ON THE ESTIMATION OF REGRESSION COEFFICIENTS IN
THE CASE OF AN AUTOCORRELATED DISTURBANCE!

By UrLr GRENANDER
University of California, Betkeley and University of Stockholm

1. Introduction. The following stochastic model has been used in various
applications. A time series #, is the sum of a mean value m, and a disturbance
¥» . The disturbance is supposed to consist of independent and identically dis-
tributed stochastic variables with mean zero. The mean value of z, is a linear
combination

8
m, = E C(")go,(,")
nw=]

of certain known sequences {o\™},n = 1, 2, - - - s, the regression variables, but
with unknown regression coefficients ¢‘™. For an observed sample zy , %3, - - - Zn ,
the problem of estimating the ¢’s is usually solved by applying the method of
least squares (L.S.). As is well known this procedure is optimal in the sense that
the estimates obtained are best linear unbiased (B.L.U.) estimates.

The problem studied in this paper arises when the disturbance is still stationary
but allowed to be autocorrelated. If the correlation matrix of y, is known, the
B.L.U. estimates can be constructed although their form is not so simple as in
the first case. It is no longer generally true that they coincide with the L.S.
estimates. In the applications the correlation matrix of the disturbance is seldom
known. As this is not needed for the construction of the L.S. estimates which
are optimal in the case of a nonautocorrelated disturbance, it seems natural to
ask if they have some optimum property for large samples.

Looking at the problem from another point of view, we ask if it can happen
that the knowledge of the correlation matrix does not contain any information
relative to our problem of inference for large samples.

The main result is given in Theorems 3 and 5 and their corollaries. They express
the asymptotic efficiency of the L.S. estimates in terms of the spectrum of the
process and the spectrum of the regression sequence to be defined below. As a
consequence of these results, we show that in the case of trigonometric or poly-
nomial regression the L.S. estimates are asymptotically efficient.

The problem of estimating a constant mean value of a stationary process,
studied in [2] and [3], can be considered as a special case of our present problem.
Several authors have studied related questions. We refer especially to [5].

2. The disturbance. The process z, is observed at the points » = 0,1, -+ , N.
It is convenient to allow the process to take complex values.
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We shall suppose thai the disturbance y, has mean zero and finite moments
of the second order. Introduce the covariance matrix

fPOO’ Por, °*°° PON}
My =< p0, pu, *** pux pu = E§yu,
LPNO, PN1, °°° PNN

where, as usual, §, is the complex conjugate of ¥, . Supposing the disturbance to
be stationary (in the wide sense) we can write

o = pr—p = Efyu .

As is well known there exists a bounded, nondecreasing function F(\) defined
in the interval (—m, 7) such that

oy = _/f "™ dF ().

—%

Further the process itself has a similar representation

Yy = f e dZ (),

where Z(\) is an orthogonal process and
E|Z0) — ZOW) [P = | F(\) — FA) |

We shall consider the class of processes which have an absolutely continuous
spectrum with a continuous and positive spectral density. Then

F@®) — Fla) = f "H0) dn

where f(\) is the spectral density. This class of processes shall be denoted by Y,

3. The regression variables. In order not to overshadow the idea of the proof,
we shall at first consider the case of only one regression variable ¢, . We shall
deal only with the case when there exists a consistent estimate of c. We shall
later see that this implies that

Z:o=0[¢v |2 = w0,

As we shall see in Section 5, the asymptotic efficiency of the L.S. estimates is
determined by certain properties of the sequence ¢y, ¢1, @2, +++ . In order to
specify these properties, the most straightforward thing to do would be to as-
sume that the sequence has a Fourier-Stieltjes representation. But then we could
not deal with even such a simple case as ¢, = A + By, B # 0. Instead we shall
use a method which is an extension of generalized harmonic analysis.
~ Introduce the notation ®(N) = > 2o | ¢ |*. This is an unbounded nondecreas-
ing sequence for N =0, 1, --- .
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DermiTioN 1. If for every n = 0 the limits

R = v Prin
N—mo@(N)g¢¢+

exist, we shall call the sequence {¢,} regular and write {¢,} € R.
DEeriniTION 2. Let {o,} ¢ R. If for every b = 0 the sequences {¢,44} all gen-
erate the same set of

R, —NIEE 3 ( N & Z @oth Pythins

we shall say that {¢,} is a stationary sequence.
DermviTion 3. If the sequence ®(N) satisfies

. (N + h)
m =

for every integer h we shall say that ®(N) is slowly increasing.

THEOREM 1. In order that a regular sequence be stationary it is mecessary and
sufficient that ®(N) be slowly increasing.

Proor: Suppose that {¢,} is stationary. Then

=1

N
Bn = lim =% <1>(N) 2 ¢ @rin = lim o <I>(N) Z Prih Printh -
Since $(N) — « as N — «, we get
> >
hm y Potn llm v Pr4n e«
N_mq)(N) @y Pr w<I>(N) @v Prt
Thus
<I>(N + h)
R, —N_m B R..

