AN APPLICATION OF INFORMATION THEORY TO MULTIVARIATE
ANALYSIS, II

By S. KUuLLBACK

The George Washington University

0. Summary. Certain results of information theory are applied to some
problems of multivariate analysis, including the multivariate linear hypothesis
and the hypothesis of homogeneity of covariance matrices. A discussion of
certain related linear discriminant functions is also included. Some asymptotic
distributions on the null hypothesis are derived. Related problems, still under
investigation, are mentioned. The procedures are based on the principle of
maximizing information. For the cases considered, the estimates of I(1:2)
and J(1,2) turn out to be those obtained by replacing the parameters by
unbiased estimates, appropriate to the hypotheses under consideration.

1. Introduction. In a previous paper [20], the author considered certain
results of information theory as applied to multivariate normal populations.
In particular there was examined the problem of finding the ‘“‘best” linear
function for discriminating between two normal populations, assuming equal
means but different population covariance matrices. The multivariate analysis
techniques of discriminant analysis, principal components, and canonical
correlations were seen to be closely related concepts. (Greenhouse [12], using
the information-theory approach, has examined the problem of finding the
“best’’ linear function for discriminating between two multivariate normal
populations, with no restrictive assumptions as to means or covariance
matrices.)

In [20], the discussion was in terms of population parameters, and questions
of estimation and distribution were omitted. In addition to discussing some of
the problems of estimation and distribution herein, we also. want to consider
further application of information theory, and the relation with previous de-
velopments, by studying the following four multivariate problems (cf. Roy
[28], Section 5.1):

() The hypothesis that a k-variate normal population has the covariance
matrix o;

(b) The hypothesis of equality of » means for each of k variates for r k-vari-
ate normal populations with different covariance matrices, and with
the same covariance matrix;

(c) The multivariate linear hypothesis, including the case of a subhy-
pothesis;

(d) The hypothesis of equality of the covariance matrices of r k-variate

. normal populations.

The reader is referred to Section 2 of [20] in which the information measures

are defined and their properties summarized, with particular reference to prop-
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APPLICATION OF INFORMATION THEORY 123

erty (iii) on p. 90 of [20]. (Proofs may be found in [22].) Based on the non-
decreasing property of I(1:2) and J(1,2) for sufficient statistics, we follow a
principle that may be termed maximizing information in order to attain suf-
ficiency or near sufficiency. It seems intuitively reasonable that such an ap-
proach should have certain optimum properties. In certain cases the results are
closely related to likelihood ratio tests and this relation is under investigation
for the general case. Asymptotic distributions occurring herein verify conclusions
derivable from a general asymptotic theory, the details of which are in prepara-
tion (cf. Wilks [32]), and in two cases a better approximation than the general
theory provides is derived.

It might be remarked that appropriate multivariate extensions of the results
in Cramér [6], particularly pp. 11 and 12, and Daniels [7] also provide an alterna-
tive basis for a general asymptotic theory

There are few general (automatic) procedures for finding test criteria. The
approach using information theory as a means of determining test procedures
may be of interest and use because it is, so to speak, an automatic procedure.

Matrix notation, methods, and results are used and assumed known to the
reader. The notation, and such results of [20] as are needed, will be used without
further summary herein.

2. Components of information. Since I(1:2) and J(1,2) are additive for inde-
pendent random variables, for a random sample of n observations I,(1:2) =
nI(1:2) and J,(1,2) = nJ(1,2), where I(1:2) and J(1,2) are given, respectively,
by (2.8) and (2.7) of [20].

As is well known, the averages and the variances and covariances in samples
from a multivariate normal population are independently distributed, re-
spectively, in a normal distribution and in the Wishart distribution (see, for
example, Wilks [33]). Computing the appropriate values from the respective
distributions, it is readily found (see, for example, Hoyt [14]), that for the
averages

I'(1:2; %) = % log :02} 5 + itrogom + 5 5'0?21)5
(2.1) " ‘

n =
= § 5/0' 15 for g = o@ = 0,

J'(1,2;8) = b tr [ow — 0@)(6@ — o)l + 2 80 + o)
(2.2) | o2
= nd's S foreq) = 0@ = o,

where & = pg) — ue) , and for the sample unbiased variances and covariances,

1 <log M — k + tr 0’(1)0’?21)) y
o]

-1 _ _
=" B} tr [(0'(1) - 0’(2))(0'(21) - 0’(11))]'

101 .0. __n—
2.3) I'(1:2;8) = 3

(24 J'(1,2; 8)




124 8. KULLBACK

We thus have from the preceding,
(2.5) nl(1:2) = I'(1:2; %) + I'(1:2; 8),
(2.6) nJ(1,2) = J'(1,2;%) + J'(1,2; 8).

3. Estimates of information. The procedure we shall use (replacing popula-
tion parameters in I(1:2), J(1,2) by unbiased estimates appropriate to the
hypotheses) is based on a principle of maximizing information, as may be seen
by the following heuristic discussion.

Suppose that g.(y) and g*(y) are densities, satisfying the conditions of Section 4
of [21], such that for given g.(y) we require

Y g*(¥)
(3.1) I* = f g*(y) log ) dy(y)

to be a maximum, subject to

(32) [emy o) =1, [ure o =
This is equivalent to maximizing
69 U= [(r010slD 1 k) + o) o),

where k and [ are arbitrary constants to be determined. The usual variational
procedures lead to

% g*(y)

34) 30 =0 = [ 36°) [log ()+1+k+ly:|d'y(y)
or

(3.5) logg((y))+l+k+ly—0

This means that

(3.6) @) = €0 0)
or, by integration, that
(3) 1= [ ) dvw) = 060,
where we have replaced —!I by Z.
Thus,
(3.8) g*@y) = ¢ 9:(0) My(t) = f e"g:(y) dv(y);
M,(t) °
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since this means that

(39) = [ 10g T8 ar) = at — log 30,

the desired maximum occurs for that Value of ¢ which maximizes at —log M,(f),
or when I* = —log my(a), in the notation of Section 4 of [21]. (It might be
noted that k log ma(a) = —kI*, where k is Boltzmann’s constant, is the entropy
of the distribution whose density is g2(y) (cf. Khinchin [18]).) Also,

310)  J* = [ 0*@) — 5@ log LX) dn(y) = ta)a — ).
o)

For a simple hypothesis, the parameters of g»(y) are completely specified.
For a composite hypothesis, say 6 ¢ ©, where 6 is a vector of the parameters
and O is some subset of the parameter space, we use as the appropriate test of
the null hypothesis (that relative to gz(y)) the value given by

(3.11) I = min I* = I*(9)
[[F:)

and, correspondingly,
(3.12) J = J*@).

