ON THE RATIO OF VARIANCES IN THE MIXED INCOMPLETE
BLOCK MODEL!

By W. A. THOoMPSON, JR.
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Summary. The present article is an extension of Wald’s paper, [12] “A note
on regression analysis.” Confidence interval and testing procedures on a ratio
of variances are given for continuously more specific models with a corresponding
increase in the preciseness of the results. Finally, Linked Block Designs and
Duals of Partially Balanced Designs with two associative classes are discussed
and it is found that here the analysis is quite simple indeed. (Ordinary Lattices
belong to this last group.)

1. Introduction. Though the experimenter has been using the variance com-
ponents model for nearly as long as the fixed effects model, there has been
relatively little success in developing a complete theory such as the least squares
approach to the fixed effect case. Among the few theoretical papers on this
subject is a series due to Abraham Wald which culminates in his 1947 paper
[12]. There he outlines a method of placing a confidence interval on a ratio of
variances. The actual application of this method in the nonorthogonal case will
depend on the solution of an equation of the n-th degree where n would in
general be large. The question naturally arises to what kind of designs can
Wald’s method be applied in practice without unduly complicated calculations.
One object of this paper is to answer this question so far as it relates to in-
complete block designs.

In Section 2 a set of sufficient statistics is derived for the variance com-
ponents model with errors arising from only two sources. These statistics are
then used in Section 3 to derive confidence intervals and tests of hypotheses
concerning the ratio u of the two components of variance. In Section 4 these
results are applied to incomplete designs. It is shown that if we have a design
with linked blocks, i.e., any two blocks have the same number of treatments
in common, then the formulac for finding the confidence interval take a very
simple form.

It appears that for carrying out tests simply or for assigning confidence in-
tervals to the ratio of the per plot error to the block error one must balance
the design with respect to the blocks, just'; as a balance with respect to the treat-
ments enables one to estimate with ease, and carry out tests concerning ‘treat-
ment effects’. This line of thought has been pursued by investigating ‘partially
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722 W. A. THOMPSON, JR.

linked’ designs, for which the configuration of the blocks obeys the same re-
strictions, as does the configuration of treatments for a ‘partially balanced’ de-
sign. It has been shown that the matrix of the least square equations which
would arise in estimating the block effects when regarded as fixed, has not
more than m* distinct non-zero characteristic roots, if there are m* associate
classes (with respect to the blocks). In the important practical case when m* =
2, there are two distinct characteristic roots, which are roots of the quadratic
¢ — He + A = 0 where H and A are the same constants which appear in the
interblock analysis of the dual of the design. Since these constants have already
been tabulated for all known 2 associative class designs [3], the calculation of
the roots ¢’ and e” is very simple. The confidence interval and Wald’s test de-
pend only on these roots, and the actual sums of squares involved can be simply
calculated. Results regarding the number of distinet characteristic roots have
been very recently obcained by Connor and Clatworthy [5] in an entirely dif-
ferent connection (viz., the combinatorial properties of balanced incomplete
block designs). It thus appears that designs which are completely or partially
balanced with respect to treatments, and completely or partially linked with
respect to blocks are of special importance.

2. The least squares model with errors arising from two sources.

2.1 Motivation. The purpose of this section is to derive a set of sufficient
statistics for the “mixed” variance components model with errors arising from
only two sources. We do this by treating our observations as random variables
whose conditional distribution is the same as that assumed unconditionally in
the ordinary least squares problem. This approach is that of Wald [12].

2.2 Notation. We shall be using vector and matrix notation throughout the
rest of this paper. Small Roman or Greek letters will denote vectors or scalors
while the capital Roman letters will be reserved for matrices. All vectors will
be column vectors unless they are primed, in which case they will be row vec-
tors. X = X(N X b 4+ u) will mean that the matrix X has N rows and b +
% columns.

Ay, As| . . - . )

A = [ 4, A4:| will mean that the matrix A has been partitioned into the
four matrices Ay, A;, Ay, A4 and that these last four matrices have the posi-
tions indicated.

2.8 A theorem in least squares. Let yi, y», -+, yx be independent random
variables with a common variance o and let,
23.1 Y= U, Yoy s YN)-
Suppose in addition that
232 E(y) = XB = (X1, X2) ["“’]
B
where

X = XN Xb+u =NV Xu, XaN X b)) = (X1, Xu)
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is a matrix of known constants and 8 is a column vector whose elements are
the unknown parameters B, B:, -+, Bu, But1, Busz, ***, Botu. We also
introduce the notation

2.3.3 /1 = A(b ._I_ u x b + u) — [Al; AZ]

Ay, As
where
A= X1X:, A, =X.X:, A;=X.X,.