As Ry = 1 the sequence ®(N) must be slowly increasing. By reversing the order
of the proof the sufficiency of the condition follows.
TrEOREM 2. A stationary sequence has a spectrum in the sense that for every n

_ T i\
(1) R —)\}HE @(N) ;0 ©CrPryn = ‘[' € d‘/’(x),

where o(\) is a distribution function defined in (—, 7).

Proor. For n < 0 some of the first terms in the sum appearing in (1) are not
defined. Since ®(N) tends to infinity with N, we can assign arbitrary values to
them as the limits do not depend upon them. Defining ¢, = 0 for » < 0, we see
that forn < 0

N

B = lim =% <I>(N) Z 0 @rn = lim i <I>(N) L OrPrn

. ®(N —n) 1 =
= m =™ <I>(N—n)2
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Thus, since ®(N) is slowly increasing, we see that R_, = R, , that is, the matrix
R, ={Rym;n,m=0,1, - q} is Hermitian.

A similar reasoning proves the second equality in
2 0.

E Ln Prin

n==l

q
X' X = n—m Ln —m =
B, n,mz.lR Tndn = lim o <I>(N) 2_%

As all the matrices R, are then nonnegative, the existence of a bounded non-
decreasing function ¢(\) satisfying (1) follows. Because 1 = Ry, = f de(\) we

see that ¢()) is a distribution function in (—m, ).

The set of points of increase of (M) is called the spectrum of the sequence
{¢»} and is denoted S(p). Although a stationary sequence determines the spectral
distribution function ¢(A), it is evident that the sequence is far from determined
by ¢(A\). This is equivalent to the fact that the covariance matrix of a stochastic
process does not determine the realization of it. Hence to a given spectrum cor-
responds a multitude of possible sequences.

In Sections 8 and 9 we shall study the spectra of sequences that appear in
certain cases as regression variables.

4. The L.S. estimate. The L.S. estimate coincides with the B.L.U. estimate
calculated under the hypothesis that the disturbance is uncorrelated. It is

N N .
d= oo/ 2lel
and its variance, still calculated under the same hypothesis, is

1 1
Dz[cts] =N = .
2 PW)
;) I (23 ,

In the following sections we shall study the asymptotic behavior of the L.S.
estimate. As we deal with a linear problem of inference it is natural to define the
efficiency of a linear estimate o* as

ex(a*) = D(aopt)/D(a¥),
where ok, denotes the B.L.U. estimate. The asymptotic efficiency e(a*) is taken
as the limit of ey(a*) if this limit exists.

Because of the linear nature of the problem, it is also natural to call a linear
estimate consistent if and only if it converges in the mean to the true value.

It is clear that in the case of a normal process these linear definitions coincide
with the usual ones. We shall, however, not make any assumptions regarding the
distribution of the process beyond properties of the first and second moments.

Consider two spectral intensities f(A) and g(\) corresponding to two processes
in the class Y. Introduce

max f(A) = f;  max g\) = g
min fA) = fi min gA\) = g1.

)
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For a certain linear combination ¢* = Y ¢, x, we have, using the spectral
representation of the process,

T N
c* = f 2 ce™ dZ ().

—% v=0

Hence, if f,(\) is the true spectral density,
Ls N
Dc*] = f e

y=0
Calculating the variance under the two hypotheses f-(\) = f(A) and £z(\) = g(A)
we have

J=(\) a\.

fi < Df[c*] _ flzcye” If()\) d)\‘s

~ = Ty == < .
g2 Dg[C ] fl Ecyeiv)\ I2g()\) A

U

(3) 0<

Suppose that #(N) — «. Taking g(A\) = 7/2 and f(\) as the true spectral
density, we get from (3)

Djlcts] < 2nf,/3(N) — 0,

so that there exists a consistent estimate of c.
On the other hand, suppose that c¢* is a consistent estimate of ¢. Then there
exists a consistent unbiased estimate, say ci; . But it follows from (3) that

1 1
50 Dl[cts] £ D] = oty Djle] — 0.

Thus, the existence of a consistent estimate is equivalent to ®(N) — .

6. The asymptotic efficiency of the L.S. estimate.

THEOREM 3. Suppose that

(a) the regression sequence ¢, is stationary and denote its spectral distribution
Sunction by o(\).

(b) the disturbance y, € Y and denote its spectral density by f(\).