We shall carry through the foregoing in detail for some cases; in others, we
shall apply the procedure of replacement of the parameters by unbiased esti-
mates.

4. Single sample. Consider problem (a) of Section 1. For a sample of n ob-
servations from a multivariate normal population with mean matrix u' =
(u1, p2, -, m) and covariance matrix o, the moment-generating function of
the sample averages & = (%, &2, - -+ , Zx) and Vi; and 2V5;, ¢ # j, the ele-
ments of the matrix V = N8, where N is the number of degrees of freedom and

S is the sample unbiased covariance matrix, is known to be given by ([33], p. 121)
(4.1) My(t, T) = |I — 26T exp <t’u + 3t % t>,
where ¢/ = (h, fg,--, tk), T = (tij), ‘L,] = 1, 2, ey, k.

We want to determine g* of (3.9) (the conjugate distribution of Khinchin [18])

50 as to have the observed unbiased estimates as its parameters, that is to say,
a = (%, V), which means that we seek the values of £ and T which will maximize

(cf. [18], Section 33)

42) I* = vg+ TV — tu— 3¢ 20+ glog I — 27T).
Differentiating with respect to z and T' (see [8], p. 364), we have

43) s-uw—2=0, @DV —Ntr{l -2 W) =0,
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from which are derived

b= no'_l(i ) )
T=2%%"—3S".
Using the values given by (4.4), (4.2) becomes

(4.4)

) I*=2@-wiE—w+ N tog lo] /18] = & + tr 8o,

The null hypothesis specifies ¢ but not u. It is clear that for variations of g,
I* in (4.5) is a minimum for i = &, or

46) T= min I* = I*®) = 3 log|o] /8] — b + tr So™).
»

Note that (4.6) is (2.3) with oqy = S, 0@ = 0.

The case of a single sample of 7 observations from a k-variate normal popula-
tion was considered in some detail by Hoyt [14]. Hoyt showed that asymptoti-
eally 27 has a chi-square distribution with k(¢ + 1)/2 d.f., and to a closer ap-
proximation, R. A. Fisher’s B distribution.

In considering tests of significance in factor analysis, Bartlett [4], using a
“homogeneous” likelihood function, and Rippe [26], using the likelihood-ratio
test procedure for the problem of tests of significance of components in matrix
factorization, arrived at the statistic 27 and the same conclusion as to its asymp-
totic chi-square distribution.

For the hypothesis of independence of variates, i.e.,

(4'7) o= (Uif)) 0ij = 07 1 j7
we may write (4.6) as

. k N
(4.8 2] = —Nlog |R|+ N I:E <§’—‘ + log -:T-gli - 1)],

where R is the matrix of sample correlation coefficients, or
(4.9) 2l = 21 + 21,

where 21z = —N log |R| (cf. [20], p. 94). Wilks [31] has shown that when (4.7)
holds, the s;; and r;; are independent, so that T = and Is are independent. It fol-
lows from the discussion of Section 9 that, asymptotically, 27z has a chi-square
distribution with k(¢ — 1)/2 d.f., and 25 has a chi-square distribution with
k d.f. It is shown in Section 9 that a better approximation to the distribution of
2]y is given by Fisher’s B distribution ([10], p. 14.665) with

8 = k(k — 1)(2k + 5)/12N, B* = 2I%, m = k(k — 1)/2.

6. Homogeneity of means. Consider problem (b) of Section 1. We will first
discuss the case for two samples. Suppose we have two independent samples,
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having, respectively, n,, n, independent observations from k-variate normal
populations with respective covariance matrices 2;, Z,. We want to test the
null hypothesis that the population mean vectors are equal, i.e.,

(5.1) Heipgy = pey = m, 21, 2a,

with no specification about Z; and =, .

Using the notation already introduced in Section 4, we want to determine g*,
with a = (Zu , £@ , V1, V2), which means that we seek the values of ¢ , T,
© = 1, 2, which will maximize

- 2
I* = tfl):v(l) - tzl)/l, — t(l) — t(l) +tr WV + = Ny log II — 23 Tll
(5.2) 5,
+ oy Eay — tiow — 2t(2) — t(z) +tr TV, 4 = e log [T — 22, Ty|.

Following the procedure as used for (4.3), we find that the sought for values are
given by
ty = M2 Ew — u), k= m3'(Ee — u),

(5.3)
Ty = §27 — 387, T, = §22" — 387,

for which values I'* of (5.2) becomes

I* = 5 (x(l) — WZEw — W) + (93(2) — 'z (x(z) —w
(54) N N
+ =22 (]og Elll k4 trS zr‘) + 22 (Iog f?" k + tr S, z;‘).

The null hypothesis requires equality of the means with no specification on
the covariance matrices. It is clear that for variations of Z; and Z;, I* will be
a minimum for $; = S;, £, = S,, and for i satisfying

(5.5) 0 = mST' @y — £) + Sy (Eey — £)
or )
(5.6) A= ST + mS:") (ST'Ew + 1Sz Ew).