It is a well known theorem in least squares that if ¢g* is a linear function of

the observations, and if g* estimates a linear function of By41, Busz, -, Botu
then ¢* must be a linear function of the elements of
2.3.4 p=pbX1) = (X; — AAT'X1)y.

Note also E(p) = DBw , where D is equal to 43 — A,A7'4,, and from the
formulae for the variances and covariances of linear functions we see that the
variance-covariance matrix of the p’s is:

235 (X2 — ALATX)(X: — 4,AT'X1)¢* = Do’

We define g; = gi(u X 1) = X1y. The elements of the vector g; generate a vec-
tor space V; of linear functions. This space has dimensionality u since we have
assumed that 4;(= X1X1) has an inverse. The elements of p also generate a
vector space of linear functions. We denote this space by V. and its dimen-
sionality by r, say. A short calculation shows that the bases of V; and V, are
orthogonal and hence the spaces are orthogonal. We now define the space V to
be that orthogonal to V; and V,. The dimensionality of V then must be N —
u — r. We may now choose an orthogonal basis for V, say Y1, -+, Yyeyor;
it is easily proved that E(Y,) = 0. We remark for future reference that » Y3
is the sum of squares due to error.
We record

E(g) = A + 4380 ,
2.3.6 E(p) = DB,
E(Y,) =0.
And the covariance matrix of the elements of Y* where
¥ = (g1, 9, Y, Vaouor)

is

A4, 0 0
2.3.7 0 D 0]d.
0 0 I

2.4 Variance components and conditional random variables. We will now change
our assumptions somewhat from Section 3. Suppose now that y, --- , y» are
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independent and normal for given B¢, with means E(y/Bs) = X@B and vari-
ances ¢°. In addition suppose that the elements of B are independent and
identically normal with means 0 and variances {*. We see from 2.3.6 and 2.3.7
that

E(9:/Be) = ABw + ABe -
2.4.1 E(p/Ba) = DB
E(Y:/Be) = 0.

And the covariance matrix of these conditional random variables is

4, 0 0
242 0 D 0|
0 0 I

We now state several lemmas, the last two of which were independently
developed by Madow [9] and Skibinsky [10].

1) EE(@/2) = E(x)
24.3 2) Var(x) = EVar (z/z) + Var E(z/z) _
3) Cov (z,y) = E Cov (x, y/2) + Cov [E(z/2), E(y/2)].

Applying these lemmas we find the unconditional means to be

244 E(g) = ABw , E(p) = 0, E(Y;)=0.
The unconditional covariance matrix of these same variables is
A4, 0 0 A4, A:D 0
245 0 D 0|s+ {:D) D' of¢
0 0 I 0 0 0

where D = (4; — A.AT'A3,).

We may make an orthogonal transformation, p = Mz, in a manner entirely
analogous to that of [11] Section 1 and find that z,, - -- , 2, and D_Y7 are a set
of joint sufficient statistics for the parameters 8y, -, B4, o and %

3. The Ratio {*/o".

3.1 Motivation. In this section we continue assuming the variance components
model discussed in Section 2. In that section we found a set of statistics to
which we may restrict ‘ourselves in inference problems concerning all the pa-
rameters of the distribution. Using those statistics we will consider confidence
interval and hypothesis testing problems involving the ratio {*/¢* = pu, say.

3.2 The Wald confidence interval [12] for p and an associated test. We may
verify that

n 2% 2
321 F=FQ =~ > / >Y;

3
e; + e
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actually has the F distribution with » and n degrees of freedom. This together
with the fact that F(u) is a monotone decreasing function enables Wald to find
a confidence interval for u. We summarize his result as:

TureoreM 1. If F, and F, are chosen sothat Pr(Fy S F S F;) =1 — a,and
if us s the largest root in p of F(u) = F,, s = (1, 2) where F(y) 18 given by 3.2.1,
then (ug, wm) is @ 1 — a confidence interval for p if ps is positive and (0, m) 7s @
1 — a confidence interval if p, is negative. If u is negative then (0, 0) is a degen-
erate 1 — a confidence interval.

Of course, this confidence interval is not unique, as many possible choices of
Fy and F, are possible. For example, if F; = o then u; = 0 and Wald’s pro-
cedure gives an upper confidence limit; if F; = 0 then y; = « and we have
a lower confidence bound for u.