Then the asymptotic efficiency of the L.S. estimate is given by the expression

27 % 1
(4) ' e (CLS) = T dtp()\) T .
_L ) _/_‘Tf(?\) de(\)

Proor. We shall carry out the proof in two stages, first proving (4) for any
disturbance of the autoregressive type, and then extending it to any process in

the class Y.
Suppose that the disturbance is generated by the autoregressive scheme

o Yv+p + o1 Yy +p—1 + - CpYy = €&
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with Ee, = 0 and Ee&, = 8, : As usual we shall suppose that the roots of the
characteristic equation

w? + a2 s F =0

are all of modulus less than one. We then know that Ey,e = 0 for u < » + p.
The spectral density of the y-process is
2

v

1128
> ™|,
r=0

There is no linear relation between the y’s. We can then use the Gram-Schmidt
procedure to orthonormalize the sequence ¥, ¥1, ¥2 * * * Yp—1 and get

(&) f&) =1/2x

CooYo . =M

cuy1 -+ CuoYo =m

Cp-1 p—1Yp—1 T Cp1 p2Yp2 + *++ + Cp10lo = Np
where
Eniy = du; v,u=0,1,---p—1
As ¢ is orthogonal to 7o, m1, - -+ 7,1 for » = 0 we see that putting 7, = €, for

v = p, the sequence (n, 71, 72, - -+ ad inf.) is orthonormal. Every y,, v = 0,
is a linear combination of %, , 7—1, - - 70 .

We have the relation
z, = coy + Y», vz 0,
and, having observed a sample z,, 1, - -+ Zy , We want to consider an estimate
%
c*of ¢

N N N
*=2 6 =c2 ot 2 Y.
y=0 y=0 y=0

Let us call L the linear transformation that carried (y ,41, -+ , Y~) Over in
(90, m, -+, nx). The corresponding matrix has then the rows (cxp , 0,0, - -+ , 0);
(0107011’ et 70); Tty (cp—lo’ Cp-11, "°°, cp-lp-—l;O’ Tty 0)’ (‘xpy Qp—1, **°,

-,a,0,-++,0) and so on. Introduce
L(xoer; "';xN) = (Eoyfl’ "';gN):
L(¢07¢17 ""(aN) = (50,131, ""BN)-

As L is nonsingular, every linear estimate can be written as

N N N
c* = Z'var = CZO'YD,BV + Z("Yvnv-
= ya=

=0
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But now the 3’s are uncorrelated and all have unit variance. Because of (2) we
then see that the variance of the B.L.U. estimate is

6) D2[C§LU] = l/yz_(:) I B» |2

To get an asymptotic expression for the minimum variance values for large
values of N we note that the p first terms in the sum in the denominator of (6)
contribute only a finite amount. Hence we need not take them into account as
the sum diverges because of what has been said in Section 4. We have

¢I>(N) ;p l ﬁv i: atau ‘I)(N) & Or—t Pr—u o
Hence

lim &~ I(N)D—Q[CBLU] = f: by Ry

N-»x t,u=0

Using the spectral representation of the R’s we get

Z a: eﬂk

t=0

dsa()\)

lim 87 (V) D~ kol = [

N—x

Combined with (5), this gives

2 % 27!' 1
(7) D [CBLU] <I>—__~(.N) d dga()\) .
Lx f(N)
Let us now derive an asymptotic expression for the variance of the L.S. esti-
mate. We have

* 1 <
s = F) L
and hence
Deisl = <I>2(N) y;; @vPuPu—r-
Thus

N—n

N
Pr
L] q)"—(N) o Py Pyin + "; Q(N) ng—: Py Prin .

® ®(N)D*crsl =

As p, is dominated by some Ka'™ with0 < a < 1, and as

1
®(N) = /‘/d)(N) 2:‘0 K3 <I>(N) EI“" =

we can perform the limit operation in each term of (8). We then get

N—n
¢v ‘Pv+n
=0

lm WDkl = X pRow = 2 oo [ ™ v,

n=—0o n=-—o0
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As we have
1 < :
f()\) = '2“ Z Pne-m)‘ ’
M —0

where the sum is uniformly convergent, we get

© D[eks] ~ <I>(N) f £ doV).
Combining (7) and (9) we have
e’(cts) = -
L8] — rd¢()\) T
L[5 [0 ae

which proves the theorem for any autoregressive scheme.

To extend this relation to an arbitrary process in the class ¥ we shall use a
method due to G. Szegd, who suggested it in a discussion with the author, to
prove the asymptotic efficiency of the equidistributed estimate of the mean of
a process in the class Y. In statistical terminology, it consists in approximating
the process by an appropriate autoregressive scheme.

As f(\) has been supposed to be positive and continuous, it is seen (using a
well known argument) that it is possible for any & > 0 to find a trigonometric
polynomial P = > .2 a6, where p is a sufficiently large number, such that

F0) £ 1/]sA)|* and 1/]s()|* —fON) S 6.

As we are interested only in the modulus of s(A), we can if necessary change the
o’s leaving | s(\) | unchanged in such a way that all the roots of the character-
istic equation are less than one in absolute value.