For convenience let d = £q) — @y, A = mSi', B = nS;"; substituting
in (5.4) we get

21, 21, %)
= tr {[B(4 + B)'A(4 + B)"'B + A(4 + B)"'B(4 + B)'4]dd'}.

ButB(A+B) A =[A7 A+ BB =B+ A4 andA4 + BB =
B4 + B)A™ " = (B + A™)7", so that finally

(6.7)
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2l = tr[(B + A dd']
(5.8) =d(B4+ A™Hd

-1
= (E» — &)’ (%1 + %) Ew — ).
It is readily found that in this case J = 21.
For the single variate case, see Fisher [10], pp. 35.174-35.180.
Linear discriminant function. Consider y = o’z = awx; + asts + -+ - + our,
the same linear compound for each sample. Since y is normally distributed, we
seek a 50 as to maximize

o dd' o«

(S §'_2) '
a(nl—i-n2 a

(5.9 21", 21, 225 y) =

As is easily determined (cf. [20], p. 91), the maximum occurs for

S sz>“
=(Z+=2) d and 2I'(y) = 21
a= (842 ) = 21
r-samples. Suppose we have r independent samples, having, respectively,
n;,1=1,2, -+, r,independent observations each, from k-variate normal popu-
lations with respective covariance matrices 2;, ¢ = 1,2, ---, r, and we want
to test the null hypothesis that the population mean vectors are equal, i.e.,

(5°10) HZ:/‘(I) F M@ T = M) T M 21, 29,00, 2,

with no specification about the Z;.
Without repeating the details, we find, in this case, that
; |2

GaD) T* = 3™ G — WE G — 1) + 30 &(k,g 2o, z;-‘>,
o1 2 =12 IS4

r -1 r
(5.12) $: =8, 4= <E n,-Si_l) (Zl‘n,-s,-“‘m) = .

1=1

T

(5.13) 2l = 2 niEw — 8)'Si @&x — ).
=1

On the null hypothesis, 2 has an asymptotic chi-square distribution with
(r — 1)k df. _

Covariance mairices equal. If we assume that the population covariance mat-
rices are equal, i.e., that 2, = 2, = --- = 2, = 2, and want to test the null
hypothesis that the population mean vectors are equal, then, without repeating
the details, we find, in this case, that
(5614) I* = E % (Ewy — W2 Eq — w) + J_2\I<10g%_= —k+ tr Sz—l>,

Pa=]
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where NS = NyS; + --- + N,S,, N=N:+ N+ --- 4+ N,, and that
(5.15) £ =8, np=nE=nm%H+ - +né, n=m+nt+-+n,

2 = Z; n,'(a';(i) — i)'S‘ l(a':(,-) — )

(5.16) =tr S dw diy +  + 7 dey diny)
= tr S S*,

where d¢y = & — &, S* = 22_1 n; di) dz,’) (cf. Hotelling [13]). It is readily
found that in this case J = 27.

Asymptotically, 2I = J has a chi-square distribution with k(r — 1) d.f. on
the null hypothesis (cf. [25], p. 372). This will be shown in Section 10.

Linear discriminant function. Considery = o'z = oa®y + oz + -+ + ouxx,
the same linear compound for each sample. Since y is normally distributed, we
have for the s, using (5.16),

_ m( dw) + 4+ nla dm)’

2I'e) o'Sa ‘
(5.17) _dmdgdy + - + e de din)a
' o'Sa
_ o'S*a
a'Sa’

with the symbols as defined in (5.16). For the linear compound for which 2I'(y)
is a maximum, the usual calculus procedures yield the result that the o’s must
satisfy S*a = ISa, where [ is the largest root of the equation |[S* — IS| = 0,
which has (almost everywhere) p positive and (k¢ — p) zero roots, where p < min
(k, r — 1) (cf. [28]). If we denote the positive roots in descending order as I,

lZ""’lp’
d=T=tr 88 =lh+bL+- -+
=JW) +T® + - + T'@).

The discrimination efficiency of the linear compound associated with I; is
given by

(5.18)

J'(1) l;
(5.19) B =5 = T

In this case, asymptotically we have, on the null hypothesis, the chi-square de-
composition (cf. [25], p. 373) i

JU) =1,k — @ —1)+1 df
J'(Upet) = by, [k — (r — 1)] + 3 df.

J=bL+L+ - +1L,k(r—1) df.
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This is to be taken in the sense that I, + -+ + [, is asymptotically a chi-
square, not that ln41, - -+ , I, have asymptotic independent chi-square distribu-
tions (see (10.3)).

ExampLe. Consider the following data from a problem discussed by Bartlett
and which was also considered in [20], p. 93. (See further references therein.)
Here,r =8, k=2, n=m+ -+ + ng = 57,

136,9726 58,549.0 12,496.8 —6,786.6
58,549.0 71,496.1 ’ —6,786.6  32,985.0 ’

and the roots of |S* — LS| = 0 are given by L = 44.68667, [, = 3.09106.
Also, '

J'(l) = 3.09106 6 d.f.
J'(l) = 44.68667 8 d.f.
J = 4777773 14 d 1.

Since only J'(h) is significant, the linear discriminant function y = 2 —
0.5352, , associated with I , is affected by the treatments and is practically suf-
ficient.

6. Multivariate linear hypothesis. Consider problem (c¢) of Section 1. Let
Zoy=Ye—BX@w, i=1,2,n  where Zy = (Za, ", L),
Yéi) = (yily Tt yikz), Xéi) = (xily e ’xih), B = (,3,3), r=1, 2y Tt k2’
s=1,2 -+ ,k, k = ks, and the Z(, are independent ky-variate normal
random vectors with zero means and common covariance matrix Z. The Y, are
stochastic and the X; are considered known. The usual unbiased estimate of B
is given by (see [2], pp. 103-104) B = (Y'X)(X'X)™", where

Y=o, Yo, ,Yw), X =Xo,Xa, ", Xw),

and that of 2 is given by (n — kS =2'72 = (Y — BX')(Y — XB') =
Y'Y — BX'XB' = Y'Y — (Y'X)(X'X)™(X'Y).
Let us now consider the hypotheses

HI:EI(Y(i)) = B.X(i) , 7 = ]_, 2’ cee,m,
Hy:Ey(Y») = 0, ie., B = 0.

