ON THE EFFICIENCY OF EXPERIMENTAL DESIGNS!

By SyrLvaiN EHRENFELD

Columbia University

1. Introduction. Many models used in statistical investigations can be formu-
lated in terms of least-square theory. The models that will be discussed can be
stated as follows. Let g1, - - - , y» be N independently and normally distributed
random variables with common variance ¢°. It is assumed that the expected
value of y, is given by

(1.1) E(.) = B1Ze1 + Booz + -+ + BpZap » a=1,---,N,
where quantities za; for¢ = 1, --- , p; @ = 1, --- | N are known constants and
Bi, -+, Bp are unknown constants. The coefficients 8, , - - : , 8, are the popula-
tion regression coefficients of y on x;, ,, - -- , x, respectively. In matrix nota-
tion the above model can be expressed as

(1.2) E(y) = XB

[ﬁl l.xu xlp‘ %
B = X =

= A ) =1 . ’ Yy = R )
l,ﬁp ,.le B 2. Yx,

The p column vectors in X will be denoted by i, 2, ---, z, where
x; = (T1;, T2, -+, Ty;). In some cases the experimenter has some amount of
freedom in the choice of the p vectors z; . The efficiency and sensitivity of the
design may be very much affected by the choice of the design matrix X. The
choice of this matrix is equivalent to that of p vectors in N-dimensional Euclid-
ean space.

A simple illustration is furnished by the following example. Suppose y, are
independent random variables with equal variance ¢°, where E(y,) =
Bu(xe — &) + B:. The ’s are assumed to be fixed constants. Suppose, further-
more, that we have N pairs of observations (21, y1), - - , (zx, y~) and we want to
estimate B . It is known that the variance of the least square estimate of B, is
inversely proportional to Y. (z. — %) Hence, if we could choose values
Ty, -+, Zy in a domain T, we would choose them such that ), (z, — %) is as
large as possible.

In Section 2 we will prove a theorem about quadratic forms which, with the
aid of other considerations, will motivate a criterion for the efficiency of a de-
sign matrix X. In Section 3 two theorems will be proved to aid in the applica-
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tion of this criterion. In Section 4 applications will be given, and it will further-
more be shown that the Latin square is most efficient in a certain sense.

2. Measure of efficiency of design matrix.

2A. A useful inequality. Suppose we have a real p x p symmetric non-nega-
tive matrix S of rank r < p. Let ¢ be a column vector with p components, not
all zero, such that the equation Sp = ¢ has solutions for p. Then we have the
following.

TuroreEM 2.1. If p is any solution of Sp = t, then the following inequality holds:

’

1 o' Sp < 1

é e
x[I'IBX

t,t = )\min ’

(2.1)

where Amax and Amin are the maximum and the minimum of the nonzero character-
istic roots of S.

Proor. There exists an orthogonal matrix O such that 0'SO = Q@ = (\:d;)),
and therefore p’Sp = D 1 Mipr . The\y, - - - , \,are the nonzero characteristic roots
of S, and p* = O’p. Since Sp = ¢, we also have that ¢'t = Z{ Aipf? since Ut =
p¥0'S'00’'S0p* = p*@’p*. Thus if we let z; = /\;pf , we have

p'Sp _ Zi i p?z _ Zi Zf

@2 T SEUAD SR WL
and since

2
(23) ! c Zum o 1

we get equation (2.1). When S is of full rank, equation (2.1) becomes

1 rg1 1
(24) stS P

>\max - t/t - )\min.

For the most part we will restrict ourselves to the case where S has full rank.
In that case S has an inverse, and p = S . The case where S is not of full
rank can be treated in a way very similar to the case of full rank. Some of the
problems that arise in connection with the model which was considered in
Section 1 will be discussed.

2B. Estimation. Suppose S = X’'X is of full rank, and we want to estimate
0, where § = Y 7 ¢;8; = #8 and the ¢; are given constants.