In this way we can find two spectral densities of the type (5) such that

(10) i) £ f) £ 00,
(1 L0 — fid) =

For any linear estimate c* it follows from (10) that its variances calculated
under the three different hypotheses satisfy

Djle*] < Djle*] £ Dl

This gives us
211' 2r % T 2r % 27!’
AT 7 /NN i 7 S .
T quO\) éNliLB q:'(N)Df[CBLL] = 131_13.10 Q(ZV)-DJ’[CBLU] _S_ L4 d¢()\) .

bt f2()‘) T fg()\)

Using (11) we see that
2
. or % 1 _
N!.l_r’g ‘I’(N)Df[CBLU] = Ao

T
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Similarly (9) is extended to hold for all processes in the class Y. This com-
pletes the proof of Theorem 3.

CoroLLARY. In order that the L.S. estimate shall be asymptotically efficient
whatever be the spectral intensity, it is necessary and sufficient that the spectrum
S(p) consist of only one point.

In other words, the knowledge of the true covariance matrix gives us no
additional information of relevance to our problem if and only if S(¢) consists
of only one point.

Proor. Supposing the asymptotic efficiency of the L.S. estimate to be e, we
get from (4) using Schwarz’ inequality

1 fr qu(A) [‘r (: fr ]2
- = = N\ de(N) = de(\) | = 1.
2= L. 7 1rf() o(\) = . o(\)
The equality sign holds if and only if f(A\) = const. for all A ¢ S(¢). This identity
is true for every spectral intensity in Y if and only if S(¢) reduces to a single
point. This condition looks at first very restrictive but, as we shall see later,
it is satisfied in the most important cases of analytical regression.

6. Possible extensions. The extension of Theorem 3 to several regression
variables is studied in the next section, so will not be discussed here.

We have demanded that the disturbance process have an absolutely continu-
ous spectrum with a positive continuous spectral density. This is likely to be a
much more stringent condition than what is needed for the theorem to be true.
Consider the case ¢, = 1. Then ®(N) = N + 1 and R, = 1, so that S(p) con-
sists only of the point A = 0. The theorem states in this case that the equidis-
tributed estimate Z = - 2,/(N + 1) of the mean value of a process be-
longing to the class Y is asymptotically efficient.

This result was first proved in [2] in the case of a continuous time parameter.
The same proof can be used also in the considerably simpler case of a discrete
parameter. The conditions imposed upon the process were weaker than those
defining the class Y, and in [3] the result was extended to spectra containing
also discrete and singular parts. This makes it at least plausible that Theorem
3 and its corollary hold for a class of disturbances considerably larger than Y.
However, the method of proof used in this paper does not seem to lend itself
easily to such an extension.

7. The case with several regression variables. In the treatment of this case
we shall deal only with questions which did not appear when we had just one
regression variable. The remaining part of the proof consists of a straightforward
generalization of the procedure in Section 5.

In order to describe the spectral properties of an s-dimensional sequence

e 0P, o 08 we consider the expressions

I

N
Q(‘)(N) = Z l ¢$i) lzy 1 17 2) )
y=0



REGRESSION COEFFICIENTS 261

which are supposed to be unbounded and slowly increasing as N — «. We
suppose that the following limits exist

(3)_ (k) n

1 N
12 i = lim —F———r y Pvtn
(12) Rji(n) »}1_1.2 q<I>(”(N)<I>§’1?)§¢ Prtns

Using the same argument as in Section 3 one can show that these limits are
invariant against translations and that they have the properties of correlation
matrices between s stationary and stationarily correlated stochastic processes.

From Cramér’s extension (cf. [1]) of Khintchine’s theorem on the representa-
tion of a correlation function we see that there exist s complex-valued functions
of bounded variation F(\), j, k = 1,2, «-- s, defined in the interval (—m, =)
such that

1%

0.

Rau(n) = f_ e™ dF 0.

For the increments of Fj;;(\) over an arbitrary interval in (—m, ), the matrix
{AF3(\);5,k = 1,2, - -+, s} is Hermitian and nonnegative. From this it follows
that the F;; are distribution functions.

Of course we want to exclude the case when the regression variables are
linearly dependent. We do this by assuming that the matrix {R;(0);
g,k =1,2, -+ s} is nonsingular.

The introduction of the spectral measure is not quite as straightforward as
for s = 1. Consider a rectangle r with sides (a1, b1), (az, bs), - ., (@, bs), in
the s-cube with sides (—m, 7). Denoting the difference operators corresponding
to these intervals by A;, A;, -+, A,, we form the nonnegative matrices

Ni= {AFu}, Ne= {MFa}, <+ N,= {AFal.

