RANDOM FUNCTIONS SATISFYING CERTAIN LINEAR RELATIONS
By S. G. GHURYE

Unaversity of North Carolinal

Introduction and Summary. A hypothesis often made about a sequence of
real-valued r.v. (random variables), {X,, n = 0, %=1, 2, ---} is that there
exist certain real constants oy, a2, - - - , ax such that if we write

(1) A Yn = Xn + aan—l + e + aan-—k,

then {Y,} is a sequence of independent r.v. Now, very often in practice, the
observed sequence {X,} consists in observations made at equidistant -points
on a stochastic process with a continuous parameter . Restricting our attention
to the case k = 1, we then have a r.f. (random function) X (¢), defined for all ¢
in an interval, with the following property: There exist a value of ¢ (, say),
and h > 0, and a real number « such that a hypothesis of the type mentioned
is satisfied by the sequence {Y(t, h; n), n = 0, £1, &2, ---}, where

@ Y(t, h;n) = X(to + nh) — aX(bo + [n — 1]h).

But if such a hypothesis is true for one value of A, it is not necessarily so for
some other value; and we have to make the additional assumption that the
particular length of the t-intervals with which we are concerned is precisely
the one for which the hypothesis holds. This assumption may not be reasonable
in every case, Instead we may wish to work with a hypothesis similar to the
above, but which holds for all positive & in some interval.

In this paper, we investigate the existence and form of random functions
satisfying a hypothesis of this type. Section 1 contains a statement of the problem
and some simple results. It turns out that any random function possessing the
required property can be expressed as the product of an exponential function
of ¢ and a r.f. with independent increments. Section 2 deals with the limit in
distribution of a sequence of Stieltjes approximating sums involving a r.f.
with independent increments. Finally, in Section 3, these results are applied to
the problem under investigation, and further possibilities are investigated.

It must be noted that, in this investigation, we are concerned only with
results in distribution. That is to say, we are dealing throughout only with
parametric families of probability laws and talking in terms of r.f. merely for
convenience. '

1. The problem and some preliminary results. We consider a real-valued
random vector function X(¢) whose transpose X'(¢f) is the row vector
(X%, -, X (1)} defined and continuous in probability for all ¢ = some { .
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We suppose that there exists a real-valued, p x p matric function 4 (h) = {a"(h)}
defined and continuous for & = 0, and such that if we write

)] Y(n; k) = X(t + nh) — A(R)X[to + (n — 1)h],
then for any > 0 and any integer N, X (%), Y(1; k), --- , Y(N; h) are mutually
independent. :

We shall be concerned with the existence of such random functions X (¢) and
with the functional form of A(k), the probability law of X (¢), and other ques-
tions of this sort. To start with, we shall prove

Lemma 1. Let X' = {X©, -+, X} and Y’ = (Y, ..., Y™} be inde-
pendent random vectors, and let there exist an m x n matriz A of rank r such that
X 4 AY 1is independent of Y. Then there exist at least r linearly independent
n-vectors ¢(j) such that, with probability 1, ¢’(7)Y is a constant,j = 1,2, -+ , 1.

Proor. Let

o= {9, ™), W= wW®, e w™), S, u) = E{efTYY,
Then the independence of X and Y implies
G, w) = f@, 00, w), S, At + w) = f(t 00, 4t + w).
From the independence of X + AY and Y, we have
1@, A't + w) = ¢, A"Df0, w) = f(t, 0)f(0, ADf(0, w).

Since f(0, 0) = 1 and f(¢, ) is continuous, there exists a region, ¢t < T, in
which f(¢, 0) £ 0. Consequently, for any ¢ in this region and any «, we have

f(O’ A't + u) = f(07 Alt)f(oy 'Lt).

Since A’ is n x m and of rank r, there exist nonsingular matrices B and C
such that

S

]
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Let
B't = v, u = C'w, 7= [, .00, -4, 0},
w = {w(1)1 ] w(r)’ 01 Tty 0}’ f(O’ OID) = g(b)'
Then, for any 7 in a certain neighbourhood of the origin and for any w,
g0 + @) = g@)g(®) and @) = T
Since g is a characteristic function, & = 0 and f(0, C'7) = ¢® " It follows that
if ¢(j) be the jth column of C’, then

Pr{c'())Y = g} = 1, i=1,2 -,

CoroLLARY 1. If Y is not linearly singular, in the sense that there is no ¢'Y which
s a constant with probability 1, if X 4 AY 1is independent of Y, and X + BY is
independent of Y, then A = B.