As in pp. 90-91 of [20], we have
2_1 0 et 0 BX(1)
0 = - 0 ||BXy

2I(1:2) = J(1,2) = 8o '8
(XZI)BI) X22)Bl’ ’Xén)Bl) . . .
o o ... z7 [BX<n>J

(6.1)

(6.2)

il



APPLICATION OF INFORMATION THEORY 131

= XZI)B’E—IBX(I) + o + X;n)B,E_lBX(n)
tr Z7'B(X0Xw + -+ + XwXw)B'
= tr Z'BX'XB'.

Using the estimates given above, we get as the estimate of J(1, 2) (cf. [20],
p. 96)

2I(1:2) = Jq, 2)‘= tr STBX'X B
(6.3) = —Fk)tr (V'Y — (VX)X'X)'X'7) (X)X’ X)(X'Y)
= (n — ki) tr Sz218:871 Siz,
where X’X = nSy, X'Y =nSp, Y'X =nSy, Y'Y = n8Sx,and
Sp1 = S — SuStiSiz.

‘We may also express J(1,2) as (n - k) times the sum of the k. roots (almost
everywhere positive) of the determinantal equation 1821811 S12 — 18221] = 0.
As in the preceding section,

(6.4) 21(1:2) = J(1,2) = (n — k)l + b+ -+ + b),

asymptotically on the null hypothesis Hs, has a chi-square distribution with
kuks d.f. (see Section 10). By replacing Sx.1 by its value as given above,

82181181z — USaaa| = 0 = |821817 S1a — 7°Sas|, where I = 7*/(1 — ).
The r’s thus defined are Hotelling’s canonical correlation coefficients. (See
[20], pp. 95-99, and further references therein.) We may also write (6.4) as (cf.
120}, p. 97)

65 21(1:2) = J(1,2) = (n — k) (1 rfr
- n

2 2
o Tha
.2+1—r§+ +1—r,§2>'

On the null hypothesis B = 0, the results are equivalent to those for the null
hypothesis that in a k-variate normal population, the set of the first k; variates
is uncorrelated with the set of the last k. variates, &k = ki + k2. The latter
hypothesis is the one considered in [20], pp. 95-99.

Linear discriminant function. For the problem of this section, consider w; =
&Yy =aVa+ e¥e+ - +a,Ya, ¢=1,2 ---,n, the same linear
compound of the y’s for each observation. Since the w’s are normally distributed
with o5, = o'Za, we have for the w’s
= (BXw)’ + - + (@/BXw)’

, &' Za
dBXpXw+ -+ + X Xw)B'a

o' Za

21'(1:2; w) = J'(1,2; w)

(6.6) =
_ «BX'XB'«

o'Za
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To find the linear compound for which J’(1,2; w) is a maximum, the usual
calculus procedures yield the result that the o’s must satisfy BX’XB'a = \Za,
where X is the largest root of the equation |[BX’XB’ — AZ| = 0. Denoting the
k2 positive roots in descending order as A, Az, -+, Aiy,

21(1:2) = J(1,2) = tr Z7'BX'XB = M+ A+ -+ + My
= J(1,2; M) + -+ J'(1,2: M)
Using the estimates as in (6.3) and (6.4), we have
21(1:2) =JA,2) = (n — k) + b+ -+ + )
= J'(1,2; L) + J'(1,2; 1) + -+ + J'1,2; ).

The canonical correlations enter as before.
In this case, too, asymptotically on the null hypothesis H, , we have the chi-
square decomposition (see Section 10)
J'(1,2;1,) = (n — k)l = (n — k)ri,/(1 — 1,) ki — ks + 1df.

J(1,2;l1) = (0 — k)liys = (0 — ki)rhy—1/(1 — 7hp1) by — ko + 3 df.

......................................................................

(6.7)

(6.8)

J1,2; L) = (n — k)l = (n — k)ri/(1 — 1) ki + Kk, — 1d.f.
k2 k2
JU,2) = —k) 2 li=(n—hk) D r / (1 —rd) ko df.
=1 =1
This is to be taken in the sense that (n — k)(lnyr + -+ + &,) is asymptot-
ically a chi-square, not that (n — ki)lmy1, -+, (n — k)l, have asymptotic

independent chi-square distributions. (See (10.4).)

ExampLE. By way of illustration, we use the data already discussed by Hotel-
ling and the values derived in [20], p. 98, where it was found that i = .1556,
3 = 0047, ri/(1 — r]) = 1843, r3/(1 — r3) = .0047; and since n — ky =
139 — 2 = 137 (there were 140 observations but the values were computed
about the sample averages),

J'(1,2;m) = 6439 1 df.
J'(1,2; 1) = 25.2491 3 d.f.
J(1,2) = 25.8930 4 d.f.

Since only J’(1,2; ) is significant, the linear discriminant function associated
with 7, = —2.4404 y1 + ¥, is the only such linear function and is prac-
tically sufficient, confirming the inference made in [20], p. 99.