Let P be a permutation (1, 2, <+ 8) = (i1, %2; = %). To P we associate the
determinant '
(13) DP=IAi,~ij;j,k=1,2, ...sl‘

We define the spectral measure of r as
1

(14 o(r) = = 2 Dy
s!F

where the summation is extended over all the permutations. We have to show
that ¢ is nonnegative. As the value of ¢ for the whole cube is finite we can extend
¢ to a bounded measure in this cube.

As is well known there are Hermitian matrices fi, fo, *«« fs so that N, = 12,
v=1,2,---,s, that is

8
AFi = Zlf;(;)fsnvk) .
~
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Then

8
— 740 pa) (i1) p(ia) (ie) | pGif)
Dr= X BRI = X AN SR
103, ng=l n1ang,e - naml
After permutation of the rows of the determinants

8
De= 20 (=D - SRS
oo, oo loml
where (—1)7 is +1 or —1 according to whether P is an even or odd permuta-
tion. The permutation (1,2, ---, 8) — (ki, k2, -+ - , k) is the inverse of P and
has the same order. But from the Hermitian property of F®,
2Dr= 2 SIS
P [Y 27EREN .=1
The measure ¢ obtained in this way will be called the spectral measure of the
regression variables. The set of points in s-space such that every cube containing
one of them in its interior has positive spectral measure is called the spectrum
of the regression variables and denoted by S(¢). From | R;(0) | # 0 it follows
that S(p) is not empty. It is clearly symmetnc with respect to permutations of
the coordinate axes.
TaeoREM 4. The joint asymptotic efficiency of the L.S. estimates s given by

(15) & = U d¢]2

ff(ul) « f(us) do fm de

where the integrations are carried out over S(p).
Proor. It is sufficient to deal with the case when y, is an autoregressive proc-
ess, as then we can apply the same approximation procedure as in Section 5.
Consider a matrix of the form

M={[ k()\)dFJk()\): j,k=1,2,"',8}

where £(\) is a continuous function. Then one can show easily that
|31 = [ ) - ) diCan, -y w).
34

Denote by A4, B, C, respectively, the matrices obtained in this way by putting
EQ\) = 1, fA), 1/f(\). Tt is easily seen that A = {R;(0)} and that B and C
are nonsingular.

Proceeding in the same way as before we derive the relation

. 1 ® ] _ " -
'I‘EI:O TP NTO ) cov [vgo ,’ .%,Zcp z, | = 2r ‘['f()\) dFwi (V).
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From this,

1
. * %
lim cov [¢js; Crusl = M,

N \/ DD (N)®® (N)
where {ms ;5,k = 1,2, -+ s} = 47'B*A™". To find the asymptotic covariances
we use the same linear transformation as before and obtain

. 1
hm WE—(NS cov [C;‘,BLU H C}:BLU] = Njp

n—>0
where {nj ;j,k=1,2, --- s} = C.
We define the (joint, linear) efficiency e of s estimates with moment matrix
a as

e=limey, e =|8l/al

N—wx

where 3 is the moment matrix corresponding to the B.L.U. estimates.
Combining the obtained relations we get

oo Al _ [ ]

ff(u;) o flu,) dsoff(u_l)flfmd"

[B[|C|
CoRrOLLARY. In order that the L.S. estimates shall be (jointly) asymptotically
efficient for every disturbance of the class Y it is necessary and sufficient that the
spectrum S(p) of the regression variables contain only one point and the symmetric
images of .
Proor. From Schwarz’ inequality it follows immediately that

[[ dso] = ff(ux) oo fu.) do fmd%
with equality if and only if f(ui)f(uz) - - - f(us) = const. for almost all

(ul,u21 ce uﬂ) [ S(¢)'

If the spectrum contains at least two points which are not symmetric, the
asymptotic efficiency cannot be one for all residuals of type Y. The sufficiency
of the condition is obvious.

8. The case of analytical regression. When the regression sequences are given
a priori in the form of analytic expressions in », we shall speak of analytical
regression as opposed to the case when {oi°}, {¢$?}, - - - are obtained as measure-
ments of certain variables which are of a nondeterministic structure.

Let us suppose that we have a pair of regression variables of the type

¢ = 1" f ENAFQ) U, =0 f "™ GO
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where p and ¢ are nonnegative integers. Both F and @ are of bounded variation
but not necessarily real-valued. To bar cases where no consistent estimate of
the regression coefficients exists, we shall suppose that both F and G have at
least one discontinuity. This condition is satisfied in the applications we are
going to consider.

Separating the continuous and discontinuous parts of F and G we have

FQ) = F.A) + Fa) GO = G.\) + Ga(N).

