SOME APPLICATIONS OF BIPOLYKAYS TO THE ESTIMATION OF
VARIANCE COMPONENTS AND THEIR MOMENTS!

By RoBERT HOOKE?
Princeton Unsversity

1. Summary. Bipolykays were introduced in [3]. They form a family of sym-
metric (row-wise and column-wise) polynomial functions of the elements of a
two-way array, with the property of being inherited on the average, and such
that any similarly symmetric polynomial function of the same numbers can be
written linearly in terms of the bipolykays. This paper will describe some ap-
plications of bipolykays to problems in the analysis of variance of two-way
classifications, using the formulas and tables derived in [3]. A linear model which
includes contributions from interaction as well as independently sampled cell
contributions is given in Section 3, and applications are made to certain cases
of this model. These applications include (a) finding unbiased estimators for the
variance components in the case of no interaction as well as unbiased estimators
for the variances of these estimators (Section 6), (b) finding expressions for
means and variances of some of the functions of degrees 1 and 2 that are of
interest in the problem of sampling from a matrix (Section 7), and (c¢) finding
unbiased estimators for variance components in the general case, including ex-
pressions for the variances of these estimators in the case of infinite populations
(Section 8).

2. Introduction. The purpose of this paper is to describe some uses of bi-
polykays, which were defined in [3], in connection with problems arising in the
analysis of variance. A linear model is given in Section 3 and an analysis of vari-
ance notation, in Section 4. Sections 6, 7, and 8 are given over to derivation of
results related to the estimation of variance components in various special cases
of the linear model.

It will be necessary to make frequent references to [3]. However, in order to
enable the reader to get the gist of the present paper without referring to [3],
the remainder of this section is devoted to a summary of definitions and fre-
quently-used results.

The symbol D_*, for “distinct sum,” means a sum taken over all subsequent
subscripts, but with subscripts kept different when they are indicated by different
letters. Thus
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ESTIMATION OF VARIANCE COMPONENTS 81

When the z’s are matrix elements, the distinctness relates to row subscripts and
to column subscripts. Thus

2
fl_‘," ZTijTiw = TuZiz + TeeZu + Tale + TeZa.

For a set of numbers z;, « -+, x,, the symmetric means of degrees 1 and 2
are

<1> = Z#xi/n,
(11) = > #za; /n(n — 1),
(2) = XFai/n.

The polykays are linear combinations of symmetric means denoted by #’s with
subscripts. Those of degrees 1 and 2 are defined by

kl = <1>)

ku = <11>,

ke = (2) — (11).
Symmetric means and polykays are inherited on the average; this means that if
T, +++, T, are a sample from a population ;, - -+ , z», and if primes are used

to denote values defined over the population, then
ave ks = kg, ete.,

where “ave’” means average over all possible samples of size n.

If 2, -, x, is a sample from a population P’ (with polykays ki, k11, ete.)
and y1, * -+ , ¥a is a sample from a population P” (with polykays k1, k11 , etc.),
and if 2, - -+ , 2, is a sample formed by letting z; = z; + y. ¢ = 1,2, --- , n),
then
(1) ave aver ky = ki + ki .

Here k; (with no prime) means a polykay over the z’s, “aver’’ means average
over all possible permutations (or randomizations) of the z’s and y’s before
adding, ahd “ave’’ means average over samples as before. Equation (1) is known
as a pairing formula. Pairing formulas for the polykays of degrees 2 are

ave aver ky = ku + 2kik 1+ ki R

!’ n
ave aver ky = ks + k2 .

We now let |zij]| be a two-way array of numbers (¢ = 1, 2,---, r;
j =1,2, -+, c) which may be regarded as a bisample from an array [z||
I=12---,R;J =1,2,---,0C), a bisample being chosen from a popula-

tion matrix by taking those elements which are at the intersections of a selected
set of r of the R rows and ¢ of the C columns.
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(;‘reneralized symmetric means (g.s.m.’s) of degrees 1 and 2 over a bisample
are

i :] =27 a, /[ 1,

1 IJ = Z" Tij Toom [ 1e(r — 1)(c — 1),
.

i | = X myme [ relr — 1),
(1 17]

= > iz [ re(c — 1),

2-12 > i/ re

Those of degrees 3 and 4 can be expressed in similar notation, but to save space
areindicated by 41,4, - - - , #po for the 10 g.s.m.’s of degree 3 and by f1, fa2, -+ - , fas
for the 33 g.s.m.’s of degree 4. An arbitrary symmetric mean may be denoted by
(|||}, the ||« representing the matrix of entries.

The bipolykays are linear combinations of the g.s.m.’s, represented in the
same way with parentheses replacing ( )’s. Those of degrees 1 and 2 are de-

Cj=}%
)-=121]
(-6
G I B
() I e B e B e B

Those of degrees 3 and 4 are indicated by T, Tz, -+, Twand Fy, Fp, - -+ , Fy,
respectively. (See Section 8 of [3].) A general bipolykay may be indicated by

(llal)-
Bipolykays and g.s.m.’s are inherited on the average in the sense that

wve (1) = (1) ete,

3 Square brackets are used, for convenience in printing, in place of ()’s for g.s.m.’s hav-
ing more than one row.
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the prime and “ave” having the same meanings as for polykays above, with

<1 _>, - [1 —]I = 27" s / RC, ete.

Pairing formulas have a meaning analogous to that defined above for polykays
and are as follows for bipolykays of degrees 1 and 2, “aver” meaning average
over permutations of rows and of columns:

ave aver (i :) = C :)I + C :>”,

wourer (1) = (1) +2 (LY () +(4y)
)-()+G)

ave aver( > (1 i>, + <i i)il,

ave aver <% :) (% :)l + (% :>”.