From least-square theory it is known that the best unbiased linear estimate
of 0, in the sense of minimum variance, is § = ) ;t,3; where the 3; are the least-
square estimates of 8;. Also, it is known that the variance of 8 is o°t’S7't. If
¢ is such that Sp = ¢ has solutions for p, we say that 6 = ¢'8 is estimable. Only
estimable 6 are here considered. When S is not of full rank, the variance of 4 is
oo’ Sp where p is any solution of Sp = ¢.
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2C. Power. We will now derive an expression that will be used in Section 4.
Suppose S and S~" are partitioned into

alc
(2.5) =5,
c|d
A|B
(26) ( = S_l ’
B'| D
where a and A are k x k& matrices. If we wanted totest 8; = B2 = -+ = B¢ =

0, then the usual F test has a power function depending monotonically on a
parameter ® where

2.7) d® =BATB, B = (B, -, B
Since A~ = @ — ¢'d "¢, we have ‘
(2.8) @ = B'ap — (cB)'d(cB).

2D. Confidence interval. If D_;t; = 0, then 0 is called a contrast. A confidence
interval for @ with confidence coefficient 1 — « is

(2'9) é - kaa'é é 0 é é + kaa-é )
where k, is an appropriate constant. Here 4 is defined by
(2.10) b5 = ST,

where &° is the usual estimate of ¢°. If we let L equal the length of the con-
fidence interval, we have

(2.11) (E(L))’ = Ms’t'St,

where M is independent of o°.
2E. Application of inequality. A simple application of Theorem 2.1 to some
of the previous expressions gives

2 9

(2.12) " ¢t < Var (6) < _— ',
(2.13) i”" 't < (B(L) < i”m" vt.

If we wanted to test 8, = --- = 8, = 0, we would get
(2.14) o= EF  pglmry g tungy

It is to be noted that all these bounds can be attained. If (2.12), (2.13), and
(2.14) are considered, it can be seen that it would be desirable to make Anin as
large as possible. With this in mind, we define the following as a criterion for
the efficiency of a design.
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DEerFiniTION. Denote by « the maximum value of Ayj, for z.; in T. The ratio
of Mmin/u will be called the efficiency of the design. The design will be called
most efficient if the efficiency of the design is equal to one.

3. Extension. In order to apply this criterion of efficiency, it will be helpful
to have the following two theorems.

TueoreM 3.1. If ziz; = ¢; where ¢; = 0 are fized constants, then Ny in will be a
mazximum when zix; = 0 for i % j.

Proor. Let ¢ be the smallest of ¢;, - -+, ¢, and designate

C — A 0
S\ =8 =2\, SO = . ,

0 cp — A
and let |[S(A\)| = |S — AI| be the determinant of S(\). We have that [S(\)| =

«ci — \). Since S(0) and S(0) are symmetric and non-negative, we also have
|S(0)] = 0 and |S(0)| = 0. Let us now consider the matrix S(c). Suppose first
that S(c) is non-negative. We then have 0 < |S(c)| < |S(c)| = 0, and thus ¢
would be a root of S(0) and thus Anin = ¢. Suppose, however, that S(c) were
not non-negative. Then there exists a root A < 0 such that |S(c) — | = 0,
or equivalently [S(0) — ¢ — X| = |S(0) — (¢ + N)I| = 0. Thusc + X isa
root of S(0). Since A £ 0, we have ¢ + A < ¢ which gives the desired result.

When z;z; = 0 for ¢  j, x;is called orthogonal toz, . When the p vectors
are mutually orthogonal, then ¢, which is the upper bound of Ay can be at-
tained. In some situations one can maintain the condition of orthogonality and
increase ¢ at the same time. This theorem is usually useful only if the experi-
menter has some freedom of choice in all vectors z,, z3, --- , 2, -

In many situations, however, the vectors z:, -, z, are fixed, and there is
only freedom of choice of .41, -+, z, . In those cases the following theorem
is sometimes useful. Its proof is very similar to the one used for Theorem 3.1.

Suppose z1, -+, z, are fixed vectors. Then S can be represented as a par-
titioned matrix as follows:

3.1) S =80b,D) = <£—*—b>
(- - ) - b' D ’

where S(b, D) indicates that S depends on b and D. Also we have

Az(x:‘x.i); ’L.,j—':l,"',?’,

(3.2) ’ .