We may also derive a test of Hoiu < uo vs. Hyip > po in this manner.

TurorEM 2. If F(uo) is given by 3.2.1 and ¢ is determined appropriately, if
we are testing Hou < po vs. Hilp = o, and if we accept Ho when F(u) < ¢ and
otherwise reject Hy ; then the power function of this test is an increasing function
of u.

The power function is as follows:

(&) 2]
const. oo exp[ -2- (—O_T- + Z —,—:}?,_g' dY dz

const. exp [—1QCf7 + XogD] df dg,

G(p)>c

I

B(w)

where
1+e1ﬂ'
G(u) <>Zl+ey HOM D

and g; = 2z:;/(er” + )i =1,--- ,r,and f; = Yi/o;7 =1, .-+, n. Thus
G(r) is an increasing function of p. Also if Gi(u) = G,(k) then ¢ < Gi(u) implies
that ¢ < Ga(u) so that

f aF < dF
Gr(w)>c Ga(p)>c

where dF = const. exp [—3(2_fF + _¢?)] df dg. Therefore 8 is an increasing
function of G and thus of ™8

Thus if we choose ¢ so that 8(u) = a then we have an « level test which has
appropriate power properties. These appropriate power properties are, of course,
that we are more likely to say p < po the smaller p is and we are less likely to
say that u < o the larger u is. 8(uo) is the probability that a statistic with the
I distribution exceeds a constant ¢. Hence ¢ is chosen so that F,.(c) = «
where F, , is the cumulative F distribution with r degrees of freedom in the
numerator and n in the denominator. Note that when o is 0 that

Few =225 /3w
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4. Some properties of incomplete block designs.

4.1 Metivation. In 4.2 we will see what some of the formulae and theory of 2.3
and 2.4 say when specialized to incomplete block designs. Then in 4.3 and 4.4
we will consider the computation of

e + eiu
in some particularly interesting special cases. It will be remembered that this
is the quantity on which the test and the confidence interval procedures of Sec-
tion 3 are based.

4.2 Application to General Incomplete Block Designs. We now consider
yis(@ =1, ,u;j = 1,---, b) to be the “yield” from the ¢** “treatment”
and j** “block” of a statistical experiment using an incomplete block design.
The reason for the quotes above is to remind the reader that these terms may
apply to applications which are not at all agricultural in nature. We further
assume that the y;;’s are independerit and normally distributed random varia-
bles for given block effects o1, -, o with means: E(y;j/ar, -+, as) =
nij(r: + @;) and variance ¢°. Here n;; is 1 or 0 according as the ¢*t treatment
does or does not occur in the j** block. Thus 7, is the ¢*® treatment effect. Since
only those y;; are considered for which n;; = 1, the total number of observa-
tions y;;is N (i.e. D>_s; ni; = N). In addition the o’s are independent and identi-
cally normally distributed with mean 0 and variance {*. Note that if the a's
were unknown parameters instead of random variables then we would have
the general incomplete block model with fixed effects which appears in analysis
of variance (see for example Bose [1]).

We may see that this model is a special case of the one described in 2.4 by
setting

—nll 0 coe 0 nn 0 “oe O 7
N2 0 e 0 0 Nig = 0

ny 0 00 0 0 -+ ny

0 Na1 0 N21 0 ce 0

0 ng 0 0 ney -+ 0

42.1 X=|: oo :
0 n === 0, 0 0 - m

0 0 -« g ma 0 «-- 0
0 0 e My 0 Ny - 0

.
.

..O 0 v Nuby 0 0 .. n;b

where if the ¢** treatment does not occur in the j* block, that is n;; = 0, then
it is understood that the corresponding row is missing from X. We must also
let 8 be the column vector whose elements are 71, 72, «++, 74, a1, @z, -+,



RATIO OF VARIANCES 727

a, . The r of Section 2 here becomes b — 1 and A; and A; become diagonal
matrices with ) _; n¥; and D_;n?; respectively in the diagonal. It is easy to see
that Zjnfj = 7y, the number of blocks in which the ¢** treatment appears,
and ) ;n%; = k;, the number of treatments in the 7** block. Thus

o 0
T2
422 A, =
L0 Ty 4
and
Tl 07
k2
423 Ay = )
. 0 ks o
Also A, becomes
Fnu ma -+ M)
424 T Tt T
L n.u, Mgy ***  Nyp d

and hence d;;, the general element of D = A; — A,A7T°A; is given by

425 dij = 6.‘,‘ kJ _ Z n,;nu'

where §,; is Kroneker’s delta.
Let \Y; be the number of treatments occurring both in the it and 7t blocks.