TureoreM 1. Let X (t) and A(h) be as assumed at the start of the section, with
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the additional conditions that X (t,) is not linearly singular and A (h) is nonsingular
for some h > 0.

Then A(h) can be written in the form e, where A is a constant matriz. Further
X*(t) = ¢*X(¢) is an additive process. Conversely, if A is any constant matrix
and X*(t) an additive process, X (t) = e X *(t) is of the desired type with A(h) = €.

Proor. For any k > 0 and any m, X (t), Y(1; hm™), -+, Y(j; hm™), -+,
Y(m; km™) are independent. Therefore Y mo {A(hm ™)} 'Y (m — j; km™) is
independent of X (t,); that is, X(¢ + k) — {A(hm™")}™X (%) is independent of
X(t). Hence by Corollary 1, {A(hm™)}™ = A(h). It follows, by the usual
continuity argument, that A (h)A (he) = A(hy + ko).

Let h1 be such that A (k) is nonsingular, and let h; — 0. Then limj—, A(h) =
A(0) is the identify matrix I. Nagy [11] has shown that, under these conditions.
there exists a constant matrix A such that A(k) = ¢** and

A= limh_.o {A(h) - I}h_l.

Now let to < tl < tl + hl é e < tz + hz, and tl - to = h. ThenX(to),
Y(j;n™),j = 1,2,---,m,n 4+ 1, --- , are independent r.v. Hence

Xt + mhn™) — A(midin™)X (t1),
Xt + mahn™) — A{(ms — m)hn ™} X (t; + mohn™?),

are mutually independent if m; < my < m;. By letting n, m;, my, mg —
in a suitable manner, we can show that the r.v. (4) converge in distribution
respectively to
(5) X (to), Xt + k) — A(M)X (1), X(ts + ha) — A(ho) X (ts).
Hence, these are mutually independent. In the same manner, we see that for
any integer kand any ¢, t2, -+, & in [to, t], X(¢ + h) — A(h)X(t) is independ
ent of X(4), ---, X(&), so that X*(t 4+ h) — X*(t) is independent of
X*(ty), - -+, X*(t). In other words, X*(t) is a random function with independent
increments which are also independent of X*(f,). For convenience, we shall use
Paul Lévy’s terminology and call X*(¢) an additive process.
The final, converse statement of the theorem is obvious.

4) X (t)

2. Concerning additive processes. The general form of the l.c.f. (logarithm
of the characteristic function) of an additive process Z(f) which is continuous
in probability has been derived by Paul Lévy [7] and [8] (for alternate deriva-
tions and forms, see Doob [1], Feller [2], Gnedenko [4] and Khintchine [6]). It
may be expressed as follows. '

Let v’ = {u®, ..., u®} be a vector variable, and ¢ , ¢, be any real numbers
(ti < t2). Then

log E{eiu'[z(tz):z(u)]} — \l’(uy tz) _ '//(% tl))
@ Yu; t) = ' w(t) — 2/ Z@u

+ f fe™" — 1 — /21 + 2 2) "1+ 2’ 2) (@ 2) 7 d. Gz B),
R(p)
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when R(p) is the whole p-dimensional Euclidean space of x. Also, both
/‘,(t) = {f"(l)(t)) e ’“(:D)(t)} and

<a“ W - o (t)>
>0) = = 2'(t)
W) e ")

are continuous, and for every ¢ and any h > 0, Z(t + h) — Z(¢) is nonnegative
definite. Further, G(x; t) is a function of the p-vector x and the real variable
t such that

(i) for Az = 0,5 = 1,2, ---, p, the mixed difference A,G(z; {) = 0
for every t,

) (i1) L(p) d;Gz;t) < o,

(iii) for any ¢, G(x; t) assigns zero measure to the point z = 0 of R(p),
(iv) G is continuous in ¢ for all z,
(V) if i < trand Az 2 0,7 = 1,2, -+, p, then [A,G(x; )] = 0.

®

Lemuma 2. Let 2(t) = {a"'(t)} be a p x p symmetric matric function of t, defined
and bounded for all ¢t in a closed interval T and such that Z(t;) — Z(t) is non-
negative definite for any t; < t» (in T). Then all elements of Z(t) are of b.v.(bounded
variation) in T.

Hence, if u(t) is of b.v., so is ¢(u; t) of b.v. in ¢ for every u.