D=(xixj)7 Ly=r+1--,p

S, D), A, and D are symmetric and non-negative matrices. Let the charac-

teristic roots of A be 0 < \; < - = A\, and those of Dbe 0 £ 6, £ 6, <

- =< 6,—,. The N’s are fixed, but the 6’s depend on the choice of z,.1, -- -,
Zp.
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TuroreM 3.2. If ¢ is the smallest characteristic root of S = S(b, D), then
(3.3) Y= M.
when b = 0 and M = 01,thenx[/ = \1.

Proor. There exist orthogonal matrices T, @ such that

A 0 0, 0
(34) T'AT = - @Dpg=| - |
0 Ar 0 By
If we let
T 0
(3.5) P = )
0 @

then P’SP has the same characteristic roots as S, since P is an orthogonal
matrix. We also get

o —

M 0
. -

(3.6) P'SP = , b* = T'bQ.
o, 0
b* '

0 0pr

Since b* is zero if and only if b is, we have by use of Theorem 3.1 that
Y =<min A\ ---,\r, 01, ---,0,,) = A\ which proves the theorem.

In terms of the vectors x,41, -+, 2, Theorem 3.2 means that to maximize
Amin We must choose z;z; = O fori = 1,---,7r;7 =r + 1, ---, p. In order
to attain the upper bound \;, we must also make A\; < 6.

To do this we might use Theorem 3.1, and make z,z, = 0 forf,s = r + 1,
.-, pand 2z, = M fort =7 4+ 1, -+, p if possible.

4. Applications.

4A. Hotelling’s weighing problem. Consider the weighing of N linear com-
bination of p objects on a chemical balance. This gives rise to the following
equations:

4.1) EWe) = Tuwi + -+ + Tapwyp, a=1,+---,N,
or

Ty e Tip
(42) E@y) = Xo, X =| - :

TNy INp

where w; is the weight of the ¢th object.
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-+1 if 4th object is placed in left pan at ath weighing,
(4.3) z. = (—1 ifitis placed in right pan,
0 if it is placed in neither.

Thus the vectors 21, 22, - - - , «, are vectors whose components are +1, —1, or
0. From Theorem 3.1, it follows that the most efficient design for this problem
would be gotten by making z;z; = 0 for ¢ % j and to make z;z; as large as pos-
sible. This can be done by picking .; = 41 or z.; = —1, then z;z; = N. The
vectors 2, -+, Z, cannot be chosen as indicated for all N. The problem of
when and how this can be done has been thoroughly discussed in the literature
[3].

4B. Power. From equation (2.8) it can be seen that mings<; o'® would be a
maximum if ¢ = 0 and the minimum root of a is large. The condition ¢ = 0 is
equivalent to making z;z; = Ofori =1, --- ,k;j=k + 1, ---, p, and from
Theorem 3.1 the Amin of @ can be made large by making zjz; fori = 1, -+- , k
as large as possible and z,z, = 0 fors # ¢;s,¢ = 1, - - - , k. Any linear hypothesis
can be put into canonical form so that it becomes 8; = B2 = --- = B = 0.

4C. Analysis of covariance. The model usually used for a two-way layout can
be stated as follows.

(4-4) E(yij)=u+Qi+Tj+ﬁ(xzj—j)y i=17"',7l;.7.=11"'731

where the @’s and T';’s are row and column affects respectively. Associate with
each pair (7, j) an integer « such that «(7,j) = (¢ — 1)s + jfora =1, ---,
rs. Then (4.4) can be written as
(4.5) E(ye.) = u + ZitiaQi + Zﬂ)jaTj + B(@a — I)
where

ti« = +1 if ath plot is in 7th row and 0 otherwise,

(4.6)
vja = 1 if ath plot is in jth column and 0 otherwise.

