ON TESTS OF NORMALITY AND OTHER TESTS OF GOODNESS OF FIT
BASED ON DISTANCE METHODS

By M. Kac, J. Kierer,' aNp J. Worrowirz’

Cornell University

Summary. The authors study the problem of testing whether the distribution
function (d.f.) of the observed independent chance variables x;, -, z, is a
member of a given class. A classical problem is concerned with the case where
this class is the class of all normal d.f.’s. For any two d.f.’s F(y) and G(y), let
8(F, G) = sup,|F(y) — G(y)|. Let N(y | u, *) be the normal d.f. with mean p
and variance o°. Let Gi(y) be the empiric d.f. of z;, ---, .. The authors
consider, inter alia, tests of normality based on v, = 8(Gx(y), N(y|%,s")) and
onw, = [ (G¥@y) — N(y|&,s))* d,N(y | %,s"). It is shown that the asymptotic
power of these tests is considerably greater than that of the optimum x° test.
The covariance function of a certain Gaussian process Z(f), 0 < ¢t < 1, is found.
It is shown that the sample functions of Z(¢) are continuous with probability
one, and that

1
lim P{nw, < a} = P{W < a}, where W = [ (Z@®)] dt.
n —»00 0
Tables of the distribution of W and of the limiting distribution of /n v, are
given. The role of various metrics is discussed.

1. Introduction. Let z,, - -+, x, be n independent chance variables with the
same cumulative distribution function G(z) (i.e., G(z) = P{x: < x}) which is
unknown to the statistician. It is desired to test the hypothesis that G(z) is
a normal distribution. This is an old problem of considerable interest which has
received a fair share of attention in the literature.

A commonly used test consists essentially in testing whether the third mo-
ment of G(x) about its mean is zero and whether the ratio of the fourth moment
about the mean to the square of the second moment about the mean is three.
It is obvious that this is not really a test of normality, because there are many
non-normal distributions which satisfy these conditions on the moments.

Perhaps the best of the commonly used large sample tests of normality is the
x* test due to Karl Pearson; see for example Cramér [1], Sections 30.1 and 30.3,
and the recent results of Chernoff and Lehmann [2]. The asymptotic power of
the x° test was studied by Mann and Wald [3]. (It is true that these authors
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studied the problem of goodness of fit for a simple hypothesis, which in our
problem would correspond to knowing the mean and variance of G(z). However,
it is plausible that the comparison in power which we will make below will be
true a fortiori for our problem.) One of their principal results is the following.
Define the distance 8(H,, H,) between any two distribution functions H; and
H. 2 by

§(Hy, Hy) = sup.|Hi(zx) — Ha(z)|.

Suppose one tests the null hypothesis that G(z) = R(z), where R(z) is a given
continuous distribution, at some fixed level of significance. In [3] it is shown
that the x° test based on n observations and k, intervals of equal probability
under R, where k, is chosen for each 7 so as to minimize the value A, for which
the minimum of the power function among alternatives R* with §(R*, R) =
A, is , gives A, = cn*® when n is large. In Section 5 we shall show that the
result of Mann and Wald just stated also holds if 6 is replaced by the measure

of discrepancy v introduced in Section 5.

Let
0, x = a;
¥a(a) = {1, T > a.
Let
1 n
Gr@) == 2 ¥.(x)
n i=1
be the empiric d.f. of @1, -+, ., that is, Ga(z) is the proportion of s less

than z. The asymptotic distribution of §(@, Gx) was found by Kolmogoroff
[4] and it is known that 8(G, G}) is of the order n™"* in probability (that is,
with probability arbitrarily close to one). If now one bases the test of the hy-
pothesis that G(z) = R(z) on §(R, G7), with large values of 3 significant, it
follows that, for large n, it is sufficient that 8(R, R*) be of the order n™** for
the probability of rejecting the null hypothesis to be appreciable (= 3). To put
matters a little differently: Let 8(R, R*) = h be small (so that n has to be large
in order to distinguish between R and R*). Then, if n has to be equal to N in
order to guarantee that the power at R* of the x” test of goodness of fit be at
least 1, when one uses the test based on 6 it is enough that n be of the order
of N*°. This is a considerable improvement (for large n). The result just stated
holds also for the classical “w™ test if & is replaced in the above by v; this fol-
lows from the results of Section 5. ‘

Let us return to the problem of testing the composite null hypothesis whether
G(zx) is normal (its mean and variance being unknown). One of the present
authors has been developing the minimum distance method for estimation and
testing hypotheses in a number of papers (Wolfowitz [5], [6], [7], [8]). In accord
with this method it is proposed in [5] (page 149) that this test of normality be
based on 8(G% , N**) with the large values critical. Here N** is the class of
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all normal distributions, and the distance of any d.f. H(x) from the class N**
is given by
6(H,N**) = inf 8(H,N).
NeN**

In Sections 2, 3, and 4 we investigate tests based on various “distance’ criteria,
constructed in the spirit of the above discussion, and in Section 5 we discuss
the asymptotic power of these tests. As stated in [5], the minimum distance
method is not limited merely to testing normality, and in Section 4 we discuss
its application to other tests of goodness of fit.

Throughout this paper we discuss tests, computations, and power considera-
tions in terms of particular (normal or rectangular) examples, but it will be
obvious that the results of Sections 2, 3, and 5 may in general be carried over
to testing composite hypotheses involving parametric families. The minimum
distance method applies in principle to even more complicated families of dis-
tribution functions about which one desires to test a hypothesis. For hypotheses
of a more complicated nature than our examples, there will often exist the
additional complication that the test criterion may not be distribution-free
under the null hypothesis.

Tests may also be constructed using other “distances” than those mentioned
in Section 2 and above (see also [5], pp. 148-149, and [6], p. 10 in this connec-
tion), involving other “estimators” than those of Sections 2 and 3, and involving
other modifications of the notion of “distance methods” as motivated in this
section.