NoraTioN. In what follows, A(t) = {a"(t)} being a p x p matrix, we write
M:dA@W)u(v) for the column-vector whose ith element is

l}::; ‘/t: “(l)(v) da“(v).

¢
Similarly we write f A @) d=()A’(v) for the matrix whose (7, j)th element is
to

P

>3 0)a"(0) do™" ().

=1 m=1
By a partition II(¢y , ¢; ; I; m) of [, ti], we mean a finite number of {-values
tO = tl,m,O < tl,m,l < -0 < tl,m,n(l;m) = tl, t;,m,j ,j = 1, 2, e ;"(l; '”l),

where fimj1 £ timj = tim;. The norm of the partition is 6(I; m) =
max; (ti,m,; — ti,m, 1)

TuroreM 2. Let Z(v) be a p-dimensional additive process, defined and continuous
wn probability for t = &, whose l.cf. 7s given by (7). Let A(f) be a real-valued
p X p matrixz whose elements are continuous and of b.v. in the closed interval [ty , T.
Given any positive integer N and any values t; < t, < -+ < tyof tin [t, T],
let {I,} = (0@, t;;l;m);l=1,2 - N;m=1,2,3, ---} be a sequence
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of sets of partitions of the set of intervals {[ty, t;], 1 = 1,2, --- , N} whose norms
él;m) > 0forl =1,2,---,N,asm— . For any m, let

a(l;m)

©9) S, ti;l;m) = Zl Arm ) ZHm) = Z(tims—)}, 1=1,2---,N.

Then, as m — o,

(a) the sequence of sets or r.v. {S(to, t;;1;m),1 =1,2,--- ,N;m =1,2, ---}
converges in distribution to a set of r.v.
(10) ’ Z(A;t()ytl); l=1;2:"'1N!

whose distribution is independent of {11,,};
(b) thelef. of Z(A;ty,t) is

V(ty,t) = iu’{[A(v)y(v)]:o — jjdA(v)p(v)}—- %u'f:A(v) A=) 4’ w)u

(11) + f {47 — 1 — WA + 2/ 2) 7
R (p)X[t,1]

A4 2z)@ ! dG(x;v);
(¢) the joint distribution of the set of r.v. (10) is the same as that of the set

4
(12) D Z(A;5 8, L), 1=12 - N,
=1

where the Z(A; t;1,t5),5 = 1,2, -+, N, are mutually independent and the l.c.f.
of Z(Ajtiast;) 18 W(tia, tj).

Proor. First taking N = 1, we show that the sequence of approximating
sums (9) converges in distribution to a vector r.v. whose l.c.f. is ¥(t, ¢;). For
simplicity, we shall drop the suffix m from the ¢-values, and also write f(u, z; v)
for the integrand in the third term of ¥(¢ , t;), T for the interval [t , #;] and T,
for the interval [t1,;1, t1,;].

Since the Z(t,;) — Z(t1,5-1),7 = 1,2, - -+, n(l; m), are mutually independent,

log E{e™ " (ty, t:; 1;m)}

Il

; WA (t)w; b)) — A () u; b )]

Il

4 an WAt ) plt) —ut))
(13) -
— _;. ;1 w A (t;‘].) {2(t1,j) —E(tl,j—-l) }A'(ti‘j)u

3 S8 i@ hy) — Gl )]

=1 YR (p)

= [i(m) + L(m) + Is(m), say.
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It is easily seen that, given any positive U, I;(m) converges to the first term
of ¥(t , t1), the convergence being uniform for all 4 such that '« < U. Similarly,
I,(m) converges uniformly to the second term of ¥(Z , ). Finally,

OED S CETPER-CR)

Now, let S. be the set of all z such that:c z < c, and let S; = R(p) — S, . For
v ¢ T, the elements of A(v) are bounded in absolute value, by K say. Hence,
for u'u < U,z ¢ S, and v ¢ T, we have

[fu, z;0) | = | ™4 — 1 — wWA@zQ + 22)7 || (1 + z'z)@'z)"|
<201 + ¢ + KU
<5 ¢ = ¢ = max (1, p'K*U).
From (8), we know that f d.,G(x; v) < € for ¢ > c.. Let us take

¢ = max (Co , ¢) and write S for S, . Then
2 f | flu, 75 1,7) | daw G(x;0) < B,
=1 J8'XT;

and f | f(u, z; ) | d2yG(z; v) < 5e. Hence,
8 XT

Is(m) — f f(u, z; v) s G(x; v)
R(pD)XT
< Z[ | £y 25 81,5) —f(u, ;0 | dey G(z; 0) + 10e.
=1 J8XT;

From considerations of uniform continuity, it can be seen that the first term
on the right-hand side is of order e for sufficiently small §(1; m) and all « such
that w'u < U. Consequently, I3(m) converges uniformly, for all » such that
w'u < U, to the third term of ¥(t, #). By the continuity theorem for char-
acteristic functions, it follows that {S(, t1, 1; m), m = 1, 2, ---} converges
in distribution to a random vector Z(4; t , ¢;) whose l.c.f. is ¥(f , #) and hence
independent of the sequence of partitions.