Subhypothesis. We return to the problem at the beginning of this section and
separatethek; x’s intotwo setsof gsand ¢z, ki = ¢1 + ¢ . With a corresponding
partition of the matrix B, we now have Z;, = Yy — CXqy — DXy, where

Xw = (})g(li) ); B = (C, D), where C and D are, respectively, ks X g1, k2 X @2
@)
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matrices; or Z' = ¥’ — CX1 — DX, , with Z and Y as previously defined and

Xy Xan X1
X’=(X(l),X(z),"',X(,,))=<< >,...,< >>=< L
Xy X 2n) X,

‘With the same assumptions as to the Z; , we now consider the hypotheses
©9) Hi:E\(Y(») = CiXan + DiXen, i=1l9
Hz:Ez(Y(i)) = C?X(li) + DJ(%) )

Applying the same procedures as previously, it is found that now

2I(1:2) = J(1,2)

- {((o 0o, (Ds— DY) <su Sn) <(01 - ca)’)]
= tr 1— Uy), (U1 — Lo ,
Sar See (D1 — Dy)’

X1 XiX: XiX Su S
X’X=<t>(X1X2)=<tl i2>=<u ay
X, XX, X2 Xo Sa1 Sz
In particular, we wish to test the null hypothesis that D; = 0. For C; and D, ,
the estimation procedure previously used for B, [2], yields here

(6.10)

‘where

(6.11) (€, Dy <S“ S”) = (V'Xy, YV'X5),
o1 Sas

-or
6.12) CiSu + DiSu = Y'X,,

C1Sw + DiSe = VX, ;
.and for C;,
(6.13) C:Su = YV'X,.

From (6.12) it is readily found that

(6.14) Dy = Y'X18m1, C1= Y'XiSi — DuSuSi,

‘where X2,1 = Xz - XpSﬁlSu 5 822,1 = Szz - S2lsﬁlslz .

For the estimate of =, we have as before

(6.15) ( kS = Y'Y €. D) <SuSm> <01/> )
| T P\ susw) \D1)
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and for the estimate of J(1,2),

N Sll 12 Al - A2 !
(6.16) J1,2) = tr 3 {((01 — (), D) < i ><(C D,C) >}

Using the values given in (6.13) and (6.14), it is found that
N Sll Sl2 OI N N
<cl,b,>< >< ‘,) = CuSuCl+ Dy D

21 22 Dl
(6.17) = Y'XiSaX1Y 4+ Y'X51821 X124 Y,
(€1 — Co), Dy) <S“S‘2> <(C‘ —,Cz)'> = DiSu.aDi.
21 D22 Dl
It is readily verified that
(6.18) X:81 X1X218%.X21 = 0,

and since X3:Xz1 = Se21,
(6.19) (I — X1SiiX1 — X21821X2.1) X218 X5, = 0;

that is to say, the two factors in J(1,2) are independent.
These results are summarized in Tables 1 and 2.
We omit a discussion of linear discriminant functions for this case.

7. Homogeneity of covariance matrices. Consider problem (d) of Section 1.
For its special interest, we consider first the case of two samples and then the

general case.
(7.1) Two samples. Suppose that we have two independent samples with n,

TABLE 1
Due to df. Generalized sum of squares
Cooooeee @ C28uls = VX ST X1 Y
Difference . ......... g2 DszmD{ = Y'X2.18m1 X1 Y
oy Dy ky BX'XB' = Y'X:80 X1Y + Y'X2.8m.1X0uY
Difference . ......... n — k Y'Y — BX'XB' = (n — k)2
Total ............ n Y'y
TABLE 2
Test Asymptotic distribution on the Null hypothesis

tr 2BX'XB . ..., . chi-square k; k, d.f. B =0;ie,Co=0,D; =0
tr 371D, 81Dy ... chi-square gk, d.f. D; =0
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and n; independent observations, respectively, from k-variate normal populations
for which we make no specification about the means, and suppose that for the
population covariance matrices we have the two hypotheses, H;:Z; # =, and
Hz:zl = 2, = 2.

Using the notation already introduced in Section 4, we want to determine g*
with @ = (Zu) , £@) , V1, Va), which means that we seek the values of ¢ , T,
+ = 1,2, which will maximize (cf. (5.2))

I* = t:l)f(l) - tfl)na) - t(l) - t(1) +tr WV + = Ny log |[I — 22T,
(7.1.1)
+ tofe — Lo — —t<2) - t(z) +tr TV, + - Ak log |[I — 22T|.

Following the procedure as used for (4.3), we find that the sought-for values
are given by (cf. (5.3))
ty = mZ7Ew — pw),  to = nZ @ — ko),

(7.1.2)
T, =437 — 4877, T, = 3§27 — 187,

for which values I* of (7.1.1) becomes
I* = *2- P (@ — r@) 2 Ew — po) + = (27(2) — 1) 2 Ee — re)
(7.13) N, N 5
+ —{ log I—I k+ trS; 2—1> + 2 <log |——| — k4 trsS, E‘l> .
2 2 |Ss
For variations of nqy , ue , and =, I* will be a minimum for A , Aey , and £
satisfying (see [8])

mi N (Eq — o) =0, 137 (&e — o) =0,
o, — 1
= — 51 Eo — b))’ 27 d2E & — hw)

A - S o N =
(7-14) — 7_;3 (92(2) —_ M(z))’ﬁ; 1 dzZz l(1?(2) - #(2)) + 5} tr2 ' dz

M
2

from which we find that
(7.15) Lo = iy, be = Eg, (N1 +,N2)2 = NiS1 + N.S: = NS,
where N = N; 4+ N, ; consequently (cf. Wilks [31], p. 489),

18|
ISel”

N.

tr §; 37 dz3! + tr $7Ndzr — - tr S, £ dzs™,

(7.1.6) 2] = N, log ||S || + N, log
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It is readily found that the corresponding J is given by (cf. [20], p. 91)

j — N 1N Py
2(N1 + N»)
It will be shown in Section 8 that 21, for large Ny and N,, on the null hy-

pothesis H, , has a chi-square distribution with k(k 4+ 1)/2 d.f., and to a better
approximation, a non-central chi-square distribution, R. A. Fisher’s B distribu-

tion.

Linear discriminant function. We seek a linear compound, the same for both
samples, = o't = ay; + a2 + - -+ + awr,, which will maximize (see
(7.1.7))

(7.1.8) J'(y) =

(7.1.7) (tr 885" + tr S. 81t — 2k).