Let us put
o= [ aro); 4= [ & ar);
7,=.[:8”dGAM; a,=‘[:J“¢qu.
We have
(16a) llm—-2|c,|2 hm—Zl'y.Iz—O
and
o .mZNZIdIz ;Imulz>0

hm—ZM, ;MJ>&

The frequencies where either F(A\) or G(\) has a saltus are denoted A, , with
AF(\;) = ma, and AG\,) = pa .
Consider the quantities

r~ (s) N2r+1 z (23 ‘I,'+8
(17)

ru(s) = NZ' = Z dy8yys v’ (v + 8)°
where r = (p + ¢)/2. We have for large values of N

78 = 76 | S 23 [ ovtone |+ 2 2 vt | + 2 3 | dyvons |
™ VOIS FGIoTHI T RGOl Tl O
sleilc.rlz":lv.+s|2+21/li|cv|*li|aml’
- Ni= N> N,= N ;=0
IR YVEDIPAES T
Ny-o Ny-o

Using (16) we see that limy—« | r4(s) — rx(s) | = 0. But it is easy to calculate
the limit of ry(s). If the number of discontinuities is finite we get immediately
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Z Z v’ m.e e “(v + 8)* P GO

. 7
1}1_1‘1010 ra(s) = N2r+1

(18)
N2r+l Z Mo B €,

If the number of discontinuities is infinite, a slight modification of the previous
inequality shows that (18) holds in this case, too.

It is now easy to deal with the case when the regression variables are of the
form

(19) ¢ = »* [ & AR\ + »7 [ AR + --0 + f & dF, ().
For v > 0 we can write this as

oy = 1” [ [ AR\ + o’ + - + a"”].

Since

leaii)|2<°°’ 1=1,2+-p,
it follows that a'” have Fourier-Stieltjes representations with absolutely con-
tinuous weighting functions. Hence

Oy = v’f P dF(\),

where F()\) has the same discontinuous part as Fy(\). We shall call the frequencies
corresponding to these discontinuities'the stressed frequencies of the sequence {¢,}.

TuroreM 5. A pair of regression variables (¢, ¥) where each one is of the type
(19) s stationary with the spectral distribution functions

Fu()\)—zl 22 |mu|

—“Au=A

_VEer+1)C2+1) 1 .
Fp(\) = 2 + 1 \/Z | 7 |2 Z ™ Iz __é)‘ My By

Ve2p+1)(2¢+1) 1 _
Fau(\) = ot 1 N TN Iz_é)mwﬂ

Fﬂ()\)_zl ui2 Z |}Lu .

Proor. Putting ¥ = ¢ and s = 0in (17) we get from (18)

lim <I>(N)
N2P+IE| N2p+1 = p+ 12‘
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Hence
2p-+1
®(N) ~ 2N+121mul
(20) N2t

These functions are slowly increasmg and, as we have already seen, {¢,} and
{¥,} are regular. It follows that the pair (¢, ¥) of regression variables is sta-
tionary.

We get from (17) and (18) that

Ru(n) = E l 2 Z ' My | e

\/(217 + D2+ 1) 1 —inhy
Bl = 2r+1 \/ZlmulZIMu ;muuu

— \/(277 +1)(2¢ + 1) 1 _ —inky
R(n) 27‘+1 VZImulzzluulz;mu#ue

1 —1in,
Ru(n) = mZm 2 g,

u

These relations determine the functions F;;(\). We note that
| Rw(0); 5,k = 1,2| = 1 — | Ru(0) |*

=1 — (2p =+ 1)(2q -+ l) I;"nu N ]2
2r + 1)? Zlm“|22|”u12

It is easily seen that this is positive, as is required if one wants to apply Theorem
4, if and only if at least one of the two following conditions is satisfied:

i.p #q.

ii. There is no linear relation Am, + Bu, = 0 for all u. We note that if there
is one such linear relation this implies that the stressed frequencies of {¢,} and
{¥,} coincide.

Let us study the case of s regression variables of the type described above.
If A1, A2, - -+ is the set of all the stressed frequencies we will denote the saltus
at \, corresponding to the 7th variable by u{”. The value of p for the ith variable
will be denoted by p;. Then it is easily seen that the matrix A = {R;;(0)} is
given by A = DAD where

© Il-(y) [©)]
A={Z.____J__.__.____ j,k=1,2,"‘8}

i+ 1]
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and D is the diagonal matrix
D = (Zpi-l‘l) s j=1,2 s

> T

y=1

)

so that A and A are singular or nonsingular at the same time. To get a criterion
for the nonsingularity of A we consider the quadratic form

e =3 / > u iz e
y=1 ¢ j=1
where z is a column vector with components z; , 2, , - - - 2, . If A is singular there

exists a nonzero vector z for which the above quadratic form vanishes. But
from this follows

Z ”(v) =0

j=1

for all » and . We will assume that we have labeled our regression variables
in such a way that

(,,-1; =1
pi = {m; J=a+1l -
ey j=01t-—1+1,

Then we get

& ¢

Surs =00, 3 wu=0

Jj=1 j=a;_1+1
for all », and as z # 0 at least one of these relations is nontrivial. The converse
of this is shown in the same way. Hence a necessary and sufficient condition for
4 to be nonsingular is that in none of the ¢ classes there exists a nontrivial linear
relation between the saltuses corresponding to regression variables in such a
class. For s = 2 this reduces to conditions 1 and 2 above.