Then if in particular ry = 7, = ... = r, = r (say) we have
k
4.2.6 di,‘ = 557' IG, - -)\—rt-]-.

Remember from 2.3.4 that p = (X; — A, AT'X1)y; and hence if we have an
incomplete block design we find that

427 pi =By — =7t Twir_ .. _ Rui 2w i=1,---,b,

which are known as adjusted block totals. Here B; is the total of the 7t* block
and T'; is the total of the jt* treatment.

4.8 Linked Block Designs. An incomplete block design has been defined to be
a linked block design if
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(a) Each block has the same number of treatments £,

(b) Each treatment occurs in r blocks,

(¢) Any two blocks have the same number of treatments A* in common.
These designs were used by Youden [13], and are duals of the well-known bal-
anced incomplete block designs. In this case our matrix D is of the form

[kl —1/7) —\¥/r .. —\*/r
43.1 A RSN ]
—)\.*/r —?\.*/r o kA B 1/7‘)JI

where A* is the number of times two blocks contain the same treatment. |D —
eI| = [1/r(klr — 1] — A*) — ¢]""-(—e), since k(r — 1) = (b — 1)\*. Thus the
characteristic roots of D are 0 and ¢ = 1/r(k[r — 1] — A¥), the latter of mul-
tiplicity b — 1.

If now we make our orthogonal transformation of 2.4 from p’s to 2’s, we
find that ) 2i/(e; 4+ eiu) = D 2i/(e + €’u), since all the non zero character-
istic roots are the same. However, since our transformation from p’s to 2’s was
orthogonal, D _p? = D 27, and

N—u—-b+1 1 3pi
b—1 e + u ZY? )
Now from 4.3.2, we know that u, is the solution in u of

N—u—b+1 1 Zﬁ=F
b—1 e+ eud y? +

43.2 Flu) =

where s is either 1 or 2. More explicitly

_ 1N—u—b+1Zp§_1> _
4:‘3.3 Hs —<’e2—Fs b—l EY? E S = 1, 2

Theorem 1 now supplies two-sided as well as one-sided confidence intervals
for u. Theorem 2 supplies a test of the hypothesis Ho:p < po vs. Hitp = o ;
herer =b— landn=N—u—0b+ 1.

4.4 Partially Linked Destgns. The dual of an incomplete block design is ob-
tained by interchanging the rolls of the treatments and blocks. We now define
a class of designs which are duals of the well known Partially Balanced Incom-
plete Block Designs. In analogy with Linked Block Designs we define the
Partially Linked Designs to be those which satisfy the following conditions:

(1) The experimental material is divided into b blocks of k& units each, dif-
ferent treatments being applied to the units in the same block.

(ii) There are u treatments, each of which occurs in r blocks.

(iii) There can be established a reiation of association between any two
blocks satisfying the following requirements:

a) Two blocks are either 1%, 204 ... or m*® agsociates.
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b) Each block has exactly n¥ , 4t associates (1 = 1, 2, - -+ , m*).

¢) Given any two blocks which are #*t associates, the number of blocks com-
mon to the j* associates of the first, and the kt* associates of the second is pj;
and is independent of the pair of blocks with which we start. Also pix = pir .

(iv) Two blocks which are st associates contain exactly A\ common treat-
ments. Hence for a partially linked incomplete block design

1

k (1 - ;) forz =7
44.1 diy = 8k, — O MaiTlej _
- 8 Ts A:‘

- fori # j

. . th .
where blocks 7 and j are s* associates.

The following identities hold between the parameters of partially linked
designs:

bk = ur, nf+ns 4+ Fnk=b-—1,
NN iAo ke = k(r — 1),

ﬁ R [ for i # j
Pir =
= nf — 1 for 7 = 7,

% ik % % % kk
NiPjx = NjPik = Nk Pij -

The next theorem follows easily from the work of Connor and Clatworthy
(5]

TaroreM 3. If e s a non-zero characteristic root of D = (d;;), then e is a root
of the following determinental equation

EQ — 1/r) + A /r —e kA — 1/r) + A/r — e

p;’f % % A2
-2 Gr - B - 1) + 2

2%
—p—:f‘()\f—k?)—e

We denote the two roots of this equation by ¢’ and ¢”. The method used by
Connor and Clatworthy will also give the multiplicities p1, p2 of €/, ¢” in terms
of ¢’ and ¢”. We do not use the exact values of p;, p. in this paper, but only
the fact that they are positive integers which sum to b — 1.