N;N, <a'sla 'Sy _ 2)
2(N1 + Nz) a'Szoe a'Sla ‘

The usual calculus procedures yield the result that « is obtained as a solution:
of Sia = FSxa, where F is a root of the determinantal equation |S; — FSs| =
|N1Si — IN2Ss| = 0, and F = N,l/N,. It is found that the same linear func-
tion results from maximizing (see 7.1.6))

(7.1.9) I'ty) = A 10 0‘50‘ + N2 log aISa

If the roots of the determinantal equation, which are almost everywhere posi-
tive, are Fy, Fa, -+, F) arranged in ascending order, then, as was shown in
[20], Section 5, the maximum of J’(y) occurs for the linear compound associated
with F; or F, according as F1F, < 1 or FiF, > 1.

It may also be shown, readily, that

I=010)+IGE) + - + I'(y,

(7.1.10)
J=JuF) + J'(F) + -+ + J'(F),
where
, N 141 m N, ,
P = Flog e —— + gl gy, U+ 1)
N]_ N]_ N2 N2
ey TImt T ey W,
(7.1.11) NN N
+ ‘; ’log (1 + 1) — —éflogln
2

" 2(Ni+ N Fi
It is conjectured that for large N1 and N, , (assuming that the corresponding
population parameters have null hypothesis values) the quantity 2I’(lmy1) +
- + 2I'(l), the terms arranged in descending order of efficiency, has a chi-
square distribution with (¢ — m)(k — m + 1)/2 d.f.
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(7.2) r-samples. Suppose that we have r independent samples, respectively,

of N1, N,, ---, N,, independent observations each, from Fk-variate normal
populations for which we assume the means equal, and that for the population
covariance matrices we have the two hypotheses, H;:Z;, 2, ---, 2, and
Hy:2 = 2 = .-+ = 3, = 2. Thus, for the r samples, corresponding to H;
and H,, we have, respectively,
3, . 01N,
2
2y
. N,
(721) aa = 22 L N=N1+N2+ e —l—N,.,
Z,
| 0 2 N,
.0\ N,
.. +IN
(722) g@2Q = PO . 2,
0---3/ N,

=2+ 0 1.0

| IN1+N2+*"+N,.

c9) — 1 1
I(1:2) = % log E B + 3 tr .
(72.3) 0---2—-2/\0--- =7
N, [Z] 1 kN
Zl—é— log I+tr22> <5
-0 0
J(1,2) = $tr :
0 -3
21—1...0
(724) — S
0 - 3

=2 % (tr 2:=27 + tr 227") — kN.
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If we compute the sample values about the sample averages, then we estimate
I(1:2) and J(1,2), by taking N1, N2, ---, N,, as degrees of freedom, and
replace 2, 2., ---, Z,, respectively, by the sample unbiased covariance
matrices S;, Sz, -+, 8., and T by S, where NS = NiS; + --- + N.S,.
Thus we have (cf. Box [5] and Wilks [31], p. 489),

oy _ N o ISI>_M_’ 18]
(7.25) 2‘(1.2)_;;:1 5 (trS,S" +1og|&_| 5 _g "log It

70,9 = 3 Yt ss™ 4 wssty — v = 3 Vo sse -

(7.2.6)

=2 A;]]\;]J (tr S;S7* + tr S; 87" — 2k).
1<y

We omit at this time a discussion of linear discriminant functions for this case.

8. Asymptotic distribution of [(1:2) for the homogeneity of covariance
matrices. On the hypothesis H, of Section 7.2, we let

(8.1) NS, = v z"? NS =zvE (=12 -

These equations define transformations linear in the elements of the matrices
S:, Sor V;, V. The Jacobians of these transformations are given by [8],

1
‘ N>
The Wishart distributions of the elements of S;, S are thereby transformed into
the respective probability densities of the elements of V;, V, given by

(k+1)/2 (&+1)/2

(8 2) (%)kN.'/Ze—(l/Z)trV.' IVz'I(Ni_k_l)lz ’ (_%)kN/2e—(ll2)trV IVI(N—k—l)/2

. P % .
kk—1)/4 Ni+1—-a k(k—1)/4 N+1l-oa
T aI=Il T ( D) > T al;Il T (————2

Applying the transformations in (8.1) to I(1:2) in (7.2.5), we get
.9) — 14 N, a>
(8.3) 1(1:2) = ﬁZ <1og 7l + klog

Since the r samples are independent, the characteristic function of the distribu-
tion of

V r
E N log |'V || Nlog |V] = X Ny log |V
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is given by (cf. Box [5], p. 321)

r kNgl2 —(1/2)trVg (Ng(1—2it)—k—1) /2 LT
st = [ (17 @2 Y V1T 1T Ve
p=1 AR ] 1 (N s+ 1— a) B=1 4,6=1
a=1l 2
<Nﬂ(1 —2t) + 1 — a)
r k T 2
- ﬂI=Il aI—Il F Np -I— 1 - Ol>
2
(84) L\RN/2 —(UDev [ 17| [N (—2it)—k—1] 24 Nt
. f (2) 4 IVI 7II=1 dVys
LD/ f[ I <N(1 — 2’[2 41— a)
a=1
P(N+l—a> F(N,,(l-2¢t)+1—a>
-1 2 i 2
a<i N1 —2it) +1 — o\ 51 No+1—« ’
r 3 T — g

where the middle result follows from the reproductive property of the Wishart
distribution [33]. We will use Stirling’s approximation

log T(p) = }log2r + (p — %) logp — p + 74p — ve0’ + O(1/P%)
to get an approximate value for large Ng in (8.4). We have that
r (N,,(l —2t) + 1 — a)

lo 2 =
¢ (N, Fi-— a>
I‘ A e ——
] 2
Ng(l — 2it) — « 1 Ng(l —2it) +1 —a Ng(1 —2it) +1— «
. Og —
2 2 2
85  + . - L
' 6(Vs(1 —2i) T 1 —a) 4BWN1 — 2i0) + 1 — o)
_ Ng — a Neg+1—a«a
5 o83
Nﬂ + l1—a _ 1 1 5
Ea— S, 1= T B, 1= T 0N,
and after some algebraic manipulation, the right member of (8.5) may be written
as
—4tNg log %’ + Ne(1 — 22”) ~ %log (1 — 26t) + Ngit

