ON THE FOURIER SERIES EXPANSION OF RANDOM FUNCTIONS!

By W. L. Root anp T. S. PiTcHER
Massachusetts Institute of Technology

Problems involving stationary stochastic processes are often treated by ap-
proximating the original processes by Fourier series with orthogonal random
coefficients.” In this paper we justify this technique in certain instances.

We let z(f) denote a real- or complex-valued stochastic process defined for all
values of ¢. We assume the first and second moments of z(f) exist. We write
R(s, t) = E{z(s)z(®)} and in case R(s, ?) is a function of (¢ — s) only (that is,
z(t) is stationary in the wide sense), we write p(t — s) = R(s, t). We assume every-
where that E{z({)} = 0.

We define the stochastic process z(t) to be periodic if the random variables
x(t:) and z(¢; + T) are equal with probability one for all ¢, and some constant T'.
If z(¢) is periodic, then R(s, t) is periodic in each variable. If z(f) is wide-sense
stationary, then it is periodic if and only if p(7) is periodic.

Our first result follows from the theorem due independently to Karhunen
and Loéve which states: Let z(¢) be continuous in the finite interval (a, b), then

$(t) = Lim. Z Zi \(/,‘(t)
n—o 1
where the y;(f) form an orthonormal system over (a, b) and where E{zz;} =
\:6;; if and only if the ¥;(f) and the \; are a system of eigenfunctions and eigen-
values of the integral equation

j;bR(s, DY@ dt = M (s)-

THEOREM 1. Let x(t) be a wide-sense stationary stochastic process continuous in
mean square. Then
n x‘eikw‘r 21!'

x(t) = Lim. k;n ‘—"\7_51—, w = -{1—_'- ,

on the interval (0, T), where the x; are pairwise orthogonal if and only if x(l) s
periodic with period T.

Proor. From the Karhunen-Lo&ve theorem and the remark above about
periodicity it follows that we need to show that
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1 The research in this document was supported jointly by the Army, Navy, and Air
Force under contract with the Massachusetts Institute of Technology.

2 Of course, the use of Fourier series can usually be avoided by the use of the spectral
representation theorem for stationary processes. See [1] p. 527.

313

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. KIS ®

www.jstor.org



314 W. L. ROOT AND T. S. PITCHER

IIA

T
[ R 09@ @ = @, 0ss=<T,
is satisfied by exponentials when and only when p is periodic with period T.
Suppose the y,’s are exponentials, that is

Yi(t) = ™ ) /T, w = 2x/T, n; an integer.

Then by Mercer’s theorem »_;e*"i“%¢ *"i** / \;T converges uniformly on [0, T] X
[0, T] to R(s, t). Now since the process is stationary, R(s, t) = p(s — t). Hence
i€ / \;T converges uniformly to p(7) in the interval —T < 7 < T. Thus
p(0) = p(T) and since z(t) is wide-sense stationary, E{|z(t + T) — =)’} =
p(0) — 2R [p(T)] 4+ p(0) = 0. The converse is obvious.

Dayvis [2] shows that if x(f) is a wide-sense stationary, continuous-in-mean-
square process which has for every T > 0 a Fourier series, with random orthog-
onal coefficients, which converges to z(¢) in mean square over (0, T'), then x(¢)
must be the trivial process with p(7) = const. This assertion follows from
Theorem 1. For to satisfy Davis’ hypothesis, p must satisfy p(f) = o(t + T), for
every T' > 0, and the only functions with this property are constants.

A somewhat different problem from the expansion of a random function is
the statistical representation of a random function. In particular, here we ask
for conditions under which a sum of exponentials with orthogonal random co-
efficients has the same multivariate probability distributions as a given random
function. If z(¢) is Gaussian, such a statistical representation essentially always
exists.