To prove (c), it is enough to indicate the proof for N = 2. Let t;, be the
largest ty,m,; S 41,7 = 1,2, -+, n(2; m). Then

(14) tom >ty ;
(15) S, t2;2;m) = S, tam ; 2;m) + S(tam, t2 5 2; m).

The two terms on the right-hand side of (15) are mutually independent vector
r.v. which, on account of (14), converge in distribution respectively to Z A;t, t)
and VA (A t ) tz)

Now, let IT*(t, , £ ; m) be the partition obtained by superposing (¢, ¢, ; 1; m)
on I(ty, tam ; 2; m) and let S*(ty, ¢, ; m) be the corresponding approximating
sum. By making use of the fact that A(¢) is of b.v. and that Z(¢) is uniformly
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continuous in probability in every closed interval in which it is pointwise con-
tinuous, we can show that

S8*@o, tr3m) — S(to, t; 1; m) and S*(to, tr3m) — S(o, tam ; 2; m)
both converge in probability to zero. Hence so does
S(to, t1;1;m) — S, tam 3 2; m).

But if X, Y, are mutually independent and converge in distribution to
X, Y, and 0, — O in probability, then {X. + Om, Xm + Y.} converges in
distribution to (X, X + Y), X and Y being mutually independent. Therefore,
the set of r.v. {S(To, t1; 1; m), S(t, &2 ; 2; m)} converges in distribution to
{Z(A5t, t), Z(A; 00, 6) + Z(A; 1, 1)}, where Z(4; b, t1) and Z(4; t, t,)
are independent.

Remarks. The fact that A(f) is of b.v. has been used in the proof -only in
establishing the convergence of the first term in (13). Therefore, if u(f) happens
to be itself of b.v., the theorem certainly holds for any continuous A4 ().

Incidentally, we notice that if p = 1, A(f) = ¢ and G(z; t) = Gi(2)G:(t),
where G(¢) is a distribution function on R(1) with a finite second moment,
and if u(¢) and Z(¢) are such that the first two terms of (11) have finite limits
as fy— — « and ¢t — o, then the limit of the l.c.f. (11) is a g-function of Kallian-
pur and Robbins [5].

The definition of Z(4; ¢, t) as the limit-in-distribution of a sequence of ap-
proximating sums suggests the formal equation

(16) ZMnm0=DfA@dﬂw

The D before the integral sign is a reminder of the fact that this is an “integral-
tg
in-distribution.” We note that for #, < #; < ¢, , the distribution of f A®W) dZ(v)
DYt

ty 12
is the convolution of the distributions of f A®) dZ(v) and f A() dZ@v).
DYty DYty

In other words, for fixed f, and variable { = #f,, the random function

t
f A(v) dZ(v) is an additive process. Its l.c.f. ¥(ty, ¢) should, therefore, be
DYty

capable of being displayed in the general form (7). This was actually found
to be possible with some restrictions on A (¢); how it can be done in general is
not known. Anyway, the resulting expression seems too cumbrous for use.

It may also be noted that the formal equation (16) actually represents the
true relation between the l.c.f.’s of its two members. The increments of Z(z)
are mutually independent and the l.c.f. of A(v) dZ(v) is [dy{A’()u; t}]imy -
Thus we expect, by an extension of the law concerning the l.c.f. of a convolution
of finite order, that the l.c.f. of the right-hand side of (16) is

[ a6 e,
tosvst

if at all such a thing exists. Actually, this is the same as ¥(¢, , £) in (11).
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In allowing Z(¢) the freedom of the wide class of additive processes, we have
restricted ourselves necessarily to a rather weak limiting process for the definition
of the integral, namely the limit-in-distribution. Stronger definitions of the
integral have already been in use for some time. For instance, if Z(¢) has finite
covariance and orthogonal increments, the integral defined as a limit in the
mean is a random variable which with probability 1 is uniquely determined.
Since there are additive processes which do not have a finite covariance, this
definition of the integral does not suit our purpose.