2. Testing normality. For convenience we divide this section into several
subsections.

2.1. The computation of 6(G , N**) offers considerable difficulty; unpublished
work on this subject has been done by Blackman. The distribution of 6(G v, N**)
under the null hypothesis is still unknown. (It is easy to verify that, when G(x)
is a member of N**, the distribution of 3(@% , N**) does not depend on G(z).
Thus the composite null hypothesis determines uniquely the distribution of the
test criterion.) In Section 4 we shall give an example of another problem of
testing hypotheses where the limiting distribution of the minimum distance
criterion is explicitly calculated. In the present Section 2 we shall consider
some other “distance’ tests. (For the case where either the mean or variance
is assumed known, the test corresponding to that discussed in this section is
being studied by Darling [18]; the suggestion of using such tests is apparently
due to Cramér.) Let '

n 1 n
in, 32=—Zx?—£2.
1 n 1

Let N(z | £, s°) be the normal distribution function with mean Z and variance
s%. One can base the test of normality on v, = 8(Gx(z), N(z | £, §°)), with the
large values critical. It is easy to see that, when G(z) is actually a member of
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N** the distribution of v, does not depend on G(z). The distribution of », does
not seem easy to obtain, except, for example, by Monte Carlo methods. Another
test criterion, similar to the above but of the “w™’ type, is to base the test on

1t .
w,‘=—j Zy . dr
n Jo

where Z, , is defined in 2.2.° (The idea of the “w™ test, which is defined pre-
cisely in Section 6, is due to von Mises, with a modification by Smirnov.) Sec-
tions 2.2 to 2.6 are concerned with the limiting distribution of nw, as n — «
when @ is normal. The power of the tests based on v, and w, is discussed in
Section 5. In Section 3 we treat briefly an example which illustrates the con-
struction of test criteria which are similar to v, and w, but which may use
“inefficient”” statistics to estimate which member of N** G is (if it is); such
techniques may have obvious practical importance.

2.2. Let 21, x2, - - - be independent, identically distributed Gaussian random
variables with zero mean and unit variance. Let G (x) be as defined in Section
1. We shall use the following notation:

0@ = d(—x) = o= @) = [ o) dy,
Vor )

J@) =T"0 -y ={e|ly=1-1@)}, 9@ =¢@=)/I().

We also let [¢] = smallest integer = 2. For 0 < r < 1, we put U, , = [rnjth
from the bottom among the ordered z; , - - - , z, . Finally, let*

Zym = A0lGENSLI (1) + &) —r]

where

n

2 !’ -2
in; Szz=Sn—xn-
i=1

S

1 n
G=-2 @, 8=
N i=1

(Remark: S, and S, may be used equally well in the definition of Z,., for the
purpose of obtaining the limiting distribution; in applications S, should prob-
ably be used.)

2.3. We shall show that for 0 = r, < rp < -+ < 1 = 1, the quantities
Zy;m, where 1 < 7 = k, are asymptotically jointly normally distributed with

zero means and covariance function (for Z, , and Z,, as n — )
(2.1) K(s, £) = min(s, t) — st — @) (1 + J(s)J(§)/2)e V@A

We shall show here that (2.1) follows from the fact proved in Section 2.4,
that v/nz. , Vn(S. — 1), and A/n(U,, .. — J(r:)), where 1 < ¢ < k, are jointly

3 This definition is equivalent to that given in the summary at the beginning of the paper.
¢ Elsewhere in this paper, in the summary, for example, the conventional symbol s? is
sometimes used instead of the typographically easier (here) symbol Sy,. Both represent
the same thing. Also %, and & are used interchangeably in a manner to cause no confusion.
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asymptotically normal with means 0 and covariance matrix (presented in the
same order) given by

,

1 0 1 1 e 1
0 2 Jbr) JOy) - J(rw)
(2.2) 1 J (7‘1) A A2 e ALk )
1 J@w A Nz v Awk
Ti(l - 7':')
)\ij=}\'i=‘—-'——‘~'_, ié j-
i TENeT ) e

In fact, all these results are well known ([1], p. 364, 369) except for the joint
normality and the last k entries in the first two rows (and columns).

Assume then for the moment that the above is proved. The event {Z,, < 2}
may be written as {[number of x; which are < VSLJ(r) + & £ nr + V/nel.
This in turn is the same as {U,yzyv/7, n = VSLJ(r) + &}, or

(Vg + VaJ (V8 = 1) = V1Ursayzn — S+ 2/v/n))
= ValJ(@r + 2/A/n) — J()]}.
As n — «, neglecting terms of higher order in probability, we may replace
Al (r + z/A/n) — J()] by 2J'(r) and v/n(+/8, — 1) by $v/n(S. — 1).
We conclude that
11m }){Zfl.ﬂ é Rly *°° Zrk,‘n. = zk}

n-—>0

N |
@3)  =lim Py

“\/;L(Ur,urz,-/ﬁ,n - J(Ti + zz/\/ﬁ))] = 2, i1=1,--, ’0} .

/

Thus, Zr,my Zrans = » Zr.n are jointly asymptotically normal, with the same
limiting distribution as the quantities

[\/’/—Vzn + %\/’;’L‘J(’I‘J(Sn - 1) - '\/;'f(l]ri,n - J(Ti))]/J,(ri)y 1= 1: ) k.

From this and (2.2), the result (2.1) follows by direct computation and the
fact that J'(r) = 1/¢(J(r)). '

2.4. Tt remains to prove the joint asymptotic normality of the quantities
mentioned in the paragraph following (2.1), and to verify the last k entries of
the first two rows (and columns) of (2.2). We shall in fact compute here only
the limiting distribution of \/n. , V(8. — 1), and /n(U.,, — J(r)) where
0 < r < 1; from this will follow the desired result of (2.2), and the method of
proof of joint asymptotic normality for the & + 2 random variables previously
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mentioned will be evident from that for the case & = 1 considered here (note
especially p. 369 of [1] in this connection).

We begin by introducing a process which will enable us to simplify this com-
putation. For fixed n, let Y,,; be a chance variable whose distribution function
is that of U, , above. Let ¥, where 1 < ¢ < nand ¢ s [rn], be random variables
whose joint conditional distribution, given that Y. = v, is such that these
n — 1 random variables are (conditionally) independent with ¥, having a
(conditional) truncated normal distribution given by

. _ 1 <
PUYi < 2| You = y) = minfl, (1 — I())/(+—Iy)],1 =7 < [rn]
max[0, 1 — I(2)/I(y)], [rn] <7 = n.
If now Yy, ---, Y, are reordered with probability 1/n! for each possible re-
ordering, and the resulting reordered variables are labeled X1, - --, X5, it is
easily verified that Xi,---, X, have the same joint distribution as the
21, --+, 2, considered in Section 1. We shall use the.process Y;, ---, Y, to
compute the conditional distribution of S, and Z,, given that U,, = y =
J(r) + w//n, say. Let

[rn]—1 n

(] = DX = 3 Vi, (—[)X = > Vi
1 [ral4l
[rn]l—1 n
(lnr] — 1S, = ; Y:, (n — [nr])SE = [E] 1 Ye.
rn ]+

It is easy to compute that for the truncated normal distribution from y to <«
mentioned above, the first four moments about the origin are

w(y) = g(w),  wy) =1+ ygy),
wmy) = @+ 2)9@), wm@) =3+ @ + 3y) 9@).