(8d — 1)2it 2
+ BN, = 2% + O(1/Np).
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We therefore have

k .
log (t) = 2. (th log N N—(lz——it):—‘-x - log (1 — 2:%)

a=1

. (8a® — 1)t 2
— Nit — N = 2) 0(1/N’ )>

k r .
+ 2> —itNg logNﬂ+Nﬂ(1 =2 — o, log (1 — 2i)

(8.6) a=1 p=1 o 2
. o — 2 2
+ Noit + g + 0/ND)
= —i i kNg log% _ o =Dk +1) log (1 — 2if)
B=1 N 4
(2K + 3K° — k) 1 .
+ 12(1 — 23) <,§ N N) + Z 0(1/N3) — 0(1/N?).

Neglecting the last term in (8.6), we have that
(87) ¢@t) = (1 — 24)~ VDI o0y <—z ; Z kN log ]Xf + Cztz n)

where C = (2k° + 3k’ — k)( 2 p1 1/Ns — 1/N)/12.

Because of (8.3) and (8.4), writing ¢ = 27(1:2), the probability density of ¢
is given by
e—it;+cit/(1—2it) dt

1
(8.8) D() = o Jw (1 — 24t) DGO/

If we neglect the term with C, it follows that D(¢) is a chi-square distribution
with (r — 1)k(k + 1)/2 d.f.; otherwise, by integrating (8.8) (see [23], p. 86), we
get, since { is real and positive and (r — 1)k(k + 1)/4 > 0,

¢ (n—1)/2
(59) D) = 3 () (v TR,

where n = (r — 1)k(k + 1)/4 and I.1(A/CY) is the Bessel function of purely
imaginary argument [30]

® o ( g£>(n—1)/2+i
Ia(VCE) = X i +7)

The distribution given by (8.9) is the non-central chi-square distribution and is
Fisher’s B distribution ([10, p. 14. 665) if we write C = 8, ¢ = B®, 2n = m,.
The case for &£ = 1 is the Bartlett test for homogeneity of variance [3], [5].
The approximation to the logarithm of the characteristic function of ¢, i.e.,
—nlog (1 — 2if) + cit/(1 — 2it), corresponds to that of Box [5], formula 29,
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p. 323, retaining only the first term in his sum; i.e., (er/w)[1/(1 — 2it) — 1]
(there is a misprint in the formula) is Cit/(1 — 2zt) as used here, as may be veri-
fied by using the appropriate formulas with 8 = 0 on pp. 324-325 of [5].

For large n we may approximate I,—1(+/C¢) in (8.9) by writing

_(Ce/H)" TV & (Ce/4)T(n)
La(V@) = =5y & v + 9

(Cg’/‘l: (n—1)/2 200: ( )

T (n) i=0]

(Cg./‘](:)(n —1)/2 ch
T'(n)

and thereby get

. e—clz—m—w/zn)]/z ¢ n—1
(8.10) D)~ 3% T — <§> .

If we set {[1 — (C/2n)] = x°, (8.10) yields
. 2 e—clz e—x2/2 <x2)n—1 X2
2n

- e—x2/2(x2/2)n—1 dx2/2
= T'(n) ’

or ¢{[1 — (C/2n)] asymptotically has a chi-square distribution with
o2n = (r — Dkt + 1)/2 df.

It is readily verified that 1 — (C/2n) = p, Box’s scale factor in the chi-square
approximation ([5], p. 329).

For other approximations to (8.9), see Abdel-Aty [1].

Exampres: (a). For the first example'we use the data given by Smith [29],
Table 2, which he used to calculate a linear discriminant function for a group of
25 normal persons and 25 psychotics. Here k = 2, r = 2,

8 = < 6.92 —5.27) g, = <36.75 13.92) S = <21.83 4.33)
—527 4089/’ 13.92 287.92)° 433 16440/’
Ni=Ny=24, N =48, |8 =255.1859, [S: = 10387.2936,
S| = 3570.1031,
2l = 24 log (3570.1031/255.1859) + 24 log (3570.1031/10387.2936) = 37.7268,
= (16 + 12 — 2)(2/24 — 1/48)/12 = 135416 = &', B = .368,
n=(2-—1)(2)3)/4, 2n =3 =m,
¢ =21 =377268 = B}, B=614

(8.11)
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In Fisher’s B Table ([10], p. 14.665) we find the 5 per cent points for n; = 3 and
B8 = .2 and .4 to be, respectively, 2.8140 and 2.8680. We therefore reject the null
hypothesis of equality of the population covariance matrices. Smith [29] does
remark that the correlations are not significant, but the variances of the psy-
chotics are significantly greater than those of the normals.

(b) For the second example, we use the data given by Kossack [19] for a
problem of classifying an A.S.T.P. pre-engineering trainee as to whether he would
do unsatisfactory or satisfactory work in his first-term mathematics course.
The three variables used are x; , a mathematics placement test score; x» , a high
school mathematics score; x; , the Army General Classification Test score. There
were 96 trainees who did unsatisfactory work and 209 who performed satisfactory
work. Herek =3, r =2, N, =95 N,= 208 N = 303,

<133.8592 7.0572 2.0717) 217.1505 14.0692 35.7085)
S]v b

7.0572 41288 —20109), S, = ( 14.0692  3.9820 4031

20717 —20109 27.7016 35.7085 4031 72.7206

191.04 11871  25.162
S = 11871 40280 —.35378), S| = 13313, |Ss = 43779,
25162 —.35378 58.606

34053 34053

C = (54 4+ 27 — 3)(1/95 + 1/208 — 1/303)/12 = .078221 = 8*, B = .28,
n = (2 — 1)3)4)/4, 2n =6 = ny,
¢ =2 =2270867 = B, B = 15.06.

