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Summary. The main conclusion of this paper can be described as follows.
Consider a statistical decision problem in which certain structural conditions
are satisfied, and let T be a statistic on the sample space. Then the class of de-
cision functions which depend on the sample point only through T is essentially
complete if and only if T is a sufficient statistic. The structural conditions in
question are satisfied in many estimation problems.

1. Introduction. In a non-sequential decision problem, let X = {z} be the
sample space, P = {p} the set of alternative probability distributions on X,
D = {t} the (terminal) decision space, and L,(¢) the loss incurred in making the
decision ¢ when the (unknown) distribution on X is p. It is assumed that P is a
dominated set of distributions (i.e., there exists a fixed o-finite A such that each
p in P admits a probability density function with respect to A), and that D is,
or may be taken to be, a subset of k-dimensional euclidean space (1 = k < «).

For each decision function u let the corresponding risk function be denoted
by 7., that is, for each p in P, r,(p) = the expected value of L, in using u. Let
D be the class of all decision functions on X to D. Let T'(x) be a function on X
(onto an arbitrary space Y of points y), and let D, be the class of all 4 in D
which depend on z only through 7. The class Dy is said to be essentially com-
plete if for each u in D there exists a » in Dy such that 7,(p) =< r.(p) for each
pin P.

T is said to be a sufficient statistic for P if, for each set A of X and each value
y of T, the conditional probability of A given T'(z) = y is the same for each p
in P. It is well known (see, for example, [1], [2], [3]) that if T is sufficient for P,
then Dy is equivalent to D in the sense that for each u in D there exists a » in
Dy such that r,(p) = r.(p) for each p in P.

It is shown in this paper that if the loss function L satisfies condition III of
Section 2, and D7 is essentially complete, then T must be sufficient for P. Con-
sequently, if IIT is satisfied, then, for any statistic 7, any one of the statements
“Dyp is essentially complete,” “Dr is equivalent to D,” and “T is sufficient for
P” implies the other two.

The following are some simple examples of decision problems in which condi-
tion III is satisfied.

Exampre 1. Let P be a finite set, P = {p1, p2, ---, s} say, let D be the
set {1,2,---,n},and let L;(j) = 0if 7 = jand =1if ¢ = j for ¢, j =
1,2, ,m.
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In the following examples it is assumed that P is a parametric family of dis-
tributions, P = {pe} say, where 0 is a real-valued parameter, and that the set
Q of all values of 6 is an interval of the real line, say @ = {0:6, < 6 < 6;}, where
—0 S 6 <0 £ .

ExampLe 2. Let D = Q, and let Ly(t) = (¢ — 6)°.

ExampLe 3. Let D be the set of all those points (7, s) of the plane for which
0p < r = s < 6;, and let each point ¢ = (r, s) of D correspond to the decision
that r < 0 = s. Let Lg(¢t) = h-Wy(t) + k-(s — r), where h and k are positive
constants, and Wy = 0if r £ 8 < sand =1 otherwise.

The preceding examples suggest that condition IIT is typical of problems of
inference in which “nuisance parameters” are not involved. This is indeed the
case.

2. Results. Let there be given: an abstract space X of pointsz, and a o-field S
of subsets of X; a set P of probability measures p on S; a set D of points ¢, and
a o-field D of subsets of D; and a real-valued non-negative function L,(f) on
P X D such that, for each p, L, is a D-measurable function of ¢. It is assumed
that (X, S), P, (D, D), and L satisfy the following conditions.

ConprrioN I. The set P of measures on S is a dominated set containing at
least two measures.

It should perhaps be stated here that in the case when P contains only one
measure, the conclusions of this paper hold entirely trivially.

ConpitioN II. The decision space (D, D) is of type (R, R) ([3], Section 7),
and D contains at least two points.

Let the closed interval [0, 1] be denoted by 7, and let I be the class of Borel
sets of I. Let p and g be two different measures in P, and define

1 a(u,t) = u-Ly(t) + (1 — u)-Ly(2)
for 4 in I and ¢in D, and
@ Bw) = inf (a(u, 1)

for u in I. We suppose that there exists a function, 7 say, on I into D, such that
(i) = is an I-D-measurable transformation, and (ii)

3) , a(u, () = B(w) for each % in 1.

In general, the function 7 depends, of course, on the p and ¢ under consideration.

An additional condition which we require is that the loss function L be quite
sensitive, in a certain sense, to the difference between p and ¢. One condition
of the type required is that the function 7 of the preceding paragraph be uniquely
determined and one to one. This condition is, however, unnecessarily strong,
and it can be weakened, with advantage, as follows.