The corresponding moments for the truncated distribution from — o to y are
clearly —ui(—y), pe(—vy), —us(—y), and u(—y). From these and [1], p. 364,
we obtain that

A, = V] =1 (X, + 9(—y), B =] = 1(S% — 1 4 y g(—y))
are asymptotically conditionally normal with means 0 and covariance matrix
(1 —yg(—y) — [g(=pI — @ + 1) g(—y)— ylg(—yI )
—@ + 1) g(—y)— vlg(—) 2 =& + ) 9(—) — ylg(—*/)’

and that C, = v/ — [nr] (X% — g(y)) and D, = \/n — [nr] (S5 — 1 — yg(y))
are asymptotically conditionally normal with means 0 and covariance matrix

<1 + v g9(y) — eI @ + 1 g — yla@) >
@ +1Dgw)— ylg@ 2+ @' +v) 9ly) — v/’
with (4., B.) conditionally independent of (C,, D,). By using the Liapounoff
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condition one proves that the approach to normality is uniform for any finite
w-intervai Let O,( ) denote “order of ( ) in _probability”” (e.g., [9]). Noting
that v/[nr] — v/nr = O(1/+/n) and that v/n(y/n) = 0,(1/4/n), we obtain

as an expression for \/ni, , given that U,, = Y,

VnZ, = VA + VT =1 Co+ Val—rg(—y) + (1 — 1) g@)] + 0,(1/4/7).
But

—rg(=J0) —w/A/n) + A —1r) g (@) + w//n)

_w BUOE, (1
=V =1 +0,(3).

so that

- _ () ;
Vg, < Vi VT G o SO “’(\/n)

In similar fashion, we obtain

[ (J (")) 1
VS, — 1) = \/TB, + \/1=rD, +wJ(r)W——)+O (\/1_)

In both cases the 0,(1/4/n) term is uniform in every bounded interval of w.
Since W, = v/n(U,, — J(r)) is asymptotically normal with mean 0 and var-
iance r(1 — r)/[¢(J(r)))?, the desired asymptotic joint normality follows easily
from the last two displayed expressions. The covariance of \/nZ, and W, is
most easily computed as E{W,.-E{\/n&, | Wa.}}, that of v/n(S, — 1) and
W .. being computed similarly; these give the desired results for the last k entries
of the first two rows (and columns) of (2.2).

2.5. We now show that there exists a representation of any Gaussian process
with mean identically zero and a covariance function like that of (2.1), whose
sample functions are continuous with probability one (w.p. 1).

Let W(),0 = ¢ < 1, be the Kac-Siegert representation ([12]) of a Gaussian
process with continuous covariance function K’(s, t). Let {\.} be the eigenvalues
and {«(¢)} the corresponding normalized eigenfunctions of K’(s, t). Suppose
furthermore that g(¢) in L’ is such that

K'(s, 1) — g(s)g(t) = K" (s, )

is a covariance function. We shall show how to construct explicitly a process
Z(t) with covariance function K”(s, t) in terms of the process W (¢). (All processes
studied in this section are to have mean zero.)

We first prove two lemmas.

LemMa 1. 4 necessary and sufficient condition that K” (s, t) be positive definite 1s
that

BT

_ }":lg_ < o= | o) @@ at
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(If a X, is 0, it follows immediately from the positivity of K”(s, t) that g(¢) is
orthogonal to all the eigenfunctions belonging to A:; thus the corresponding gx
vanish and we interpret g.’/\« as zero.)

Only the necessity of the condition is used in the application of the lemma.
The proof of sufficiency is included because it is so brief and sufficiency seems to
be of interest.

1. Necessity. Set y(t) = D_iv: ¢x(t) and note that by definition

fol [ (K'(s, 8) — g(s) g(®)) ¢(s) ¥(t) ds dt = 0.

Evaluating the double integral we obtain

‘T"‘ ViENe = (ZI: ngk) ,

n g‘2‘ n g£2
gt > o
Sez (28,

Thus Y7 gi/M < 1 for every n and the theorem follows.
2. Sufficiency. If 3_vge/\ < 1 we have

0 2 n 2 00 0 2 0
<Z1: vkg/:> = (Zl: (23 '\/)\—k %) = (Zl: vl%)\k><; %ﬁ) = ; Uz-)\k,
and positiveness of K'(s, t) — g(s) g(¢) follows.

LEMMA 2. The series Dy grew(t) converges uniformly (to g(t)).

We have | 2 ngwer(t)] S A/ Sn g2 /he VO on Mer(t). By Mercer’s theorem,
> Mer(t) = K(t, t). Hence | 2m g = VK@, £) V Som gi/he. Since
Z gi/\. converges (by Lemma 1), Lemma 2 follows.

We are now ready to prove that

2 = G/ Ne

@4) 20 = w( — L= VI8 VBI“” 00 5% [ W0 el

has the covariance function K”(s, t).
Note first that the chance variables

{\-—}—)\—k fo l WO er(t) dt}

are independently and normally distributed, with mean 0 and variance 1. Since
3% gi/M < o, the series

S [ Woao

converges in the mean (and even w.p. 1) and thus defines a random variable.
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To calculate the covariance of Z(f) we need
0 1
E {W(t) PR f 14OPA0) dt} .
=1 At Jo

But E{W () [s W(H)e:(t) dt} = [s E{W@OWO)}ex(t) dt = [s K'(t, heu(t) dt =
Mei(t), and hence

E{W(t) 52 [ Woe dt} - 5 0a = 0.

The covariance function of Z(f) now comes out to be

K'(s,{) — 28721 — v/T=B) g(®g(®) + 871 — VT = 69)*9(s)g(®)
= K'(s,t) — g(8)g(t) = K" (s, 0).

