PROBABILITY OF INDECOMPOSABILITY OF A RANDOM
MAPPING FUNCTION!

By Leo Karz?
Michigan State University

Summary. Consider a finite set @ of N points and a single-valued function
f(z) on @ into Q. In case the mapping is one-to-one, it is a permutation of the
points of Q; we shall be concerned with more general mappings. Any mapping
function effects a decomposition of the set into disjoint, minimal, non-null in-
variant subsets, asQ = w; + ws + - -+ + wi , where f(w:) C w; and fH(wi) C w; .
These subsets have been referred to as trees and as components of the mapping;
we shall say that f, as above, decomposes the set into k¥ components.

Metropolis and Ulam {1] defined a random mapping by a uniform probability
distribution over the 9% sample points of f(x) and posed the problem of finding
the expected number of components. Xruskal [2] subsequently solved this
problem. In this paper, we consider a related problem, namely, what is the
probability that a random mapping is indecomposable, i.e., that the minimal
non-null set » for which f(w) = w and f(w) = w, is the whole set w = Q?

This problem is solved in general, as is, also, an analogous problem for a
specialized random mapping of some interest in social psychology. Finally, we
examine the asymptotic behavior of these probabilities.

1. Indecomposability of a random mapping. A single-valued mapping specifies,
for each point P;, its image point P;;, j; = 1,2, ---, N (a point may map
into itself). A random mapping assigns, independently, to each P; one of the
image points P;, j = 1,2, .-+, N, with equal probability 1/N. The sample
space consists of the NV possible mappings, with uniform probability distribu-
tion. To each mapping is associated a value of the random variable k, &k =
1,2, ---, N, the number of components. Those for which £ = 1 are indecom-
posable. We shall require, first, a characterization of the property of indecom-
posability, second, a disjunctive and exhaustive categorization of those map-
pings which possess this property, and, finally, an enumeration scheme within
each category.

In order to obtain a suitable characterization of indecomposability, we con-
sider that a single-valued mapping function takes any point of the (finite)
set into a second, the second into a third, etc., until, at some stage, a point is
taken into an earlier member of the sequence. At this stage, a cycle is formed,;
the length of the cycle is the number of repetitions of the mapping required to
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take any point of the cycle into itself. No point of a cycle can be mapped on
any point not of the cycle, but a point not of a cycle may map through a chained
sequence into a point of the cycle. Thus, a component of a mapping consists of
precisely one cycle, together with cycle-free chains terminating at points of the
cycle. This provides the required characterization:

CHARACTERIZATION. A mapping function is indecomposable if and only if it
generates only one cycle.

Next, we may categorize indecomposable mappings according to the length
m of the cycle contained in them. Finally, we subcategorize m-cycle indecom-
posable mappings into sets according as the noncyclic elements are arranged
with n; requiring j stages to be mapped into the cycle, j = 1, 2, 3, --- . This
subeclassification corresponds to the nonzero, p-part, partitions of (N — m), with
p arbitrary.

We now view the indecomposable mapping as a directed graph, more pre-
cisely, as a tree rooted in an m-cycle. The directed joins, one emanating from
each point, represent the mapping from point to image. In the following section,
we shall consider that the graph of an indecomposable mapping consists of a
central m-cycle, a first orbit of n; points connected by one-chains to the cycle,
a second orbit of 7, points connected by one-chains to the points of the first
orbit and, hence, by two-chains to the points of the cycle, etc. An example of
such an indecomposable mapping with m = 6, n; = 4, n, = 3 is given in Figure
1, below.

e
TN

F16. 1. Example of Mapping m = 6, 1 = 4, n: = 3

2. Probability that mapping is indecomposable. We proceed formally, at first,
to express the probability of indecomposability as the sum of compound proba-
bilities that the mapping produces exactly one cycle and the cycle is of length
m. These, in turn, are expressed as the sums of probabilities that the remaining
M = N — m are arranged in nonempty orbits of n; , ng, - - - , n, , respectively,
for all possible such arrangements. It is convenient to give special treatment to
the number m in the cycle itself. Consider the event En(n,, ns, - -, np) that
a random mapping is indecomposable with parameters m, n;, ---, n,. The
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probability of this event is the curiously linked expression
P{Em(nl,n27 et 7np)}

O R G ()

where (yc.4...) is the multinomial coefficient. The factorial in the second factor

of the right member represents the number of distinct cyclical arrangements

possible among the m points of the inner cycle; succeeding factors represent the

possibilities of joins of points in an orbit to points of the next interior orbit.
With slight rearrangement of (1), the probability we seek is given by

T T
(2)  Pr{indecomposability} = > N! {Z > L M},

SNV S (M, m Mlngl -+« nyl
where [M], stands for the collection of nonempty, p-part partitions

(nlynzy”'ynp)

of M.
We now evaluate the expression in braces in (2) by the following lemma.
LEMMA.
1 m™"nf? .- np2,  N¥1
) [M],,”_f; n1!n2! L n,,! - M!