Now, let A4;(f) and A.(f) be continuous and of b.v. in an interval [t,, T1;
then so is A,(t)A4(t), and hence

t
Zadiit,) = [ As0)Ai(0) dZ0), hStsT
DYy
exists and, for fixed ¢, and variable ¢, is an additive process. So also
t
Z(Az, Arsto, t) = f As(w) dy Z(A15 8, v)
DV ¢y

is an additive process.

NoratioN. For X(f) and Y (¢), two random functions defined for all ¢ in a
dominant T, we shall write X (¢) 2 Y (¢) to imply that, given any n and any
ti,ta, +++,t,in T, the joint distribution of X (#,), - - - , X (¢.) is the same as that
of Y(t), -+, Y(t.).

TuroreM 3. If A:1(t) and As(t) are continuous and of b.v. in [ty , T, then

Z(Ay, Ayt t) 2 Z(A3 A1 b, 8)

for all t in [ty , T).

Proor. Given t; <t < -+ <t, y let Y(j) = Z(A2A1 st tj) - Z(AzAl; %o, tj_l),
and let ¢;(u) be the lcf. of Z(A4.41; t, t;), so that the lcf. of Y(j) is
¥;i(u) — ¥;(w). Then

lef. {Z(A:A158,t),5=1,--- ,n} = log E'{exp [izlu'(j)Z(A2A1;to, tj)]}
i=

= log E{exp [z W EY () ]}
=1 k=
= 2w {Su) - Svia{E uw}.
o =1 k=j =1 k=j
In the case of Z(4,, A5 ; t, t), we have a similar expression in terms of the
lef. of Z(A,, Ay ; 1, t;). Hence, it is enough to show that, for any ¢, the L.c.f.’s
of Z(A2A; 54, t) and Z(A,, Ay ; 1, t) are the same. For this, we can derive the
lef. of Z(As, Ay ;5 1, t) by the procedure used in Theorem 2, and then reduce
it to the form (11) with A(v) = A.()A;:(v), which is the L.c.f. of Z(4:4; ; &, £).
Hence the distributions of Z(A,, A;; t, t) are the same as those of
Z(AyAy ; tot); that is to say, the formal equation
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) f " 40 4 ) f " ) dZ) 2 ) f ROYROR D)

is rigorously true.

COROLLARY 2. Given any Z(t) and A(t) satisfying the conditions of Theorem 2
and the additional condition that the determinant | A(t) | be bounded away from
zero in [ty , T, there exists an additive process Z*(t) such that

20 - 260 & [t ") dZ*0).

In fact, Z*(%) = Z(A™ 1, 1),

Proor. The result follows immediately from the fact that, since the deter-
minant and minor determinants of A () are of b.v. and | A(¢) | is bounded away
from zero, A7'(t) is of b.v.

3. Exponential variation. Going back to the X () with which we started, we
have the following result.

TueoreM 4. If X (&) and A (h) satisfy the assumptions of Theorem 1, then there
exist an additive process Z(t) and a constant matriz A such that

t
an X)) 2 X () + f N dz ), .
DV tg

Conversely, if A is any constant matrix, Z(t) any additive process, and X (t)) a
r.v. independent of all Z(t + h) — Z(t) for t = ty and h > 0, then an X (t) satis-
fying (17) has the property that X (¢t + h) — ¢**X(t) is independent of all X (V')
fOT to é t/ é t.

Proor. From Theorem 1, we know that X (1) = e*'X*(t), where X*(t) is an
additive process; and since ¢ *’ has the properties of the A () of Corollary 2,
we have

¢
X0 - X+ 2 [ e az0),
0
This immediately gives (17); the converse is obvious.

RemARrks. Random functions of the nature of (17) arise in connection with
certain physical processes. For instance, Lo&ve [10] has considered the problem
of a reservoir of water which is losing its contents exponentially and gaining
from random precipitation. In this case, Z(t) is a Poisson process with jumps
of variable magnitude. On account of such applications and equation (17),
one may refer to X (¢) as the result of exponential variation of an additive process.
Now, it may happen that such an X (¢) itself undergoes an exponential variation.
We shall now deal with the result of such an iterated exponential variation.