Since g(¢) is continuous (by Lemma 2) it follows, in particular, that the sample
functions of Z({) are continuous w.p. 1 if the sample functions of W (t) are con-
tinuous w.p. 1. Now let K'(s, t) = min (s, t) —st. Then the sample functions of
W(t) are continuous w.p. 1. The application of the above result twice (once for
each remaining negative product in (2.1)) then proves that the representation
Z(t), which is Gaussian with mean zero and covariance function (2.1), has con-
tinuous sample functions, w.p. 1.

9 6. From the results of Sections 2.2 to 2.5, it is easily verified that the demon-
stration given by Kac on pp. 197-198 of [10] for the case K(s,t) = min(s, £) — st
carries over with only slight modifications to the case now under discussion where
K(s, ¢) is given by (2.1). We conclude that

(2.5) lim P{nw, < a} = P{W < a},

where W =[5 [Z(@t)]’ dt and Z(¢) is Gaussian with covariance function given by
(2.1) and sample functions continuous w.p. 1. Modifying slightly the technique
of Kac and Siegert [11], [12] as applied on pp. 199-200 of [10], we now study the
distribution of Z. We write

(2.6) K(s, t) = K*(s,8) — ha(s) la(t) — ho(s) he®) 0 = 8,2 =1,
where K*(s, t) = min(s, t) — st and hi(s) = @) J(s)/ V2 VO for
= 1,2. Let A1, A2, --- be the eigenvalues (all positive, since K is positive

definite) of the integral equation

@) | KG9 o) dy = ) ofa).

Following the demonstration of [10], we conclude that the characteristic func-
tion of W is

(2.8) Ee™ =1 @ — 2ign) ™"

=1
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Thus, we may express W as
(2.9) W = > R;,
=1

where the R; are independent and R; has density function

1 —7/2\ ¢

(2.10) o g N r > 0.
(We remark that it may of course be easier to obtain the convolution with itself
of the distribution of W rather than the latter itself. This could be used if one
based a test of normality on the sum of two W,’s, each computed from half the
sample of size n = 2m.)

We now give a procedure for finding the A; . For any eigenvalue X and corre-
sponding eigenfunction ¢ (not necessarily normalized) of (2.7), write

@.11) ¢ = [ m@) o) dy, i =12
We can rewrite (2.7) as
(2.12) /0 K*@z,y) o) dy — Cih(z) — Coha(z) = N ().

Differentiating twice with respect to  and writing u° = 1/A (we may consider
u > 0in the sequel), we obtain :

(2.13) 0" (x) + W) = —Cw'hi(x) — Co’hs (z).
Any eigenvalue )\ and eigenfunction ¢(z) of (2.7) satisfy (2.13), (2.11), and
(2.14) ¢(0) = ¢(1) = 0.

Conversely if A and ¢(x) satisfy these conditions they are an eigenvalue and
eigenfunection of (2.7). For let

]0 Kz, ) 6(y) dy = A 6(z).

As we obtained (2.13) we get
0" (z) + Wo@) = —Cw'hi(x) — Co’hs ().
Hence 6”(z) = ¢”(z), and since also §(0) = 8(1) = 0 we have 6(z) = ¢(x).
Our problem now is to find a value u for which chere exist a function ¢(z)

and constants C; and C; satisfying (2.13), (2.14), and (2.11). For given C; and
C, the general solution of (2.13) can be written

(2.15) ¢(x) = A sin px + B cos ux — uCigi(z) — uCags(z),

where

1/2

(2.16) gi(x) = B! () sin u(t — 2) dt.

z



GOODNESS OF FIT 199

Applying conditions (2.14) and (2.11) gives
0 = B — uC91(0) — uC29:(0), 0= Asinp+ Bcospu — uCigi(l) — uChge(l),

1 1
C.=4 f hi(x) sin px dzr + B[ hi(x) cos uzr dx
0 0
(2.17) : .
—4C1 [ hilo) (o) do = uCs [ hula) 0u(a) d.
0 0

These equations have a nontrivial solution for A, B, C;, and C, if and only if
the determinant D(u) of the coefficient of these four quantities is zero. Hence
the eigenvalues of (2.7) are determined by the roots of D(x) = O.

The following method of computing D(u) is due to R. J. Walker, to whom the
authors are greatly obliged.

We first note some pertinent properties of h;(x) and g:(x).

ho(1 — x) = —hz(x), he(0) = 0, hz(%) = 0, h;(%) = 1/\/55
1/2 1/2
gl —2) = 1_/ R{@) sin ut — 1 + z) dt = f R (1 — s) sin u(s — z) ds
= gi(x);

and similarly
g:(1 — 2) = —go().
It follows that gi(1) = ¢1(0) and g»(1) = —5.(0), and

f ~1/2

- Ji hi(x)g:(2), J=1
'l 0

(6, j# i

Also, using sin ux = sin 3u cos p(3 — x) — cos 3u sin u(} — z), we get

/01 hi(x) gi(x) dz -

1 1/2
f h(x) sin pe dr = 2 8in ip ] h(z) cos u(k — x) dz,
0 0

1/2
—2cos Lu A he(x) sin u(3 — x) dz,

1
/ ho(x) sin px dx
0

with similar reductions for the coefficients of B in 2.17).
Introducing these simplifications we get by direct computation D(u) =
—2D1(u) D2(u), where

1/2
D) = cos iu [1 tou ) 6@ d:c]
2.18)

1/2
—2ug:(0) jo h(z) cos u(} — 2) dz,
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1/2
Da(y) = sin 3u [1 +2 [ m) 6@ dx]
(2.19) ’

1/2

—2ug(0) f haz) sin u(3 — 7) da.

These equations can be put in a form more suitable for computation. Integrat-
ing (2.16) by parts gives, for ¢ = 1,

1/2
0@ = — \/L% cos u(} — 7) + uhi(z) — 4 f ha(f) sin u(t — 2) dt

' I e .
q(0) = — “V-z-; cos iu — i fo hi(?) sin ut dt.
Putting these in (2.18) gives

1/2
Diw) = cos 3u [1 +2 [ @ dx]
+ 24 [ﬂ;w (@) h(t) cos u(3 — x) sin ut dA

— f‘/; hi(z) M) sin u(t — ) cos ip dA],

where S is the triangle bounded by the linest = 0, ¢ =xz,andx = 3, and T
the triangle bounded by x = 0, = = ¢, and ¢ = %. The sum of the integrals over
T reduces to

ffT ha(z) hi(f) cos u(d — §) sin ux dA4,

which equals the integral over S. Hence, finally

hi(z) dx]

1/2
Di(u) = cos iu [1 + 24
0
(2.20)

1/2

1/2
+ 44° /o hi(x) sin uz dx f hi(®) cos u(3 — t) dt.

