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1. Summary. Let (R;, --- , R,) be a random vector which takes on each of
the N! permutations of (1, 2, ---, N) with equal probability, 1/N!. Let
(a1, - -+ ,axy) and (by1, -+, byx) be two sets of real numbers given for every

N. We will assume throughout that for no N are the ay; all equal or the by; all
equal. We also assume that the ay; and by; have been so normalized that

Zam= an;=0; Z(ﬁvi=N~_le§“=1.
Unless otherwise stated, D, will mean Y i~;. Define
(1.1) Sy = Z an; bNR.. . -

Let ®(x) be the unit normal c.d.f. In Section 2 sufficient conditions are given for
Pr{Sy < z} to approach ®(z) as N — «. (The first two moments of Sy are 0
and N/(N — 1), respectively.)

For every N,let Y = (Yu, -, Yin, "y Ymi, " Ymn,) be N = N,
+ ... 4+ N, random variables which are mutually independent and independ-
ent of the R;. We assume that all ¥;; with the same first subscript are identically
distributed. Define

Y=N'X.;Yy, S =N'2.;(Yy—-7Y? SY,;=VY;-7,
Yi;=0if S =0.

Let Y’ denote the vector of the Y:;. Let ¥ = (y1, -+, yx) denote a point in
N-space. By Fy(z, y) we mean the c.d f. of therandom variable Sy = ), ani Yz, -
In Section 3 are considered sufficient conditions for convergence with prob-
ability one of the random c.d.f. Fx(z, Y') to &(z).

2. Asymptotic distribution of Sy when the by; are nonrandom. Let Gy(x)
denote the c.df. of the by; (continuous to the left). We assume that the bx;
have been so indexed that by; < by £ -++ < baw.

TureoreM 2.1. Suppose

A) there is a c.d.f. G(z) such that limy., GN(x) G(z) at every point of continu-
ity of G(z) and

f_:xda(x) — 0, [:xsz(x) -1

and either
B) lim max |ax;| =0 or B) G = &(2).
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Then Sy (1.1) is asymptotically normally distributed. That s, Pr{Sy < z} —
®(x) as N — oo,

This theorem can be compared with that of a previous paper [1]. There it was
assumed that the by; were essentially powers of expected values of order statis-
tics. In this paper we use the fact that the by; behave asymptotically like ex-
pected values of order statistics. The idea of the earlier theorem [1] is then used
in proving this theorem. In [1] the counterpart of G(z) was assumed continuous;
in this paper we make no such assumption. Theorem 3.1, below, deals with the
case where the by; are random variables. From now on, the function G(z) will
be assumed to have the properties stated in Theorem 2.1.

The proof of this theorem is aided by Lemmas 2.1 to 2.7 below. The main
lines of the proof are as follows. Let X;, ---, Xy be independent, identically
distributed random variables, each with the c.df. G(z); let Zy < --- = Zyn
be the ordered values of the X’s. We will define below a vector function of the
X’s, (R1, - -+, Ry), which has the property that it assumes each of the permuta-
tions of (1, ---, N) with equal probability, 1/N!. Then D awibye, = Sy is
the random variable whose asymptotic normality we seek to prove.

Either condition B) or B’) will assure us of the asymptotic normality of
> awiX:. (See [1]; however, existence of third moment is not required. This
follows from the counterpart of Lindeberg’s condition for a sequence of se-
quences of random variables. I am obliged to Prof. W. Hoeffding for pointing
this out to me.)

Hence it is sufficient to show that D ax:X; — Sx converges in probability
to zero. Sufficient for this is to show that limy.., EQ_ ax:X; — Sy)® = 0. We
have that

2.1) BQC aviX: — 8y)' = EX] — 2B an:Xy) (Sx) + N/(N — 1).

The purpose of Lemma 2.1 is to show that our particular definition of
(Ry, - -+, Rx) provides us with the fact that E(Y ay.X:) (Sy) = (N — 1)
-2 EZy;by; . Since EXT = 1,then if limyaw (N — 1) 3 EZysby: = 1, this will
imply that (2.1) approaches zero as N — . Making use of the fact [3] that
limyow N7 Y (EZy:)* = 1, it is easy to see that

lim N7 2 EZy;iby: = 1 isequivalentto  lim N7 X (bw: — EZyo)® = O.
N—oo N-o

The truth of this last limit is shown in the sequence of Lemmas 2.2 through
2.7, where important use is made of some results of Hoeffding [3].