Assuming that A is nonsingular, we will study the spectrum S(p). It is clear
that it is discrete. Consider a point I = (Iy, Iy, -+ L). If ¢(I) > 0 it is neces-
sary that Iy , Lz, - - I, coincide with some of the stressed frequencies, but this is
not always sufficient. Say that I = (A,, , \,,, - -+ \,,) where the »’s are not neces-
sarily distinct. Then

1 1
¢(Z)=[o [o | D) | duy day - - - dz,

where D(z) = | u{P2f%;5,k = 1,2, -+ s].
To show this, consider a permutation P:(1,2, --- 8) = (i1, %2, - -+ 1,) and
put ¢z; = P;. Thenforj k=1,2, ---

(vP ) (VP )
P_m / f A;(x) dxy dxs - - - dx,
i
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where
p)) 2 (vp ), Di+
Ar(w) = | W§o RSP PaBIH .

But
3
Ae(w) = IL wrwads(=1)" | g PaP* |
=

and hence > » Ap(z) = | D(x) |2
We are especially interested in the case when S(p) reduces to a single point
(and its symmetric images). Let us treat two important cases.
First assume that all p; are different. If ¢(I) = 0 we see that D(z) = 0, im-
plying that
PRSP SN L R

11 12 g

for all permutations (1, 2, - -+ 8) — (41, %2, *-- %). If one regression variable
has two stressed frequencies, say ¢ has A’ and \”, we choose

l,=(>\ljl2’l3;"'l3) l”=(kllyl2’l3,°"l3)

where [, is a stressed frequency of o? and so on. Taking (1, 2, -+ 1) =
(1,2, - -+ s) we see that ¢(I’) > 0 and ¢(I”) > 0. But I’ cannot be obtained by
permutations from I”. On the other hand, if each variable has only one stressed
frequency it follows that S(p) consists of only one point because if ¢(I) > 0
then there is at least one permutation (¢, % , - - - 4;) so that

wi? A0, wl? 0, e w0

But then ! must be a permutation of (\1, Az, - - - \s) where A; is the only stressed
frequency of ¢S and so on. This proves:

CoroLLARY 1. If all p; are different, it is necessary and sufficient for the L.S.
estimates to be asymptotically efficient, whatever be the spectral density f(\), that
each regression variable have only one stressed frequency.

Assume now instead that all p; = p. Then

D@) = | uf;5,k = 1,2, «++ 8| (@2 ++* )"

If o(I) > 0 it is clear that the »’s must be different. If each regression variable
has only one stressed frequency S(p) must consist of one point only. We are
going to show that the converse of this is true.

Let I be the only point in S(¢) and suppose we have labeled our variables so
that I = (A1, A2, -+ As). Then the column vectors

[CS NS 1
1, cee ug ]

v = [ui, w2,

(2) (2) (2)
ve = [ui, us sy * 0 He')

(@ (o)
v = [ui”, us”y <+ us'}
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are linearly independent and span R°. If there is one more stressed frequency,
S8y Aey1, then
i = B, W, ) 2 0,
and there are constants 8; so that*
Vag1 = P11 + Bava + -+ + Bovs.
As the point
AIE (TR VIRERRD VI VITIRPRRS Vb W

is not an image of I it should have spectral mass zero. Then the determinant
formed from the corresponding column vectors should vanish

R .
Ivl,vz, ey Vi1, Viga, "',”n%ﬂ[ = Zlﬂjlvl'” ,”il
=
=,3¢11)1,Uz, crt g Vieny Vigg, v 0 7”””" =0

so that B; = 0. As this would hold for all ¢ we have obtained a contradiction.
CoroLLARY 2. If all p; = p then a necessary and sufficient condition for the L.S.
estimates to be asymptotically efficient, whatever be the spectral density f(\), s that
each regression variable should have one stressed frequency only.
CoROLLARY 3. In the case of parabolic regression, i = »* and

2 =20 cpr” + s,
»

the L.S. estimates are asymptotically efficient.

This follows immediately as | 4 | > 0 because the p’s corresponding to differ-
ent regression variables are different and each component has A = 0 as the only
stressed frequency.

CoROLLARY 4. In the case of trigonometric regression,

iv\, v,
oV =" and  x, = cae™ 4y,
n

the L.S. estimates are asymptotically efficient if the N’s are different.

In this case p = 1 for each component but as the nth regression variable
has only one stressed frequency, X, , it follows that | A | > 0 and the corollary
holds. ‘

Other types of analytical regression could be studied in a similar way. In
order that the same method shall be applicable, the regression variables must
not be too small at infinity (in which case #(®) < o and no consistent estimate
exists) or too large (so that (V) is not slowly increasing and the sequence is not
stationary). The first case does not seem to be of much interest but perhaps
this can not be said about the second one.