Similarly, (2.19) becomes

1/2
Do) = sin 3u [1 + 24 fo R () dx]
@21) ,

1/2

1/2
+ 44 ha(z) sin ux dx f ho(f) sin u(3 — t) dt.
0 z

The method just developed for obtaining the eigenvalues of (2.7) seems more
accurate and computationally simpler than other methods, such as those em-
ploying trial functions. In Section 6 the smallest few zeros of the functions
D,(u) and Dy(p) of (2.20) and (2.21) are tabulated, and an approximation for the
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distribution of W is thereby obtained. This approximation is compared with
empirical distribution functions of nw, obtained by sampling. Empirical distri-
bution functions of nw, and 4/nv, are tabulated, and certain other interesting
results of the sampling experiments are noted (for example, the joint distribution
of the classical Kolmogoroff and von Mises statistics D, and w% , which are de-
fined precisely in Section 6).

3. Tests using quantiles. The relative ease of computing the limiting dis-
tributions of various possible test criteria of the type considered in this paper
will of course depend on the particular problem. Thus, the use of the sample
mean and variance in non-normal cases may lead to more complicated results
than those of Section 2. A tool which may be used in all cases (where the hy-
pothesized family has finitely many natural parameters, is normal or not, where
a simple sufficient statistic does or does not exist, etc.) of density functions, with
about equal complexity in all cases, is the use of sample quantiles (as many
as necessary) to estimate the “true” d.f. if the null hypothesis is true. (Of course,
the more unknown parameters and hence quantiles which must be used, the
messier will be the result.) For computational reasons, tests constructed in this
manner will sometimes be more practical to use than those involving a sufficient
statistic. The results on power in Section 5 apply also here.

As an example, suppose the pth sample quantile U, ., 0 < p < 1, is to be used
to estimate the corresponding population parameter of a family of d.f.’s F(x — 6)
for — 0 < @ < o, in testing whether or not the “true’” d.f. is a member of this
family. We suppose without loss of generality that F(0) = p, and we denote by
f the density function of F. We assume f to be continuous and positive in a
neighborhood of 0.

Then letting ¢ = F~' and Z,, = V/alF.@@) + U,n.) — r], an argument
like that of Sections 2.3 and 2.4 leads easily to the conclusion that, for 0 =<
rn < -+ £ £ 1, the limiting distribution of Z,; ., 1 £ ¢ = k, is the same
as that of

\/’)TL[U,,,,, - [Ur.'.n — ()] /¢ (o), 1

and, in particular, is Gaussian. Putting y(r) = f(¥(r)) and

A
I\

k,

0 = VT 0 - e

we obtain for the limiting covariance function, for 0 = s,t = 1,

_ p(A —p) _ min (p, s) — ps
Kio) = 010 [T - RS
__ min (p,) — pt , min (s, ) — st]
v(0) v(®) v(s) v(0)

g(s) g® — min (p, ) —p (zl)s]imzi)r)l (. &) — pl -+ min (s, 1) — st

[
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min (s, f) — st/p st < p,

. — )t —
= g(s) g(&) + mm(s—p,t—p)—(i%ﬂ 5t 2 p,
0 otherwise.

For computing purposes (e.g., by Monte Carlo methods), the last form of the
covariance function is useful. Let X,(f) and X,(¢f) be Gaussian, each with the
familiar covariance function min (s, t) — st, and let X be a normal random vari-
able with mean zero and variance 1, where X, X, and X, are independent. De-
fining X1(t) = X»(t) = 0ift < OQor¢ > 1,let

20) = ¢OX + v/ X(%) + VI X2<t1—_1;

Then Z has the covariance function K(s, t). As an example, if F is normal with
unit variance and p = 3, we have

), 0<t< 1.

(2) = (3" = min (1 — DIX + ;;“5 X + \/% X2t — 1).

4. The rectangular distribution. In Section 4.1 we give an example where
the minimum distance method statistic can be computed explicitly; in Section
4.2 we comment on the limiting distribution of test criteria of the type treated
in Section 2 in the present case.

4.1. Let
0 x<6—13
F(z;0) =z — 0+ % 0 —3<sr=6+1
1 0+ 3 <z
and let R denote the family of all such distribution functions for —» < § < «.
It is desired to test the hypothesis that z;, z», - -+ , z, are independently and

identically distributed according to some member of E. We will be concerned
with computations when this hypothesis is true (see Section 5 for remarks on
power which apply also here), and denote by G the true member of R (i.e.,
the distribution function of X;). G¥ is as defined in Section 1. Let
D} = sup, (Gn(z) — G()), Dy = sup, (G(x) — Ga(z)).

In the present example the minimum distance criterion is easily seen to be
(4.1) 3(Gx , R) = infy sup, |Gr(z) — F(z; 6)] = ¥(DY + D).
The joint limiting distribution of /nD} and \/nD; (as n — ) is given by
Doob ([13], p. 403) for z,y > 0 as

lim P{~/nD> < z,v/nD} < y}

n -0

It

(4 2) 1 — i {6—2(1rs.‘:+(m—1)1/)2 + e—-'?.(my+(m——l).|:)'-’ _ 26—2m2(x+y)2}

m=1

G(z,y), say.

I
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Let g(z, y) = 0°G(x, y)/dx9y. The series in (4.2) is uniformly and absolutely
convergent and differentiable with respect to  and y outside of any neighborhood
of the origin. Using the fact that the mixed derivative of the expression g Haa Tt
is 4ab(u® — 1)¢ “"* where u = (2az + 2by)®, we obtain for the mth term of the
series for [; g(y, 2 — y) dy the expression

dm(m — 1D[H©2mz) — H2(m — 1)2)] + 4m@m*s’ — 1)H(2mz),

(43) ® 2/9
H(z) = f (W — De ¥ du = xe™™"

The density function corresponding to the limiting distribution function of
B. = v/n(D} + D7) is a sum of expressions given in (4.3). For v/n8(G%, R) =
1B, = U, say, the expression corresponding to (4.3) is

(4.4) 8m(m — 1)[H(dmu) — H(4(m — Du)] + 8m(16m2u® — 1)H (4mu).