A random vector R = (R, ---, Ry) is defined by considering the ordered
arrangement of the X’s,
(2.2) X=X,y =0 2 X4y,

If no two of the X’s are equal to each other, then let Ri=1 Ry{y=2---,
I:y = N. If there are ties among the X’s then let

(Xi[éXizé e SX{N)’ T (le

I\

sz =-S5 XjN)?
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be the set of all possible distinct ordered arrangements of the X’s. Say there are
p such arrangements. In such a case, let

P{(Rﬁ:l)’ (Ri2=2)’ Tty (Rizv:N)I(Xls"')XN)} =1/P,

P{(Rh:l)y (Rf2=2)r Tt (R1N=N)I(X1:"'1XN)} =1/p‘

It is easy to see that R equals each of the N'! permutations of (1, ---, N) with
probability 1/N!
Lemma 2.1. EQ ayiX:) (O awibwe) = (N — 1)7' 2 EZyibu: .

Proor. The left side can be written as

)Y anibwr EQ awiXi| Ry = 11), -+, Ry = 7))

where (1, --- , ry) is one of the permutations of (1, ---, N) and > is sum-
mation over all N! permutations. We also have that

EX:|(Ri=r), -+, By = 10)] = ElZus; | By = 11), -+, (By = ¥)]-

Since the distribution of X, -+, Xy is invariant under all permutations, this
last conditional expectation does not depend on the values of the R’s and hence
equals EZy,,. This shows that the left side equals

WX O anibar) O aniEZy:,).

By an elementary calculation, this in turn is equal to the right side.

Since ZNl é_ szz é LR é ZNN, then EZNl é EZNz é e é EZNN. Denote
by Hy(z) the c.d.f. of the EZy; (continuous to the left).

LemMa 2.2 (Hoeffding). limy.., Hx(z) = G(z) for every x which is a point of
continuity of G(x).

This is proved by Hoeffding ([3], Theorems 1 and 2).

Let S be that set of points on the real line where G(z) is discontinuous, to-
gether with all points z where G(z — k) < G(z) < G(z + h) for every h > 0.

LeMMA 2.3. Given e > 0 and & > 0, there is an even integer 2n and there is a
sequence of closed intervals which are mutually disjoint,

[tl ’ t2], [ta ) t4]7 D) [tﬂn-—l ’ t‘M]’

having the following properties.
a) With each t; we can associate an a; with 0 < a; < 1 and a y; € S such that

t=aiGy: — 0) + (1 — a:;) G(y: + 0);

b) ¥i(te — t) + Yslts — &) + -+ + Yonillon — tan1) > 1 — @

¢) max [(y2 — y1), @ — ¥s), -+, Won — Y2n)] < e

Proor. We will denote the right side of the equality in part a) by G.,(y:).
Since [4y’ dG(y) exists in Riemann-Stieltjes sense for any A, B, we can find
finite A’, B’ and a partitioning,

A =y <ys < -+ < yn =B,
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such that
ylIG(ys) — Q)] + v 1G(ys) — Gy2)] + -
+ Q) — Glym—y)] > 1 — e,

’ !’
max ~(yi-;_l - Z/.‘) < ile.
1< igm—1

We can replace this partitioning by one
_ A=y <y <- <ym=B,
and find constants 0 < a; < 1 where each y; £ S and for which

yi[Gaz(yz) - Gal(yl)] + yg[G¢4(y4) - Gas(y3)] + tee
+ y‘f‘"*l[Gazn(yZn) - Ga2n—l(y2"—l>] >1—@ ,

and where c) is satisfied. The clumsy but elementary details are omitted. We
need now only set ¢{; = G,,(y:) fors = 1,2, -+ | 2n; adjacent ¢;’s can be equal
to each other.

LemMa 2.4. For every N, let there be given an m = m(N). Let y € S. If m/N —
aGly — 0) + (1 — a) G(y + 0), for some a where 0 < a < 1, as N — =, then
bym — y and EZy., — y.

ProOF. Suppose limy.o bym = ¥ + 6, where & > 0. Then there are &', where
0 < & < 4, such that y + ¢’ is a continuity point of @, and a subsequence N, ,
m; , such that

lim m;/N; Z G(y + &) > aG(y — 0) + (1 — a) G(y + 0),

which gives a contradiction. We treat lim by, similarly. Making use of Lemma
2.2, we can prove this for the EZy; in the same way. This was proved by Hoeff-
ding ([3], Lemma 5) without using the result quoted in our Lemma 2.2.

Let T = [t1, toults, ta]u - - - Ultan—1, L2n), & finite union of disjoint closed inter-
vals. Let ZT a; mean summation over all indices ¢ such that (z/N) ¢ T.