TureorEM 5. Let X1(t) be a random function satisfying the assumptions of Theorem
1, and consequently such that

t
(18) X0 2 0Nx ) + [ M az).
DY,
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Let Ay be a p x p matriz such that AsAs = AsA; and | Ay — Ay | # 0. Given any
positive integer N and any values &y < t, < &3 < -+ < tyof t, witht; = &, let
{IIn} = {0, t:50m), 1 =1,2,--- ,N;m = 1,2, ---} be a sequence of sets
of partitions of the set of intervals {[to , t:),1 = 1,2, - - - | N} whose norms §(I;m) — 0
forl =1,2 --- N,asm— ».For any m, let

Sto, tis l;m) = 25 e “THm A K () — Xaltrmind) ),
j=1
(19) ’
1=1,2,---,N.

Then, as m — o,

(a) the set of r.v. {S(to, t:;l;m),1 =1,2,--- ,N;m = 1,2, ---} converges
in distribution to a set of r.v. {Xo(t;), 1 = 1,2, ---, N} whose distribution is in-
dependent of {I1,,};

(b) in fact, for varying t,

X,(2) 2 Ar(Ar — Az)—l{e(t—to)h - e(t_to)Az}Xl(to)

20 ¢
@) + R {Ale“_vml — KM (A — AT dZ®);

to
(c) Also, X:(t) has the property that
@1)  Xot + 28) — (" + MNX0 + ) + SfCTHPXL()

1s independent of all Xo(t'), tp < t' < ¢

Proor. Let ¢ 1 X,(f) = X*(¢), so that X*(¢) is an additive process. For con-
venience, we shall write &;,; for ¢;,m,; and A, ; for {X*(t1,m,;) — X*(1,m.i-1)}.
Then

n (liym)

S, tr;l;m) = Zl (TR M) £ Ay e AL
p
(22) — XK () + Mg+ v+ Argd)
n (l;m) n (1,m)
= ; A X*) + El B, A4,
=

where
’
ti—t3, ) A ty,; Arty,i—
Al,j — e(z [ %2 z(em Li _ ghittg 1)’

n(lim)

’
t1—t15) AgtArt; ti—t’ kAo Art INEIA
Bz,j=e(' .7 z+1,+ Z e(z l,k) 2<ell,k_exl,k 1).
k=j+1

The two terms on the right-hand side in (22) are independent. The first con-
verges in distribution to

t
(23) f‘ LA gLk ()] = a(t)X*(), say.
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By a procedure similar to that used in the proof of Theorem 2, we see that
the second term on the right-hand side of (22) converges in distribution to

173 173
(24) D‘/‘. {e(n—v)Az-l-vAx +f e(tz—w)Ag devuh} dX*(v) = Y(tl), say.
Vto v

From (23), (24) and Theorem 3, it follows that for any ¢, S(t, & ; I; m)
converges in distribution to X.(¢;) as given by (20). To establish the simul-
taneous convergence in distribution of the set (19) to {X.(¢:),!1 = 1,2, ---, N,}
we can again use the procedure of the corresponding part of the proof of Theorem
2. Finally, from (b) we immediately have (c).

Remarks. The assumption that |A; — A;| # 0 is necessary only for the
final reduction of X,(f) to the form (20). Without this restriction (a) is still
true, and also (b), except that in (20) the right-hand side has to be replaced by
{a()X*(t) + Y ()} from (23) and (24); it follows that (c) holds. In fact, we
have results of this type even if neither of the assumptions AjA; = AqA; and
| A1 — Az | = 0 is satisfied.

Thus we see that whereas the result of an exponential decay, defined as a
limit in distribution, of an additive process is a random function satisfying a
linear relation of the first order, the result of an exponential decay of such a
random function satisfies a linear relation of the second order. Incidentally,
we have come across a wide class of random functions with respect to which
one can define Riemann-Stieltjes “‘integrals-in-distribution.”’” This raises the
question of characterizing the class of all random functions having this property.
We have seen that this class is wider than that of random functions with inde-
pendent increments; but its total content is not known.

It may be noted that equation (17) is formally the same as the solution of
the set of differential equations

dX — AX dt = dZ(t), t=ty.

Likewise, (20) is formally the same as the solution of the set dX, — A X, dt =
dX,(t), that is,

d’Xy — (Ay + Ay) dXo dt + MAX, (dO)? = d°Z(0).

In fact, when derivatives in mean square exist, the solutions of these equations
are rigorously given in terms of integrals in the mean. We have now seen that
the formalism holds in terms of integrals in distribution, when we have on the
right-hand side of the equations random functions of certain types.

v
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