The series is absolutely convergent and in the sum-of (4.4) from 1 to «, the
coefficient of the expression H(4kw) for k = 0 is 8k(16k*%* — 3), so that the
density function of the limiting cumulative distribution function of U is

(4.5) 32u 2, m*(16m™’ — 3)e™*v.

me==1
Outside any given neighborhood of the origin, all terms of (4.5) are positive
except for a finite number. Thus, integrating (4.5) we obtain for v > 0

(4.6) lim P{A/n6(G¥,R) S u} =1 — 2 (32m™u* — 2)e ™™™,
n—s00 m=1
It is also of interest that in this example we can compute the limiting distri-
bution of the minimum distance estimator of 6, namely, the random variable
T, = Tuz:, -+, ) defined by

(4.7) 8(Giw), Fly; T.) = 8(Gx , R),

which is satisfied by T, — 8 = (D, — D7}) when 6 is the true parameter value.
An analysis similar to that given above shows that, for { > 0,

48) lim P(\/n|To — 0| S 8] =1 —2 3> — 1 g

n—0 me1 4m*> — 1
Of course, in this simple parametric example there are estimators of order 1/n
in probability; in estimation problems, the minimum distance method is most
useful in examples of a more nonparametric nature, where it often yields con-
sistent estimators when other methods do not.

4.2. It is interesting to note that in the example of Section 4.1 and other similar
cases it is simple to design along the lines of Section 2 a test of whether or not
the unknown d.f. belongs to the specified class, where the limiting distribution
of the test criterion when the null hypothesis is true is already known. These are
the so-called ‘“irregular’’ cases of estimation where an estimator of the unknown
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parameter(s) indexing the class exists whose deviation from the true parameter
value is of lower order in probability than the usual 1/4/n encountered in “regu-
lar” cases; for example, of order 1/n for the rectangular distribution with un-
known location and/or range, or for the exponential distribution with known
scale but unknown location parameter. For the sake of definiteness, we fix our
attention on a Kolmogoroff-type criterion for the latter example, although the
result applies equally to other distributions and other criteria («’-type tests with
different “weight”’-functions, etc). Thus, the problem is to test, on the basis of
7 observations, whether or not the true d.f. is of the form

0, =<8, 1—¢@" 23209,

for some real 6. Let T, = min(z:, --- , z,). Then Py{lim,.ov/n(T» — 6) =
0} = 1. Hence, if we compare the sample d.f. with the exponential c.d.f. as
estimated by using 7', , by computing

B, = \/n sup

0<r<1

F,,(Tn + log 1 > —-r!,
|

1 —r

we may conclude that, when the null hypothesis is true, B, has the same limiting
distribution as the Kolmogoroff statistic. )

Remarks on power like those of Section 5 apply also to the present case. The
present remarks may also be modified to apply to situations where one but not
all parameters have irregular estimators, for example, for the case of the ex-
ponential distribution with unknown location and scale. For the case of the rec-
tangular distribution with unknown range studied in Section 4.1, it seems in-
tuitively reasonable that a test constructed in the manner of the present section
may be more powerful than the one considered there.

5. Asymptotic power of the tests of normality. The results of this section are
carried out for the tests of normality mentioned in Section 2, but the remarks
below concerning v, may also be carried through for the minimum distance
test, the test of Section 3, and in many other examples, and the remarks con-
cerning v, and w, may be extended to many other “distance” criteria.

First we consider the test of size a based on v, . The critical region is of the
form {v, > b(a)/A/n}, where b(a) is a constant, except for terms of lower order
in n. Suppose G(x) = Ro(z), and that §(R,, N**) = d/+/n. From the theorem
of Kolmogoroff [4] we have that 8(Ry, G&)is of the order 1/4/n in probability
(uniformly in Ro). Hence, for 0 < 8 < 1 there is a number d* = d*(«, 8) such
that d > d* implies that 8(G% , N**) > b(a)/+/n with probability = 1 — 3.
From the definition of 8(G% , N**) we have

8(Gr, Ny | %, §)) = 8(Gh, N**).

Thus, if we are using the test of size «, the power is at least 1 — 8 for any al-
ternative Ry whose distance from N** is = d*(a, 8)/A/n, and the power of the
test at Ry approaches one as v/nd(Ro, N**) increases indefinitely. This is a re-
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sult of the same order as obtains for testing goodness of fit of a simple hypothesis
by use of Kolmogoroff’s distribution (Section 1).
We now consider the “w’-type” test criterion w, .> We consider the function

i X\ Y1/2
(.1) +(F, H) ={ [ ") - HOP d(F(x) ;H(x))}

as a possible measure of discrepancy between two d.f.’s. This measure has been
used by Lehmann [14] and others. (We remark that v is not a metric, since it
does not satisfy the triangle inequality. Another undesirable property of v is
that the discrepancy between the d.f.’s of two random variables X and ¥ may
not be the same as that between the d.f.’s of —X and — Y. Also, the failure of
the formula for integration by parts in expressions like (5.1) necessitates slight
complications, for example, in the second following paragraph. Neither of the
last two difficulties is present if both d.f.’s are continuous. If the d.f.’s have
jumps which are nowhere dense, one could eliminate these last difficulties by
redefining v, for example, by replacing each jump by a constant density over an
interval of width e about the jump and letting ¢ — 0 after integrating. The de-
velopment which follows would not be materially altered by such a change in
the definition of v.)
If F and H are continuous,

[ @) - HE@P are) - HE) =0,

and the integration in (5.1) may be carried out with respect to either F or H
instead of 3(F + H). Hence, if G(xr) = Ro(z) is continuous,

wy? = {f [Gr(@) — N(z|%, )]’ d,N(z|Z, 82)}1/2
2{[ @ - Nz O anel )

(5.2) 1/2
~{[ o) - Gt anEz)

'Y(Rﬂy N**) - 5(Ro, Gt))

1%

where

’Y(Rﬂy N**) = inf 'Y(RO’ N**)
NeN*»

Now, 6(Ry, G%) isof order 1/4/n in prob_ability (uniformly in Ry) and the critical
region based on w, is of the form {\/w, > c(a)/v/n}, where c(a) is constant
except for terms of lower order in n. Hence, using (5.2), an argument like that

% In an unpublished manuscript, T. W. Anderson considers similar criteria for testing a
simple hypothesis, and obtains similar results on asymptotic power. See also his abstract
(4dnn. Math. Stat., Vol. 25 (1954), p. 174).
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of the previous paragraph shows that there is a value d’(e, 8) such that the test
of size « has power = 1 — g for any continuous alternative R, for which
v(Ro, N**) z d'(e, B)/V/n.

