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THE PROBABILITY INTEGRAL OF RANGE FOR SAMPLES FROM A
SYMMETRICAL UNIMODAL POPULATION

By J. H. CADWELL

Ordnance Board,' Great Britain

1. Summary. An asymptotic expression is given for the probability integral
of range for samples from a symmetrical unimodal population. Its accuracy is
investigated for the case of a normal parent population and for sample sizes
from 20 to 100. Over this range errors are small, and by using a correction
based on values given below the probability integral can be found with a maxi-
mum error of 0.0001. Percentage points of range in the normal case are tabled
for n = 20, 40, 60, 80 and 100.

2. The asymptotic expansion. The parent probability density function ¢(z) is
symmetrical about z = 0 and its integral from 0 to z is denoted by ®(x). The
p.d.f. of w, the range for a sample of size n, is

W pw) =nt -1 [ (2@ - 26 - 0} 6@ — v) do.
Integrating with respect to w from — e« to w gives

@) Fw) = n [ (#6) — 8@ - w6 do
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Hartley [2] proves that this can be transformed to
®) P = (251" + 2 [ {86+ 0) - 2@ — 0} + W da.

Since ¢(x) is unimodal the integrand in (3) is greatest when z = 0 and de-
creases rapidly to zero on either side of this point. This suggests the application
of the methods used [1] to furnish asymptotic series for similar integrals. We
have

@+ u) — o —u) = 20w){l + Awz* + -} exp{%i,((—uu))},

_ wp'(w) _ &' (o' WY | 2°¢"(w)
¥ ) = 61 + B + ) oxp {0 -3 (2lo) 4 2 WL,
Ignoring all but the first term in each series, we substitute in (3) to obtain
@ F2u) = (20(u)}" + 2/ 2x nké(u) {22(w)}" {3 — ®(—ke'(u)/(w)))
exp {3k°(¢' (u)/8(w))’},

where
E? = (¢'(w)/ow))’ — (¢"(w)/9(w)) — (n — 1)¢'(u)/®(w).
When ¢(z) = exp — %2°//2r, we find that (4) reduces to
(5) F(2u) = (20(u)}" + 2nk{28(w)}" " {exp — Ju'(1 — k°)}{} — 2(uk)},
where
E? =14 (n — Dug(u)/®w).

In this case it is easy to include a further term, which results in the last
bracket of (5) being replaced by

(6) {3 — @(uk) — (0 — DE'P(w)Q(uk)},

where

_ 2 (3@ | o — 30 ()
P =1 (30) + 55 50,

Q) = (' + 62° + 3){} — (@)} — (@' + 52)o(x).

3. Accuracy in the normal case. While w is not defined when n = 1, expression
(2) gives F(w) the formal value unity for all w. This is also the value given by
(5) or (6). Thus our expression, besides being asymptotically correct, also gives
the exact value when n = 1. Hence [1], errors will at first rise with increase of
n and then fall asymptotically to zero.

» The following values of maximum error for (5) and (6) are the differences
between exact values obtained by evaluating the p.d.f. using (1) and values of
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F(w) then found by quadrature.

Sample size, #: 20 60 100
Maximum error of (5): +0.0031 +0.0040 +0.0043
Maximum error of (6): —0.00052 —0.00070 —0.00075

By using (6), results of reasonable accuracy are obtained. Table I gives correc-
tions in units in the fourth decimal place to be added to the approximate value
given by (6), for five sample sizes. The corrections are given as functions of the
approximate value itself, rather than of w, to make interpolation for » much
simpler. By plotting the correction against the approximate probability on

TABLE I

Corrections (x10%) to be applied to approximate value obtained from equation (6),
for samples of size n

Value obtained from equation (6)

n

05 .10 .25 .50 .15 | .90 .95 99 995 999
20 0 0.1 0.4 1.7 4.2 5.1 4.1 1.5 0.8 0.2
40 0.1 0.3 0.8 2.6 5.3 6.2 4.9 1.6 0.8 0.2
60 0.2 0.4 1.0 3.1 6.1 6.9 5.5 1.6 0.8 0.2
80 0.2 0.5 1.2 3.5 6.6 7.2 5.9 1.6 0.8 0.2
100 0.2 0.5 1.2 3.6 6.9 7.4 6.1 1.6 0.8 0.2