We may verify that if H* is the sum of the two characteristic roots and if
A* is their product, then

rH* = (2kr — 2k + A} + 2D + (lF — pIHF — D)
and
PA* = (kr — k + AP)(er — k 4+ A3)

4.4.2
+ OF = M)k — 1)(p1s — piy) + Aipis — Aiply).
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If the dual of the design we are working with is tabulated in Bose, Clat-
worthy and Shrikhande [3] then H* and A* are the H and A tabulated there
for this dual design.

We now evaluate the required sums of squares. Remember from 2.4 that
2z = M'p where M is an orthogonal matrix such that M’DM is a diagonal matrix
with the characteristic roots of D in the diagonal. Thus if we deal with a par-
tially linked design with two associative classes, then according to the results
of this paragraph we may choose M so that

-

er,,, 0,0
MDM=| 0, &I, 0 =|i"3" 8]=D*,
0, 0.0 )

say, where the subscript on the identity matrix indicates its dimensionality.
In this case we find that

2
2i
ei + eiu
is somewhat simplified. It is

21 D
444 + - -
e+ (€)’u e + (")

where
p1 b—1
Si=2.7 and Se= D, Z.
t=1 Tmmpy+1

Now suppose we consider the quadratic form
1.4.5 m'(D — e'I)p
where m is a solution of

44.6 Dm = p.
We make the substitutions p = Mz and n = M'm or m = Mn.

Dm = Mz, DMn = Mz, M'DMn = 2, D*n = 2.

e'm; ; m; = z;/e =1, p
2 =<e"m;; my=z/" i=p+1,---,b—1
0 1 =D.

Now using the above relationships it can be verified that

"

, , e —é
m'(D — Dp = 7 >
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so that Do = M'(D — ¢'I)p ¢”/(e" — e') but m'(D — ¢I)p = p'p — e'm'p
and

4

447 So = ¢ (p'p — e'm'p).

e — o

Similarly,
/7

(4
2= 5y ('p — 'm'p);

m'p is called the block adjusted sum of squares and p’p is the sum of squares
of the adjusted block totals.

We may now calculate u; and s for partially linked designs. To do so we
must solve the equations:

4438 F(u) = F, s=1,2
or

449 2 2 _ a., s

C, + (61)2# + ell + (ell)gy = 172

where
4.4.10 as=F2Yi(b—1)/(N —b— u+ 1)
Now
i1l 2ale” + (¢")ul + Xule’ + (¢)u]

o = ale + (¢Vulle” + (")ul, s=1,2

ase'e’ u’ + [— 2 z—, - Zz% + a,(e' + e"):l i

4412

3

—%‘—g?+ =0, s=1,2
Hence a root of 4.4.9 must also satisy 4.4.12. Now we may see from 4.4.11 that
p = —1/¢” and p = —1/¢’ can not be roots of 4.4.12 and hence we may re-
verse the steps which brought us from 4.4.9 to 4.4.12 and find that a root of

4.4.12 is a root of 4.4.9,
Denote the left side of 4.4.9 by g(u) and graph this function.
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Since a, is non-negative we see that for all a, # 0, there are two values of u
that satisfy g(u) = @, . Only one of these values may be positive; hence if one
of the two roots of equation 4.4.12 is positive, then u, is the larger of them.
Now write 4.4.12 as follows:

4413 bou* + e + di = 0, s=1,2.
Here
b, = ae’e” = a,A*
C = a,(e 4+ e”) — D" /e' — D qe'fe”
44.14 = a,(¢' + ¢”) + p'p — m'p(e’ + €")
(a; — m'p)H* + p'p

D YD )"
de =0, — = — =
e e
’ ”o ’ Loon?
—em — e'm'p)
4415 —a - ® —— p_ P
= a;, — m'p.
Hence
- 7 _
4416 P B ‘gg 4b, d, s =12

since this is the larger of the two possible roots.
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It should be reiterated that the confidence bound in Theorem 1 is given by
4.4.16 only if p, is positive, otherwise a zero is substituted for u, in the confi-
dence interval.

The test of Theorem 2 is then performed by accepting p < o if

Jluo) = N—-b—u+1 1 mpll + ple + €")] — wp'p
b—1 ny 1+ €eu)(1 + €”’po)
is less than ¢ and accepting u > po otherwise. Here ¢ is again chosen to be the

value of an F variate withb — 1and N — b — u + 1 degrees of freedom which
has « as its cumulative distribution ordinate.

4417
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