We now consider what happens if Ry is not continuous. It is easy to show, by
consideration of the contribution to the integral of (5.1) at discontinuities of H,
that, if F is continuous,

f(F—H)Zngif(F—-H)de,

so that

f(F—H)"’sz_ %f(F-H)?d(F“;H>.

Hence, if B, is not continuous, the argument of the previous paragraph need
only be altered by inserting the factor /2/5 before v in the last expression of
(5.2). The ensuing discussion of power then proceeds as before.

It is interesting to compare the measurements of distance é and y. Clearly,
v(F, @) £ &(F, @) for all F,G. On the other hand, if there is a value z, for which
F(zy) — G(xy) = 8, it is clear from the monotonicity of F and G, using (5.1),
that [y(F, &) = 1[6(F, &)]’. Thus, we have

(5.3) V168 2 v £ 5,

where both equalities are attainable. We conclude that, whereas for any given
B > 0, the power exceeds 1 — 8 for alternatives whose distance from N** is of
order 1/4/n either according to & for the test based on v, or according to v for the
test based on w, , the distance in terms of § must be of order 1/+/7n (in the worst
case) to insure this for the latter test. For the former test, y-distance of order
1/4/n suffices.

We next verify the property of the x*-test relative toy which was stated at the
end of the third paragraph of the introduction. For brevity we shall use the nota-
tion of [3] without redefining symbols here; the reader may also refer to [3] for
details of the argument which we omit. Suppose then that we are testing the
hypothesis G(z) = R(z) = z for 0 £ 2 < 1 by means of the x*-test based on N
observations and ky intervals of equal length on the unit interval. If now

oy (2 —1
6@ = P = 3 v (2577)
(see Section 1 for the definition of ¥,), theén y(Fi,, R) = 1/ky /6. Since Fiy
assigns the same probability as R to each of the ky intervals, the power of the
test against the alternative Fi, is just the size of the test (assumed to be < 3).
We conclude that if the test gives power = 1 for all alternatives R* satisfying
v(R* R) = T'y, then we must have

(5.4) ky > I/FN\/E.
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(This is not the best possible inequality, but it suffices for our proof.) Consider
now the distribution function

1 + 2a)z, 0=z=s4%
(55) Ha(x) =
2a + (1 — 2a)z, t=sz=1,

where 0 < a < L.

A simple computation shows that y(H,, R) = a//3 = v., say, and that
(assuming for simplicity that ky is even) when G@ = H, we have Y p: =
(1 4 4a®/ky = (1 4+ 12y2)/kx . Hence, the function ¢ of [3] is given, when G =
H,, by

(5.6) oP(ky) = 12(N — 1) va — Cv/2(ky — 1).

In order that the x*-test based on ky intervals have power = 1 for all alternatives
R* with y(R*, R) = I'y, it is necessary that the expression (5.6) be =0 asympto-
matically when we put v, = I'y, and that (5.4) be satisfied. We thus obtain, when
N is large,

(5.7) Ty = C'N¥®

where €’ is a positive constant. From the result of [3] and the fact that v < 3,
we see that the reverse inequality to (5.7) is (for a different C’) also true. Thus,
N~**is indeed the smallest order of I'y which will give appreciable power for all
alternatives R* with 6(R, R*) = T'y.

We shall now summarize the results proved thus far in this section. It is not
known how the power function of the x’-test for composite hypotheses behaves,
but it is plausible that the power function when testing a composite hypothesis
by means of the x*-test (in any of its variations) is no better (in the sense we have
used in measuring the goodness of a power function) than when testing a simple
hypothesis. We have shown that if T and A are small and the x’-test of size < %
of a simple hypothesis G = R requires N observations to insure power = % at al-
ternatives R* for which v(R*, R) = T (or 8(R* R) = A), so that N = C,I'"*"
(or N = C.A™?), then the numbers of observations required by the Kolmogoroff
and o’ tests to achieve the same minimum power at T' (or A) are at most

Kolmogoroff: n = CNY = ¢, (n = CGNY® = C;A7D)
G o= NS = G (n = CN

I

CpA™).

The numbers of observations n required by the tests based on v, and w, in testing com-
postte hypotheses about parametric families are the same functions of T or A as for
the Kolmogoroff and «’ tests of simple hypotheses. The test based on v, may thus
be expected to be superior to the x’-test in the sense of both v and &, and that
based on w, may be expected to be superior in the sense of v, at least for large N.
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It might be supposed that the x’-test would show up to better advantage rela-
tive to the test based on », in terms of a metric like

n(Ro, N*¥*) = inf | d |R, — N|.
NeN**

However, this is not so; for fixed n, even if n(R, , N**) is near its maximum of 2,
neither the best x*test of [3] nor any of the other tests we have mentioned need
have appreciable minimum power (= %), and 8(R,, N**) and v(Ro, N**) can
be arbitrarily small. In fact, it is easy to see that no test can have the infimum
of its power function over all alternatives B, with n(Ro, N**) = C > 0 greater
than the size of the test. (If N** were a simple hypothesis, this would still be
true.) In order better to compare the behavior of tests in terms of the metric 7,
we might therefore restrict our consideration to alternatives R, belonging to
some regular class, for example, the class of d.f.’s with densities which cross that
of each member of N** at most M times. Under such a comparison the test based
on v, may be shown to be superior to that based on the x*test, in the same sense
as under our previous comparison.

The discussion of this section suggests very strongly that there is a ‘“natural”
distance with respect to which the power characteristics of a particular “distance”
test criterion should be measured, and that a comparison of the power of such
tests in terms of their own and other distances indicates that tests correspond-
ing to strong metrics have the best global power characteristics. It is hoped to
investigate this idea further.

6. Numerical results. In this section we list some pertinent experimental and
computational results. The main purpose of the sampling experiments was to
obtain estimates of the distributions of nw, and v/nv, which may be used in ap-
plications to test normality. As a check on the sampling experiments the same
data were used to compute experimentally the d.f. of Z and the d.f. of v/nD,
with n large, D, being defined by

D, = §(L(x), Ln())

where L} (z) is the empiric d.f. of n independent chance variables with the d.f.
L(z). Also, as another check on the experimentally obtained d.f. of nw,, an
approximation to the d.f. of W was computed, using (2.9).