LemMA 2.5 For every € > 0, there exists a finite union of disjoint closed intervals,
[t:, LJu -+ Ullen—1, tea] = T, such that

Im N7 2 b >1—¢  lImN'D (BZy)' > 1 — e
T T
Proor. Choose ¢ > 0. We can find a sequence of closed intervals which are
mutually disjoint, [t1, &), [ts, td, *++ , [ten—1, fn), satisfying the requirements of

Lemma 2.3 for ¢ = % ¢; the value of e of Lemma 2.3 is not material here.
Then

N7 bk
T

=N X b4+ N' X b4+ N XY b

Nt 1SiSNeo Ni3<i<Nt4 Mlino1SiENizn
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For simplicity, look at the first term on the right side of the above equality.
Let p denote the number of integers contained between N: t and Nt; inclusive.
Let [r] denote the least integer greater than or equal to 7. Then
N7 b 2 bapwe N7'p.
NU1SiSNt,
By Lemma 2.4 the first factor of the right side has the limit yi . The second
factor has the limit & — ¢ . Hence the limit inferior of the left side is greater
than y;(t, — t;) — 3¢/n. Therefore
Ilvi_l_n N‘IET: by > Zyzzj—l (tyy — tja) —2e>1 — .

The last inequality of Lemma 2.5 is proved in the same way.

Lemma 2.6. Given ¢ > 0, we can find a set T = T(e), such that Lemma 2.5
holds, and also limy.e N 7' p (byi — EZyi)? < e

We omit the proof, since it is very similar to that of Lemma 2.5. It uses Lemmas
2.2-2.4; in particular, Lemma 2.3 is essential.

LeMMA 2.7. liMy.w N7 Y (by: — EZy:)? = 0.

Proor. For ¢ > 0, find T = T(¢) satisfying Lemma 2.6. Wiite

N7 D (bwi — EZys)* = N°° ; (bwi — EZy)* + N7' 2 (b — EZy:)’,

where D’ means summation over those indices not summed in > r.By Lemma
2.6, for all N sufficiently large, N 7 (by: — EZy)? < 2e It is true that

N7 20 (bwi = EZxd* < (WN T 30 0% + VN S EZ0 )" -

For all N sufficiently large, each of the terms under the square root sign is, by
Lemma 2.5, less than 2¢. Thus for all N sufficiently large, N ™' > (by; — EZy)?
is arbitrarily small, which proves the lemma.

3. Asymptotic distribution of Sy when the by, are random variables. We will
now deal with the generalization of Theorem 2.1 that was described in the last
paragraph of Section 1. We refer to the definitions made there. Let Gy(z, ¥)
be the proportion of Y; which are less than z, and let Gy(z, ¥”) be the propor-
tion of Y;; which are less than z. Let Gi(z), - -+, Gu(z) be the c.d.f.’s of Y7y,
Yo, - -+, Ym respectively. Let

[: z dG(x) = ps, [: (x — u)?dGiz) = o}, G(z) = g k:Gi(z),

where ki, - -+, k. are constants defined in Theorem 3.1 below, with &; = 0,
and E’l” k; = 1.

TueorEM 3.1. Let G'(z) be the c.d.f. obtained from G(z) by a linear transforma-
tion of the independent variable, so that the first two moments of G'(z) are 0 and 1.
Suppose

A) limy, No/N = k; exists fori =1, -+, m;

B) 0 <oi < w;
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C) condition B) or B’) of Theorem 2.1 is satisfied for G'(x).

Then Fy(z, Y'), as defined in Section 1, converges with probability one to ®(x).

Proor. According to the Cantelli-Glivenko theorem, and some well-known
facts about strong convergence, we have that G»(t, Y) converges with probability
one to G(t), uniformly in ¢ ([2], pp. 267279, 280). Also we have that, with prob-
ability one, ¥ and S* converge respectively to the mean and variance of a ran-
dom variable distributed with c.d.f. G(z). Then, with probability one, Gy(t, Y’) —
@' (t) at the continuity points of G’(t), as N — <. Hence the required result fol-
lows from Theorem 2.1.

4. Applications. Some applications of a theorem like Theorem 2.1 have been
pointed out previously [1]. We wish here to point out that Theorem 3.1 can be
useful in evaluating the “large sample power” of tests of the sort that were stud-
ied by Hoeffding [4], specifically his Theorem 6.2. Analogous results can be ob-
tained where the X’s of that theorem are essentially like the Y’s of our Theorem
3.1. Also, the results of this paper can be used to study analysis of variance tests
like those of Hoeffding’s Section 5. We plan a future paper on the large sample
power of analysis of variance tests of this type.
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