TueoreM 2. Let x(t) be a stationary Gaussian process with correlation function
T T _ 27

plr) = lim. 2] cre™', — = <t 5y 0=7

n—o —n 2

1A

Then there exists a process y(t) defined by

y(®) = lim. D z e

where the xi are complex Gausstan variables satisfying
E{xk} = O; E{xk;;} = Ck, E{xk—x—;} = O’ k = j: Ty = x_—k.

which has the same multivariate distributions as x(t) over the interval 0 < t < 37.
Proor. It is easily verified that if y,(f) = D .zxe***, then

lim E {|lyn(®) — v} = 0,

m—
n—oo

so the process y(t) is defined. Then
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0

E{y@yit + n} = . ;_@ Blap)e™ e iont g (e ™ = p(—),

n

which proves the assertion.

For any T < o, [Zr E(jz(t)]) dt = 2TE(jz(0)]) < o, so that, by Fubini’s
theorem, z(t) is almost always measurable and square integrable on (=T, T).
Hence for almost every sample function z(f) = Lim. D_c.e'™™" on the interval
(=T, T), where ¢, = (2T)™" [Zrz(s)e”™™'" ds. The process defined by the two
preceding equations has the same (a.e.) sample functions as the original on
(=T, T). We have

— T T .
E(eacy) = (@T)° L ds L dt " T (s — )

(1) 1 . (DT .
= (47" [1 dv g7 ./( du ™™ "p(u)

v—=1)T
where we have made the substitutions ¥ = s — tand thenv = s/T.If n = m,
then the integrand is dominated by 2Tp(0), so that E(|ca]’) < p(0). That is,
¢ is square integrable and E(cac.) exists.
THEOREM 3. If p is integrable on (— «, ) and [, p(t) dt = 0, then E(|c,|*) =
O(1/T) > 0. If also n = m, then

. E(cacm) _
I E R E (e~ °

Proor. The functions fr defined by

()T
frw) = f du e"™ " p(u)

(v=1)T

are uniformly bounded by [Z, |p(u)| du. For every v, with |v] < 1
fr(v) -—’f pw)du =a as T — o,

Hence, by Lebesgue’s theorem applied to (1)

_ 0 n # m,
lim (4T)E(cncn) = {2

a n =

This implies the result.
TuroreM 4. If p is square integrable and r is its Fourier transform, then

S O sl O mr) sin” u
@ E(encn) = | r( 2¢T /) ulu + (n — m)x] o
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Proor.

—_ 1 1 . (+1)T ) 4
E(C,,cm) = ZT [1 dv ew(n—m)v‘/; du ewmulT {llm dw —anuwr(w)}

v=-1)T A—00

1 1 . (v+1)T . .
- [ d?) ew(n—m)v lim f du ewmulT [ d'w e—-tzruwr(w)
A—00 (v—=1)T A

1)m+lf ur(n«-m)v s(mr| T—27w)v T Si-n 27|'WT dw
@ im [ 2r(wre /T — 2rw)

(=™ [ sin 2rwT fl iro(n—20T)
= 141_12 77— L, r(w) e/ T = 97) dw [, ¢ dv.

This yields the formula of the theorem. The first step is justified by an applica-
tion of the Schwarz inequality, the second by the Fubini theorem, and the third
by the Lebesgue bounded convergence theorem and the Fubini theorem.

TaEOREM 5. If p is square integrable on (=, x) and its Fourier transform
vanishes almost everywhere in (— e, €) for some € > 0, then

E(cacm)
M B E( e DT

— (_l)n—m

for all n and m.
Proor. By the hypothesis, the integrand in the previous theorem vanishes
if —27eT — nr < u < 27weT — nr and, for any 6 < 1, T can be chosen so
large that outside this interval
sin® u 0 sin® u
uu+ m — m)w] = u?

Since r(z) = 0 for almost all z, for large T

u + nr sin® u u + n1r> sin® u
wrnw > u o nw)sin U
r< 2xT >u[u + (m — n)x] = 0T< 2rT u? "

Integrating this gives (—1)**™ E(cnc,) =

(=D)"™E(cncm)
E(ca) E(len] —

1= =0,

which implies the result.

