prn < P(An| a0z -+ any) < pn < 1 for every n, whatever be ai ,
o3, "y Qno, then X 5 pj < o« implies that P(lim sup 4.) = 0, and
> 31 p; =  implies that P(lim sup 4,) = 1.
Cantelli proved that > 71 P(4;) < « always implies that P(lim sup 4.) = 0.
Paul Lévy [4] clarified the general problem by proving the following theorem.
The subset K (or K’) of the sample space Q for which

DmiP(Ajlaaas + -+ aj) < o (or =w)

4nd the subset H (or H') of Q@ for which lim sup A, fails to occur (or occurs)
differ at most by a set of probability 0. In other words P(KH') = P(K'H) = 0
and P(KH) + P(K'H’) = 1. The hypothesis of the theorem proved in the next