Let ¢1, ¢z, - -+ be an enumeration of the rational points of I, excluding the
end points 0 and 1. Foreachz = 1, 2, - - - define

(4) vi(u) = ciru+ (1 — ¢)-(1 — u), 0<y:<1,
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(5) 8.(1) = c.ou /vi(u), 0=,

for win /. We suppose that (ii1) if  and v are any two points of I/ with u > v,
then a(d;(u), 7(8:())) > B(8:(w)) for at least one 7 = 1,2, --- .

Conprrion II1. Corresponding to any two measures p and ¢ in P with p # ¢,
there exists a function 7 on I into D which satisfies (i), (ii), and (iii).

This condition is stated here in a form well adapted to our immediate pur-
poses. It (or rather, its essential content) can be stated more simply as follows.
Let T denote the zero-sum two-person game in which the spaces of pure strategies
of players 1 and 2 are P and D respectively, and the payoff is L. For any p and
g in P with p 5 ¢, let T',, denote the subgame in which player 1 is restricted to
the two pure strategies p and ¢ and their mixtures. Then III is essentially the
condition that each subgame T',, is nontrivial and compact for player 2, in the
following sense: there exists no ¢* in D such that L,(t*¥) < L,(t) and L,(t*) =
L,(t) for all ¢t in D; and corresponding to each strategy of player 1, there exists
a pure strategy of player 2 which minimizes the payoff. An amplification of this
remark, in the form of a useful sufficient condition for III, is given in Section 3.

A decision function is a function on D X X, u say, such that u(C, z) is a
probability measure on D for each z and an S-measurable function of z for each
C'in D ([3], Section 7). For any decision function u, the risk function r, is defined
by

©) ) = [ { [RZ0 d#x} ap,

where, for each z, the expression in { } is the integral of I, over D with respect
to u with = held fixed.

Let D be the class of all decision functions. Let 7' be a function on X onto a
set Y of points y, and let D7 be the class of all » in © which are of the form
v = »(C, T(x)).

TurorEM. Dy 28 an essentially complete subclass of © if and only +of T s a suffi-
cient statistic for P.

Proor. Suppose first that 7' is sufficient for P, and consider a u in D. It follows
from Theorem 7.1 of [3], using condition II, that there exists a » in ©, such
that

) [X w(C, 2) dp = [ W(C, T()) dp

IIA

1

?

for all ¢ in D and p in P. It follows from (7) and (6) that (for any loss function
L) r.(p) = ru(p) for each p in P. Since u is arbitrary, we conclude that Dy is es-
sentially complete.
Suppose next that Dy is essentially complete. Choose and fix p and ¢ in P,
with p # ¢, and define N(4) = p(4) + ¢(4) for A in S. Since p(4) = N (4), the
Yadon-Nikodym theorem yields the existence of an S-measurable function,
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g(x) say, such that 0 < g < 1, and

®) p(4) = f g\, q(d) = / 1 — g) dn

for all 4 in S.
Let ¢; be an arbitrary but fixed rational number such that 0 < ¢; < 1, and
for any decision function u define

(9) Ty = Ci"’n(P) + (1 - Ci)"‘n(Q)-
We see from (6) and (8) that the right side of (9) is equal to

ciL{fl)Lpduz}gder a- ci)fx{fDquux}(l — g)

N /X{fo lesgLy + (1 — ¢) (A — g)L,] du,} d\.

Hence, for any p,

(10 = [ 7o) { [ aouote, b ducf

where «a, v; , and §; are given by (1), (4), and (5).

Corresponding to the p and ¢ under consideration, let r be a function on /
into D possessing properties (i), (ii) and (iii) of condition III. Let ¢ be the non-
randomized decision function which, for each x, assigns probability 1 to the
decision 7(8:;(g(x))). It then follows from (2), (3), and (10) that

(11) 7 = inf () = [ 70 6@) an
ned X

It is convenient at this stage to consider explicitly the sample space of the
values of 7. Let T be the o-field of all sets B C Y such that 77'(B) isin S, and
for any measure m on S denote the induced measure on T by m*, that is, m*(B) =
m(T'(B)). We have been regarding ®r as a class of decision functions on
(X, S), but Dz can also be regarded as the class, D* say, of all decision functions
on (Y, T). In particular, »(C, T(z)) <> »(C, y) is a one to one correspondence
between Dy and D* such that, for any probability measure m on S,

r,(m) = fx { fD L..(®) dur(z)} dm = f,, { _/; L% du,,} dm* = r,(m*).