TABLE II

Percentage points of range (w) for samples of various sizes (n) from normal
populations of unit standard deviation

Percentage points Mean

n €
.001 .005 .010 | .050 .100 | .250 .500 .750 | .900 950 | .990 995 999 ¥

20 [1.88 2.13 2.25[2.63 2.84|3.22 .3.69 4.20/4.69 5.015.65 5.89 6.40[ 3.73
40 [2.62 2.85 2.97|3.31 3.50|3.85 4.27 4.74/5.20 5.506.09 6.32 6.81| 4.32
60 [3.03 3.24 3.35(3.68 3.86(4.19 4.59 5.04/5.48 5.76/6.34 6.55 7.04| 4.64
80 1[3.30 3.50 3.61/3.92 4.10/4.42 4.81 5.24/5.67 5.95/6.51 6.73 7.20] 4.85
100 |(3.50 3.71 3.80[4.11 4.284.59 4.97 5.39/5.81 6.09/6.64 6.85 7.31| 5.02

arithmetical probability paper, we can interpolate graphically for n and the
approximate value. This will enable the probability integral to be found with
an error that should not exceed 0.0001, and will usually be less than 0.00005.

Table II, giving percentage points of range found by quadrature, will assist
in making preliminary estimates. Plotting (w — @) against n~"* for a given
percentage level, permits interpolation for other values of n to be made with
accuracy. Values of % are tabled in [3].
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(Abstracts of papers presented at the Montreal meeting of the Institute, September 10-13, 1954)

1. On Quadratic Estimates of Variance Components in Balanced Models,
A.W. Wortham, Chance Vought Aircraft and Oklahoma A and M College.

A balanced model is defined as a model whose analysis of variance mean squares are sym-
metric in the squares of the observations. Included in this class of models are: (1) Com-
pletely Randomized, (2) Randomized Blocks, (3) Latin Squares, (4) Graeco-Latin Squares,
(5) Split Plots, (6) Factorial Arrangements, etc.

The ‘“‘analysis of variance estimates’’ of the variance components are the estimates ob-
tained by solving the system of equations which result when the observed and expected
mean squares in the analysis of variance table are equated. For any infinite population
let the general balanced model be yijsp:++in = g + 3 k=1 Akix + €iyiz* i , Where u is a con-
stant, Ay and eiyi,- i, are independent random variables with zero means, finite fourth
moments, and variances o} and oj respectively. Let 63 and &f be “‘the analysis of variance
estimates’ of the variance components o and of . It is shown that the quadratic estimate
of &4 grot (g5 known) which is unbiased, independent of u, and has minimum variance is
given by 3/, gioi . That is, the best quadratic unbiased estimate of the linear combina-
tion of the variance components is given by the same linear combination of ‘“‘the analysis
of variance estimates’’ of the variance components.

2. The Coefficients in the Best Linear Estimate of the Mean in Symmetric
Populations, A. E. Sarhan, University of North Carolina.

In a previous paper (‘‘Estimation of the Mean and Standard Deviation by Order Sta-
tistics” by A. E. Sarhan, Ann. Math. Stat. Vol. 25 (1954), pp. 317-328) the best linear esti-
mate of the mean of a rectangular, triangular and double exponential population were
worked out. By considering some other symmetric distributions with different shapes, it is
found that the coefficients in the estimates form a sequence. From the sequence, it is ob-
served that the coefficients in the estimates are influenced by the-shape of the distribution.
The variances of the estimates are also so affected.

3. Distribution of Linear Contrasts of Order Statistics, Jacques St. Pierre,
University of North Carolina.

Consider n + 1 independent normal populations with unknown means, mo , m1, *** , ma ,
respectively, and with a common known variance ¢2 = 1 (say). Suppose a sample of size N
is available from each population; and let @) > za) > *** > %) be the ordered sample
means. Consider the linear contrasts z = x¢q) — c1Tay — *** — CuZ(ny , Where Divic; = 1,
¢i20, (@ =1,2, -+, n). The probability density function of the contrasts z is derived
under the null hypothesis Ho: me = m; = +++ = m, . The density of the contrasts z is also