~Consider the case of exponential regression, that is ¢, = @’, and let ¢ > 1.
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Then forn = 0
N

By = Jm <I>(N) 2, 0 frin = 0" lim <I>(N) Z o] = a”

80 that ¢, is a regular sequence. As

oW + ) _
v-w | B(N) |
the sequence is not stationary and one verifies easily that it has no spectrum.
One could still in a natural way attribute certain stressed frequencies to func-
tions of this type of growth and in this case we would get A = 0 as the only
stressed frequency. We shall not pursue this question but only show that the
L.S. estimate of the corresponding regression coefficient is still not asymptoti-
cally efficient for all disturbances of the class Y.
As ¢, is increasing very fast, it seems probable that ¢y = zy/oy = o zy
would be an asymptotically good estimate. Its variance is

2n>1

Dcy] = a”™D’lay] = _' FO\) dn.

Crs = <g a’x.) / <§ az')

For the estimate

we have
1 ] gV iDN 2
DYt = 5 [ — | f0) &
Z 2 | Jerr 1 — ae
a
v=0
2N+2 L3 —N—-1 AN+N |2
a a —e
- ) dA.
B 2u2‘[1r 1 — aet ™
a
y==0
Hence

1 — a f’r 1
2r %
Dcrsl ~ 1= ae” lzf()\) ax,

which gives us

lim Dlles ] a ‘[w J) dn
N-» D¥[14] -y fr FN)

« |1 — ae* 2

If the disturbance has most of its spectral mass concentrated in the neighbor-
hood of A = 0, the last expression is near [¢/(1 + a)]’ < 1. Thus the L.S. esti-
mate is not asymptotically efficient for all spectral densities in this case.
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9. The, case of fixed variates. When nothing is known about the way in which
the regression variables are generated, it is clearly impossible to make any
general statement about the asymptotic efficiency of the L.S. estimates of the
regression coefficients.

Let us consider a very simple motlel of generation which is not of the analytical
type. For simplicity let us consider the case s = 1. Let {o,] be a stochastic
process independent of the residual process, stationary (in the strict sense), and
ergodic. We denote its spectral distribution function by P(A). Then it is known
that (with probability one) the sequence {e,} has a spectrum and that the
spectral mass in (e, B) is

(cf. [4]). 1t follows from Theorem 3 that the asympt‘otic efficiency of the L.S.
estimate, regarding the ¢’s as fixed variates, is almost certainly

¢ = [ [ dP(x)]z / _: f(lx‘) oy [ FO) dPOV).

If the spectrum of {¢,} contained more than one point we see that ¢ < 1 (cf.
the corollary of Theorem 3).

It would be interesting to know how generally this holds. A class of processes,
generating the regression variables in a natural way, could be defined as follows.
Let A be a finite difference operator and suppose that {Ae,} forms a stationary
process. One simple case is when Ag, = ¢,11 — ¢, and Agp, is purely random.
Then ¢, would be a temporally homogeneous differential process. Are the realiza-
tions of such processes regular and stationary in the sense of Section 3, and if
so0, what spectra do they have?

10. The information of the covariance matrix. If the regression sequence
{¢,} has a spectrum consisting of a single point we have seen that the L.S.
estimate is asymptotically efficient. We have then said that the knowledge of
the true covariance matrix of the disturbance does not give us any information
with respect to the problem of inference under consideration. In this section
we shall make this statement more precise.

Suppose that we have two covariance matrices M; and M, for the residual
9, € Y. Let the B.L.U. estimates calculated under the two hypotheses M; and
M, be ¢f and c5 . If

im Dlcf]
¥—w Dlc3]

for all possible pairs M, , M., we shall say that the covariance matrix gives us
no information.

Let the spectral density under the two hypotheses be fi(A) and f.(\) and let
the true one be f(\) corresponding to a covariance matrix M. The corollary of
Theorem 1 implies that the correlation coefficient between cis and the B.L.U.

=1,
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estimate tends to one as N tends to infinity (we are considering the case when
the spectrum of ¢, is reduced to a single point). Hence

Dfl[CT - Cts]/Dfl[Cts] - 0, N — »,
But because of (3) we get ‘
Dylet — cisl/Dy | cis| — 0, N — o,

But the triangle inequality gives us

Dflet — etsl 2 | Dyct] — Detsl |

and hence
Dy[ct]/Dslezs] — 1, N — .
Similarly we get )
Dylct1/Dylersl — 1, N — o,
so that
Dylei1/Dyler] — 1, N — w.

Thus we have shown that if the spectrum of the regression sequence contains
only one point, then knowledge of the covariance matrix does not give us any
information of interest with respect to estimating the regression coefficient.
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