In Fisher’s B Table ([10], p. 14.665) we find the 5 per cent points for n, = 6 and

= .2 and 4 to be, respectively, 3.5602 and 3.5951. We therefore reject the
null hypothesis of equality of the population covariance matrices. An assump-
tion of equality is, however, implicit in the procedure used by Kossack.

(c) For the third example, we use the data given by Pearson and Wilks [24],
for five samples of twelve observations each on the strength and hardness in
aluninum die-castings. Based on their data (note that they did not use the un-
biased estimates), the details of which are not repeated here,

=2 r=5 Ny=-++=Ng=11, N = 55,
log |81 = 582588,  log |S:| = 6.63942,  log |Ss| = 5.31904,
log |Ss| = 6.66973,  log |Ss| = 5.35937,  log |S| = 6.13953,
o = 55(6.13953) — 11(29.81344) = 9.726,
C = (16 + 12 — 2)(5/11 — 1/55)/12 = .945454 = 52! B = .972,
n = (5 — 1)(2)(3)/4, o2n =12 = my,
¢ =2 =9726 =B, B =312,

|S| = 34053, 2] = 95 log
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In Fisher’s B Table ({10], p. 14.665) we find the 5 per cent points for n; = 7
(the largest there tabulated), and 8 = 0.8 and 1.0 to be, respectively, 3.9144
and 4.0005. Since the tabulated values increase with increasing n; for a fixed
B, we do not, in this case, reject the null hypothesis of equality of population
covariance matrices. This is consistent with the conclusion reached by Pearson

and Wilks [24].

9. Asymptotic distribution of Iz. In (4.9) we defined Iz and made certain
statements about its asymptotic distribution which we will now confirm.
It is known that the logarithm of the characteristic function of the distribu-

tion of 21 is given by (see [31], p. 492; [4])

) F(g) . P(N(l — 2it) — a>
©1) logo®) = (b — 1) log w + 2 log - (N z_ a) .

Employing Stirling’s approximation as in (8.5), and retaining comparable terms
as in (8.7), we have

k(k — 1 : Cit
92) log $(t) = — —(ﬁz—) log (1 — 2it) + 5,

where C = k(k — 1)(2k + 5)/12N.
The statement at the end of Section 4 then follows from (9.2), (8.8), and

(8.9). From (8.11) we may also deduce that
' k(k —1)(2k + 5)\ _ _
ofi (1 - MECDELE D) v — 4(ak+ 5) log )

asymptotically has a chi-square distribution with k(k — 1)/2 d.f. This latter
result is given by Bartlett [4].

10. Asymptotic distribution of J(1,2) for the linear hypothesis. From results
derived by Fisher [9], Girshick [11], Hsu [15], [16], [17], and Roy [27], it is known
that the probability density of the distribution of the roots of |S* — IS| = 0
(see (5.18)), for (n — r) large, is given by

1)\(r—D2/2_pl2c7 (r—p—2)/2
(2) ™ (ll lp) e—%(ll+---+l,) II (l, _ L)

oy F ( - a> P(p 1 a>

a=1

and that of the roots of |SzuSti Sz — 1Sa| = 0 (see (6.3), (6.4)), for (n — ki)
large, is given by

1\k1k2/2_ko/2 .. (ky—ko—1)/2
(2) ™ (Vl ng) e—«}(vl+...+v,,’) H (V, _ Vi),

(102) ¥ /(I +1—a k2'+1—a> 5
gr( D )P< 2

where V= (n — k1)l;.
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From (10.1) and (10.2) it is readily derived that the characteristic functions
of the asymptotic distributions of 27(1:2) = J(1,2) in (5.18) and (6.4) are,
respectively, (1 — 2i)" "7 and (1 — 2it)™***”%, whence the conclusion as to
their chi-square distributions. The chi-square decompositions in Section 5 and
Section 6 follow from the fact that asymptotically the distributions of

bnry oo by

of (10.1) and V1, -+, Vi, of (10.2), assuming that the corresponding popula-
tion parameters have the null hypothesis values, are independent of the distri-
bution of the remaining roots and are given, respectively, by

( %) (r—1—m) (p—m) Izﬂ_(p-—no 2

(103) 11 P(r";‘—a>r(p—m;-1_a>

a=m+1
(Tgr ==+ lp)(r—p_z)/ze—*(l""”+"'+l") H G - 1),
1>7

(%) (k1—m) (kg—m) /21r(kz—m)/2

ke kl—m+l—a> kg—m-l-l—a)
s I 1‘( 5 1‘( 5

a=m+1
(Vs -+ Vi) SH g4 met08) TT (7, — 7).
iS5
The characteristic function of the distribution of 21 of (7.1.10) could also
have been derived from the distribution of the roots of |[N1S; — IN2S:| = 0,

given by,
P<N1+N2+1—0¢>
1rk/2 fI 2
st N1+1—aFN2+1—ark+1—a
(10.5) 2 2 2

oo WP~ 1)

1>]
(41 - (@4 BT

11. Concluding remarks. The validity of the conjecture at the end of Sec-
tion 7.1 is under investigation, as well as the distributions of J and J'(F;) of
Section 7, and related power functions.

It might also be mentioned that we have a basis for assessing the cost of trad-
ing observations for dimensions. If there is more than one significant linear dis-
criminant function, then N; observations with the linear function associated with
A\ (one dimension) would be as effective as N observations with the original
multidimensional variables, where NJ(1,2) = N1J’(1,2; \y). Similar conclusions
hold: for more than one linear function.

Procedures similar to those used herein to estimate I(1:2) and J(1,2) are
also applicable to problems of testing appropriate hypotheses for other than
normal populations.
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I am indebted to the referees for comments which have contributed to improve-
ments in this paper. \
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