where N = M + m and [M] is the class of nonzero distinct partitions (ny , -+ - ,n,)
of M.
Proor.® We proceed indirectly by expanding the binomial in the right mem-
ber as
M 4+ m)*? B o (M — 1) 1 mre

or, letting M, = M — n, and simplifying,
M +m)" 8 m"T (M 4 )
M! et (M — 1)! M,! ’

We note that the second factor in the summand of (3a) is of the same type
as the left member and may be similarly expanded. Letting M; = M;_; — n;,
t = 2 3, -, we obtain, by iteration of (3a),

(3a)

(4) (M + m)M—'l _ M mnl—l M1 n;‘z—l N Mp_1 n;ﬂl n—l
M! ny=1 (’n1 - 1)' no=1 (nz - 1)' np=1 (n,, - 1)' P

with p arbitrary. But the summations in the right member are equivalent to
the sum over all p and nonzero p-part partitions of M and the summand is
that of the lemma, thus proving the lemma.

3 This short proof is partly due to J. S. Frame.
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The lemma and (2), upon changing the index of summation to M = N — m,
gives immediately the principal theorem:
TaEOREM. The probability that a random mapping on N poinis is indecom-
posable is
N—1

v — 1)I/N"] MEO N¥/M\.

3. Hollow mapping. One realization of near-random mapping occurs in socio-
metric testing. When, for example, N individuals in a group are each asked to in-
dicate which one of the others is his best source of information, the result is such
a mapping except that, if no individual is permitted to name himself, the mapping
is “‘hollow” in the sense that the matrix representation of the graph has diagonal
elements identically vanishing. If, otherwise, selection is random, the probability
of equation (1) is modified for this case by replacing each N in the denominator
by (¥-1) and taking the outer summation of equation (2) from m = 2 tom =
N. With these adjustments, we have the following corollary.

CoROLLARY. The probability that a hollow random mapping on N points s
indecomposable is

N—2

(v — DYyWN = 1Y ;_)o N¥/M.

4. Computation and asymptotic probability. The probabilities of indecom-
posability, of the theorem and the corollary above, might be expressed in more
compact form. However, as exhibited, it is apparent that the sum is a cumulative
probability of a Poisson variable with parameter N, except for a constant.
Molina’s tables [3] are adequate for computation of the probability through N =
100. Thus,

w-n!

N . —
- P(N;N — 1),

(5) Pr{indecomposability} =
where P(N; N — 1) = > %4 ¢ "N¥/M!. For N > 100, use of the Stirling
approximation for the factorial and the facts that (1 — 1/N )" =t OV
and that P(N; N — 1) — 1, we obtain

12
6) Pr{indecomposability} = <%r> , N large.

Similarly, using the corollary, we have

@ -1t

=) 1)” e" P(N;N — 2),

(5h) Pr{indecomposability | hollow} =

1/2
(6h) Pr{indecomposability | hollow} = <2 W= )> N large.
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TABLE I

Probabilities of Indecomposability of a random mapping function in the general
and hollow cases

N P{I|G) P{I|H} N P{I|G} P{IIH}
2 .75000 1.00000 26 .23372 .54135
3 .62963 1.00000 28 . 22562 .52574
4 .55469 .96296 30 .21831 .51148
5 .50208 .92188 32 .21169 .49837
6 .46245 .88320 34 .20564 .48628
7 .43116 .84816 36 .20009 . 47507
8 .40563 .81671 38 .19497 .46463
9 .38426 .78844 40 .19023 .45488

10 .36602 .76294 45 .17976 .43308

11 .35022 .73983 50 .17086 .41426

12 . .33634 71878 55 .16318 .39780

13 .32403 .69950 60 .15646 .38322

14 .31300 .68176 65 .15052 .37020

15 ..30305 .66539 70 14521 .35847

16 .29402 .65019 75 .14043 .34782

17 .28576 .63605 80 .13610 .33810

18 .27817 .62284 85 13215 .32918

19 27117 .61047 90 .12853 .32096

20 .26468 .59885 95 .12519 .31334

22 .25301 57757 100 12210 .30626

24 .24333 .55853 Large N (w/2N)v2 e(w/2(N — 1)v2

The most interesting feature of this last result is that the probability in the
hollow case remains substantially larger than in the general case as N increases.
This runs counter to standard sociometric folklore, which holds that the hollow
model may be uniformly replaced by the general model with small error when
N is large.

Both probabilities approach zero fairly slowly (as N"*/*). Table I presents the
exact probabilities as computed from (5) and (5a).*

b. Notes on related work. After the present paper had been prepared, David
Blackwell called the attention of the author to an unpublished memorandum by
Rubin and Sitgreaves [4]. In the memorandum, different methods are used to
obtain the theorem of Section 2 of this paper; the hollow mapping case is not
considered.

Using methods of this paper, Jay E. Folkert and the author have obtained and
will publish the probability distributions of the numbers of components of single-
valued and of multiple-valued mappings in the subcases in which mapping is
arbitrary or hollow. The distribution for the single-valued, arbitrary case is given
also in the memorandum cited above.

* The author is indebted to Mr. William L. Harkness for these computations.
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