By replacing X, S, p, ¢, and D by Y, T, p*, ¢* and D* in the argument leading
to (11), and then rephrasing the outcome according to the correspondence jusi
stated, we obtain the following result. There exists a non-randomized decision
function in D7, 7 say, such that

(12) 7y, = inf {7},

veDT
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and such that, for each x, 5 assigns probability 1 to the decision (5,(f(z))),
where

(13) f(x) = W(T(x))

and h(y) is a T-measurable function on ¥ (depending only on p* and ¢*) such
that 0 = b £ 1.

Consider the decision function ¢ defined above. Since Dy is essentially com-
plete, there exists a » in Dy such that r, < r; for each measure in P; in particular,

r(p) = ri(p) and r,(q) < r(g). Hence, 7, < 7; by (9). It now follows from (11)

and (12) that 7, = 7. Using (10) to evaluate 7, (cf. the definition of 1), it is
easily seen from (11) that this last equality is

(14 [ 74@-a6ua), 6:9M I = [ 76)-86ie)

Now 0 = B(u) = inf, {max [L,(1), L,#)]} < o by (1) and (2),and 0 < vi(u) <
1 by (4), so that v;(u) - B(u) is a bounded function of . Since X is a finite measure,
it follows that the right side of (14) is finite. Hence, writing

(15) ei(@) = a(d:i(g(x)), 7(6:(f()))) — B(:(g(x))),
(14) is equivalent to
(16) [ 7@ ein =0,

Since ¢; = 0 for each z by (2) and (15), and v:(g) > 0 for each z by (4), (16)
implies that there exists an S-measurable set, N; say, such that A(V;) = 0, and
pi(z) = 0foreachzin X — N;.

Since in the preceding argument c; is arbitrary, it follows that there exists an
S-measurable set N (= U;N;) such that A(N) = 0 and such that for each z in
X — N wehave p;(z) = 0fors = 1,2, --- . Hence by the definition (15) of the
sequence ¢i, @2, -+, condition III(iii), and (13), we have g(z) = h(T(z)) on
X — N. Write ¢,(y) = h(y) and ¥o(y) = 1 — h(y). Then ¢,(T(x)) and ¢,(T'(z))
are non-negative S-measurable functions of «, such that dp = ¢,T d\ and dq =
¥, T d\ on S, by (8) and the equivalence of g and AT which we have just es-
tablished. Hence, by the factorization theorem for sufficient statistics, T is a
sufficient statistic for the set Py = {p, q}.

Since in the preceding argument p and ¢ are arbitrary, we have shown that
T is pairwise sufficient for P in the sense of [1]. It now follows from Theorem 2
of [1], using condition I, that T is sufficient for P. This completes the proof of
the theorem.

The following comments concerning the condition III are relevant to the
theorem of this section. (a) If the given loss function L,(¢) satisfies III, then so
does any loss function of the form k(p)-L,(t) where 0 < k(p) < « for each
p in P. This is as it should be, since essential completeness of a class Dy is in-
variant under such modifications of the loss function. (b) For each p in P, let
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D, be the set of all points in D which minimize L,(¢). It is easily seen that III
implies that {D,} is a family of nonempty and disjoint subsets of D. Conse-
quently, IIT cannot be satisfied in reasonable formulations of problems such as
testing hypotheses (except when the hypothesis and the alternative are both
simple), or estimating a parameter 6 such that more than one p in P has the
same value of 8. This, again, is not unexpected, since in such problems the useful
concept is that of “sufficiency for the relevant parameter’’ rather than the un-
restricted sufficiency with which the theorem is concerned. (¢) Condition III
is not, however, necessary to the theorem. It can be shown by examples that if
IIT is not satisfied, the theorem may or may not hold.

Let @ be the class of all admissible decision functions.

CoroLLARY. Suppose that @ is a complete class. Then a statistic T 1s sufficient
for P if and only if for each p in @ there exists a v in Dy such that r,(p) = r.(p)
for each p in P.

Proor. It follows from the definition of admissibility that if @ is complete,
then a class Dr possesses the property stated if and only if Dr is essentially
complete, and the theorem applies.

3. Condition IV. Let p and ¢ be measures in P, and consider the function
Fpo(t) = [Ly(t), Ly(t)] which maps D into the plane. Let J,, be the range of
F . Let us say that a point (r, s) in J,, is admissible if there exists no (r*, s*)
in Jpqsuch that r* = r, s* < s, and r* + s* < r + s. Let K,, be the set of all
admissible points of J,, . Let us also say that K,, is a complete subset of J,, if
for each (r, s) in J,,, there exists an (r*, s*) in K,, such that r* < r, s* < s.
The terms ‘“‘admissible’’ and ‘“‘complete’ are borrowed from statistical decision
theory, but as used here they refer not to the statistical decision problem, nor
even to the game T, but only to the subgame I', (cf. Section 2).