In matrix notation the above becomes

T
Q&
(@) B) = X0= (1 e bu i v e (e — )| 5
T,
| 5
It can be seen that x1, -+, Z,41, Tr42, - -+, Zrye41 are fixed vectors in the

model. The only choice available to the experimenter is in the last vector z, .42 .
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An application of Theorem 3.2 gives us the following advice for getting a good
design. Make z, ,, 2, 1.42 as large as possible, where

(4.8) TppsstTrpose = Dya (Ta — ) = D (7 — )%

Furthermore, it is desirable to make x:+x+2x,~ =0forj=1,---,r4+ s+ 1
simultaneously, that is;

(4.9) Datialta — &) =D (@i — &) = 0,

(4.10) 2 ial@a — &) = 2 i (x; — &) = 0.

Equations (4.9) and (4.10) thus give conditions for an efficient design for this
model.

4D. Latin square. Suppose we wish to find out by experimentation whether
there is any significant difference among yields of m different varieties v;, - - ,
vm . An experimental area is divided into m® plots lying in m rows and m columns
and each plot is assigned to one of the varieties v;, -« -, v, . Denote by y.jx
the yield of variety v, on plot in ¢th row and jth column. It is assumed that the
y:x are independently and normally distributed with common variance o°.

(4.11) E(in) = ki +d; +

where k;, d;, pr are the row, column, and variety effects respectively. The
quantities ¢°, k., d;, px are unknown parameters. The hypothesis to be tested
is that variety has no effect on yield, i.e.,

(4_12) pL= P2 = *** = pi.

Wald proved that the Latin square was most efficient in a sense which he de-
fined in [1]. We will prove a similar result in this section.
TueoreM 4.1. The Latin square is most efficient in the sense of our definition.
Proor. As was done in (4B) we let a(z,7) = ¢ — I)m + jfor¢,5 =1, .-+,
m. Let tia, Ui, 2rafori, j,k =1,-++ m;a =1, -+, m’ be defined as follows.

lia = +1 if ath plot in <th row and 0 otherwise,
(4.13) #ja = +1 if ath plot in jth column and 0 otherwise,
2a = 1 if kth variety is assigned to ath plot.

Then (4.11) can be rewritten as follows.

m

(4.14) E(y,) = Zl It + Zl dittia + D piie -

k=1

We want to express the hypothesis in (4.12) in canonical form. In order to do
this denote the arithmetic means

- 1 o1 . — .
(415) L = ﬁl ; tia ; U; = ﬁ za: Uia 5 2 = me ;zm
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and then let tig = tia — &, Uta = Uia — i, 2ia = 2ia — Z; and k; = k; —
b, d; = d; — Am , p; = pi — pm fori = 1, -+, m — 1, and let w, = 1 for

o« =1, ---,m’ Then (4.14) can be written as
m—1 m—1 m—1
(4.16) Blys) = §oa + 2 Kilia + 25 ditiia + 2 pltia,

where & = DTk + DT i + D0 piEi + kwm 4+ dm 4+ pm, and the
hypothesis in canonical form is

(4.17) pL=py = -+ = pny = 0.

In matrix notation the design matrix X becomes

(4:.18) X = (1 t;a t;a et t:n—l,a u;a tee u:n—l,a zia e zrln—l,a)'

The experimenter has freedom only in the choice of the zi,, 7 = 1, «-- ,
m —1;a = 1, --- , m’. The z;, depend on the way the varieties vy, - -- , v, are
assigned to the m® plots. In the Latin square arrangement each variety ap-
pears exactly once in each row and exactly once in each column. The S matrix
for the above model is

~ o -

m 0 0
m — 1 —1
0 S 0
-1 m — 1 b
(419) S =
m — 1 -1
0 | 0
-1 m — 1
L b’ D |
and we let D = (z:z;) and
m’ 0 0 T
m — 1 -1
0 0
(4.20) A = —1 m— 1
m — 1 -1
0 0
B -1 m — 1]

It is known that for the Latin square

(421) Za Z}lcau;‘a = Za zllcat;'a = Ea zllcawa = 07 7'.7 jy k= 1? e, M — 17
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which is exactly the condition of orthogonality needed in Theorem 3.2, namely
b = 0. For a Latin square the D matrix becomes

m—1 -1

“.22) D= : ,

and if we use the fact that
a—1 -1

Q] = : = d"[a — &),

-1 a—1

where @ is a k x k matrix, it is thus seen that A; < 6;, which proves the theo-

rem.
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