Define

o = [ (L@ — Li@)* dLG).

The sampling experiments were conducted using 400 samples of size n = 100
and 400 samples of size n = 25, of random standard (mean zero, variance one)
normal deviates from the well-known Rand Corporation series. From each sam-
ple the values of the sample mean (Z), sample variance (s), v, w., D., and
ok, were computed. Thus, there were obtained 400 “observations” on /nv,
and nw, for n = 25 and n = 100, and the sample d.f.’s based on these observa-
tions serve as estimates of the d.f.’s of v/nv, and nw,. The known d.f. of &
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and the known d.f. of 4/nD, were compared with the experimentally obtained
d.f’s of £ and 4/nD, as a check on the experimentally obtained d.f.’s of \/nv,
and nw, .

It was found that the experimentally obtained d.f. of Z agreed well with the
known d.f., and the experimentally obtained d.f. of 4/nD, agreed well with the
d.f. of v/nD, as tabulated in [15). In each case, the maximum difference between
the experimentally obtained and the known actual d.f. was found to be small
according to the tables [15]; this is the basis for saying the agreement was good.
The agreement between the limiting d.f. of nw% (tabulated in [16]) and the ex-
perimentally obtained d.f. was found to be fairly close for n = 100 but not close
for n = 25; the upper tails of the distributions seem to be the parts which come
into agreement most rapidly with n. The distributions of 4/nv, and nw, are
concentrated closer to the origin than those of /7D, and nw?, respectively.
This is not entirely surprising since the covariance function (2.1) is smaller than
that for the process corresponding to D, and w’ (namely, min (s, t) — st). Scatter
diagrams of the sample values of (/7nD,, nws) indicate that the regression of
nwh on \/nD, is roughly parabolic with the conditional variance of nw’ increas-
ing with the value of /%D, ; this is not entirely surprising in view of the way in
which w% and D, are computed from a sample. Although v, and w, are correlated
with D, and «% , they seem to be more strongly related to Z.

In Tables I and II, respectively, are given the estimates of the d.f.’s of +/nu,
and nw, ; commonly used percentage points are listed for convenience in Table
III.

We now turn to the limiting distribution of nw,. The first eight zeros of
D(p) are alternately zeros of D;(u) and D;(u). Their values, obtained by numer-
ical computation of these functions for various values of u, are 7.38, 8.62, 13.60,
15.14, 19.91, 21.52, 26.16, 27.87. The corresponding values of A, for1 £ 7 < 8
are .01836, .01346, .00536, 00436, .00252, .00216, .00146, .00129. It is to be noted
that \2;_1 and \,; are both approximately c/;* (the corresponding property for
the eigenvalues arising in the computation of nw? is that A; = 1/x%%). This
(inferred) speed of convergence of the A; to 0 implies that the distribution of
W* = 3 1 \sv;should be a fairly good approximation to that of W = Z‘fx,y,,

TABLE I
Estimate of Q.(z) = P{~\/nv, S z}.
X Qu(x) Quoo(x) z { Qui(x) Quoo(x)
30 0 0 .75 .8100 .8425
35 .0125 .0025 .80 .8600 .9025
40 .0550 .0250 .85 .9125 .9350
45 ! .1500 : .0800 .90 .9500 .9600
50 .2525 { .1975 .95 9725 9775
55 .3675 : .3300 1.00 | .9850 .9900
.60 .5025 ! 4775 1.05 .9950 .9925
65 6400 6750 1.10 | 1.0000 ! .9975
70 .7225 : .7325 15 1.0000 ; 1.0000
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TABLE II
Estimate of R.(z) = P{nw, < z} and distribution function H(z) = P{W* < z}.

z Ru.(x) Rioo(x) H(x)
.01 0 0 .108
.02 .0375 .0225 .297
.03 .1325 .1400 471
.04 L2125 3175 .609
.05 .4300 .4775 .712
.06 .5825 .6250 187
.07 .6625 .7175 .843
.08 .7250 .7850 .883
.09 .7925 .8600 .914
.10 .8400 .8900 .937
11 .8975 .9175 .953
.12 .9150 .9350 - .966
.13 .9425 .9700 .975
.14 .9525 .9825 .982
.15 .9650 .9850 .987
.16 .9700 .9850 .997
.17 .9800 .9875
.18 .9875 .9875
.19 .9875 .9900
.20 .9900 .9950
.21 .9950 .9950
.22 .9975 .9975
.23 1.0000 1.0000

TABLE III
Estimates of common percentage points of @, and R,.

? Q7Y (p) Qio™(p) Ras™1(p) Rioo™(p)
.20 .7435 .729 .0909 .0824
.10 .8225 797 .1145 .1019
.05 .8980 .878 .1352 .1240
.02 .9685 .954 .1671 .1386
.01 1.0145 .989 .1957 .1859
.005 1.0465 | 1.062 . .2053 .1957

and the distribution of W* was therefore computed, using the method of [17]
(here Ajy;is the R; of (2.9)). The results are given in the last column of Table II.

From the fact noted above regarding the speed of convergence of the d.f. of
nws , and the fact that Table II indicates (in the difference Rin(z) — Ras(z)) a
much slower approach to the limiting distribution for R.(x) than that noted in
our experiment for the w’-distribution, we would expect that the d.f. H(z) of
W* should lie above the estimates R.(x) of Table II, being close to Rin(z) only
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in the upper tail. This is what the last column of Table II actually shows, and an
idea of how good the agreement is in the tail may be obtained by computing
M(z) = 20[H(z)] ™ [H(z) — Rn(z)]; for z = .13, .14, .15, .20, one obtains
M(z) < 1, which indicates very good agreement. Thus, in applications where
n is large, it seems reasonable to use the last column of Table II, especially in
the upper tail (which is the region that matters for statistical tests).

We are indebted to Prof. R. J. Walker and to Mr. R. C. Lesser of the Cornell
Computing Center for carrying out the sampling and the computation of the
Ai’s. The experimental data are available in the files of the Cornell Computing
Center.
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¢ The sentence at the bottom of page 602 of [8] which reads, “It is well known that F(z)
determines « . . .”” should read, ‘It is well known that the distribution of (z;, z:y1) de-
termines «. . . .”