It is well known (and easily shown by examples) that K,, can be the empty
set, and that even if K,, is nonempty it need not be complete.

Conprrion IV. For any two measures p and ¢ in P with p # ¢, (a) K,, con-
tains at least two points, (b) K,, is a closed and bounded subset of the plane,
(¢) Ky, is a complete subset of J,,, and (d) for each (r, s) in K,, there exists
only one point ¢ in D such that F,,(t) = (r, s).

It can be shown that IT and IV imply III. An outline of the proof follows.

Consider fixed p and ¢ in P with p £ ¢. Parts (a), (b) and (¢) of IV assure the
existence of a = which satisfies parts (ii) and (iii) of III. The additional conditions
IV(d) and II (together with the fact that the inverse of a 1-1 Borel measurable
function is Borel measurable) assure that r also satisfies II1(i). The construction
and detailed verification of = is, however, rather lengthy, and it seems best to
omit it. Note that since the conditions IV(d) and II are used only to assure that
7 is measurable, they are superfluous in applications where the measurability of
7 is not in doubt.

The conditions IT and IV are satisfied in each of the examples of Section 1.
Indeed, they are satisfied in Example 1 with any L such that L,(j) > L.(3)
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whenever ¢ # j; in Example 2 with Ly(t) = a(6)- |t — 6/"®, where 0 < a(6) <
0 and 0 < b(8) < < ;and in Example 3 with Ly(r, s) = As(r, s) + Be(s — 1)
where Ag = 0if r £ 8 < s and > 0 otherwise, and By(2) is a strictly increasing
function of z = 0 with By(0) = 0.

4. A theorem of Elfving. In this section we suppose that there are given (X, S),
P, and (D, D), as before, but that the loss function L is not specified. The class
Dy is said to be uniformly essentially complete if, for every loss function L, Dr
is essentially complete. The concept of uniform essential completeness is due to
Elfving [4]. In his paper, he showed (using a notation and terminology which
differs slightly from the present one) that if each of the sets X, P, and D is
finite, then Dy is uniformly essentially complete if and only if T is sufficient for
P. We shall show that this result is valid provided only that P and D satisfy
conditions I and II.

In view of the first part of the proof of the theorem in Section 2, we need only
show that if Dy is uniformly essentially complete, then T is sufficient. Let p and
q be two measures in P, p # ¢, and let Py = {p, ¢}. It is easily seen that the
hypothesis implies that Dr is uniformly essentially complete for (X, S), Py, and
(D, D). Let r and s be points of D, r ## s, and define

0 ift=r
L,(t) =<1 ift=s

2 otherwise,

1 ift=r
L,(t) =<0 ift=s

2 otherwise.

Then, as is easily seen, I, II, and III are satisfied in the problem (X, S), P,,
(D, D), and L. Since D is essentially complete for this problem in particular, it
follows from the theorem of Section 2 that T is sufficient for Py = {p, ¢}. Since
p and ¢ are arbitrary, it follows from Theorem 2 of [1] that T is sufficient for P,
as was to be shown.

Let us say that D7 is uniformly equivalent to D if, for every loss function L,
Dy is equivalent to D in the sense of Section 1. Let us also say Dr is strongly
equivalent to D if corresponding to each u in 9 there exists a » in Dy such that
[xv(C, T(x))dp = [x u(C, z) dp for all C in D and p in P. Now, it is shown in
[3] that sufficiency implies strong equivalence. The facts that strong equivalence
implies uniform equivalence implies uniform essential completeness are evident,
and we have just seen that uniform essential completeness implies sufficiency.
Consequently, the concepts of sufficiency, strong equivalence, uniform equiva-
lence, and uniform essential completeness afford equivalent comparisons of
Dy and D, at least when I and IT are satisfied.

The conclusion just stated could be regarded as a strong result in the compari-
son of experiments in the special case when one of the two experiments being
compared is a contraction of the other (cf. [5]). By so regarding it, it follows, in
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particular, that (at least in the case when (X, S) is of type (B, R) and P is
dominated) a statistic y = T'(x) is sufficient for x in Blackwell’s sense [5] if and

only if y is sufficient for z in the classical sense, that is to say, T is sufficient for
P.
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