Instead of holding » and m constant, we can fix the frequencies associated
with them, that is, set n = aT and m = bT.

TuEOREM 6. If p is integrable and square integrable, if a is a real number and
p # q are inlegers such that r(a/2) > 0 and r((g/p)(a/2) > 0 then
E(cpr cor) =0, T, = kp k=012 ---

A o) Eea T

In fact the expression above is O([(p ~— @)k1™°) for any 6 < 1.
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Proor. By Lebesgue’s theorem and the boundedness of r, which follows from
the integrability of p,

4ok ® fau . a\sin®u a\ [~ sin®wu a
o Eleal) = LJ(;,TC +§>—uz—d“””(§> L5 = ”(é)
Similarly, (47p’%/qa)E(|ca|”) — r( (¢/p)(a/2) 7). Thus

47k
"’” E(cpr cqr)

’ ‘[ + a) sin” u I
21rpk ulu + (g — p)kn)
sin’ u

< max |r(z)| [n ulu + (g — p)kn) du

But the above integral is O(([g — pJk)™) for any 6 < 1.
TuroREM 7. If p is integrable and square iniegrable, a is a point ai which r(a/2) >
0, and p and q are integers, then

ooz kp
lim 2 =0, T, ==, k=012, ---.
T %0 [E(lcpkl )E(Icplc:«l-qlz)]ll2 k a

Proor. As above, we get lim (4npk/a)(Elc,|’) = lim (4npk/a)E(|cprd’) =
r(a/2)w. Now
. 2
au a s U
[." <21rpk + §> u(u + gm) du

‘ 4apk
© au a a sin® %
[ [ (m + z> o (2)] o=k | !

— K (cpk aﬂc—ﬂ)
since [2, (sin® u) [u(u 4 ¢w)] " du = 0 for ¢ # 0. But by Schwarz’s inequality

4pk 2<f°° sin® v dvf” r( au +g>_r<¢_z>2
= o) 7)(1) + q1|')2 o0 21l'pk 2 2

The second integral approaches zero by Lebesgue’s theorem.

It is easy to find examples of processes, vanishing around a/2 and b/2, for

which the conclusion of Theorem 6 is false. Suppose, for example, r vanishes in
the intervals

6= OE)
(6 @GR orono

Then eE(jcp|?) — |E(couca)|] < 0 and eE(lcal’) — |E(cacn)| < O.

Since the coefficients corresponding to frequencies x with #(z) = 0 tend to mis-
behave, it is desirable to show that the total effect of such coefficients is small
for large T'. The following theorem does this for the band limited case.

TureorEM 8. If r is bounded and vanishes outside (— A /2, A/2) for some A, then

sin® u
u2

E (cpkcpk+q) du.
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[ 5 50 + 5 Beh | /S 50 =0 (BT,

[AT]+1

where [AT) s the largest integer not exceeding AT.
Proor.

5 el = B ([ Wor @) = [ B0 d = 2750,
5 Bl = 5 [ (32—’;%”) SN % g,

[AT]+1 u?

1 < ‘[” sin’® 2mT
2 (ATZH-I w r() @mvT + nw)? dv.

Now,
& 1
[ATE]+1 @mvT + nr)?

1$ 1
72 T 2T + [AT] + 1 + n)?

- ;1‘ (log T)" (2T + [AT] + 1),

[Ai] L E(lc,.]z) -2%2 [j " 7(v) sin® 2xTv(log T)” (2vT + [AT) + 1) dv

A/2

S 535D () [ (log )" (20T + [AT] + 1) dv

_ sup (T) [AT]414-AT

47T Jiari41—ar

(log I () dw

[ATI4+AT+1
-0 (log T) .

< %) (log 1)"(a)

[AT]—AT+1 T
The other case is handled similarly.
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