In general, it is shown in [3] that the pairing formula for a bipolykay (||«||) is

ave aver ([lal) = (llel])’ + (llell)”

unless the matrix ||| can be expressed as a direct sum
|| o1 0

1
ave aver ( 1

1

1

llell =

0 om

where the a; are matrices. If the ||a;|| cannot be further broken down, then, in
this case,

ave aver (lal) = (lafl)’ + (lal)” + 22 (18I (VID”,

where the sum extends over all ||8]| and ||y| such that ||8]| is the direct sum of

1,2, ---,orm — 1 of the ||a;] and |}v|| is the direct sum of the remaining ones.
The reader is referred to [3] for the general definitions exemplified above, for

multiplication formulas, for conversion formulas for degrees 3 and 4, etc.

3. The linear model. Each example discussed in this paper will be based on a
linear model which is a special case of the following:

2 Toje = 0 + ns + &5 + Nij + wije .

Here 7, j, k run from 1 to r, ¢, b, respectively. The 6’s, 5’s, £’s, and w’s are inde-
pendently sampled contributions from populations described in Table 1.

The systematic interactions A;; are not independently sampled but are “tied”
to the #’s and £’s; i.e., the M’s come from an B X C matrix having a row cor-
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TABLE 1
Notation associated with model (2)
Contribution Sample Size Population Size Population Polykays
0, general 1 Arbitrary k;'", lcﬁ", ete. ,
75 , TOW r R ky , kun , ete. (k}/ = 0)
& , column ¢ c ki, ku , ete. (ki = 0)
wije , cell rch N k", Ky, ete. (b = 0)

responding to each % and a column to each £, so that for each selection of an
7; and a &; there is a unique \;; that accompanies them. Since the »’s and £’s
represent row and column contributions, respectively, it is assumed that the
row means and column means of the matrix of A’s all vanish; otherwise the popu-
lation matrix of M’s is arbitrary and so must be described in terms of bipolykays
rather than polykays.

4. Analysis of variance notation. The matrix
”xi'J'”’ i=1,2,~~~,'r;j=1,2,-~-,c

will represent a bisample from a population matrix
”xIJ"’ I= 1, 2, s ,R;J =1, 2, TN ,C_

For any matrix ||z;j|, whether it be a population matrix, a bisample from such
a matrix, or simply a two-way array of sampled numbers such as arises in con-
nection with some linear model, our interests will center around certain families
of symmetric quadratic functions of the z’s. Two of these are

(a) the bipolykays (_{ ;), (i i), G :>, <§ :), and

(b) the various sums of squares and mean squares associated with conven-
tional analysis of variance procedures.

The mean squares (denoted by MS) and sums of squares (denoted by SS)
are defined as follows, where a dot represents an average over the subscript it
replaces:

Designation Mean Square and Sum of Squares
Rows MSR = SSR/(r — 1) = ¢ i (x:. — 2.)"/(r — 1)
Columns MSC = 88C/(c—1) =r > i(x;—x.)/(c—1)

Residual or balance MSB = SSB/(r — 1)(c — 1)

= 3 > (e — xi — w4 2. )/ — 1) — 1)
Mean MSM = 88M = > > ;a’. = rex’,
Total 88T = i 2o (@i — =)

(As always, we have SST = SSR + SSC + SSB.)
When it is desired to emphasize the fact that a population matrix is being
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discussed, subscripts will be capital letters, dashes (instead of dots) will indicate
averages over the population, and primes will indicate population values; e.g.,

SST" = ZR: Zc: (s — 2-)"

I=1 J=1
In dealing with a population matrix we shall use the following quantities:
0 =zx__ (i.e., 0= Z qu/RC),

n = Tr—- — T-—,
Er=2_y—2__,
Aty = 2%pg — 21— — g+ 2.

The elements of the matrix can then be thought of as built up from the #’s,
£s, N’s, and 6 as in model (2), taking the «’s in that model to be 0. We are then
interested in a third family of quadratic symmetric functions, namely

(c) the variance components,

¢» = variance component for rows
=i -2 /R -1
= ks,
where k; has the meaning assigned in Table 1;

2 .
¢ = variance component for columns

= ZJ @y —z__)'/(C—1)
=ky ;
o =2 2 @ — 2 — 2y +2- )/ (R — 1)(C — 1).

In this section we shall express the SS’s in terms of the bipolykays (so that
moments of the former can be easily obtained), the bipolykays in terms of the
MS8’s (so that values of the former can be computed by standard techniques
used in computing the latter), and finally the M 8’s for a population matrix in
terms of the variance components (to help in expressing unbiased estimators
for the latter). These various expressions are derived by elementary algebra, so
only one example of the derivations will be given:

To express SSR in terms of bipolykays, for example, we have

SSR = ¢ Zi (17;. - x..)2
=c >z — rex’..
c 2w =cyu (jzi/c)
1
=z Zt‘ (E: xgi + ;‘:" xi,’xac)

THER N |

Since
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and since

1'(::1:,2 L= TC(Zi,j zi; [/ 7'0)2

= 7'10 (s @i + 27 myma + 27 T + 27 TijTem)
1 2 - 11 1-
r—c{rc I:_ _:' + relec — 1) [_ _:' + re(r — 1) [1 _:'

+ re(r — 1)(c — 1) [i I:I}
we have

s- o 2] e e[}

The equations defining the bipolykays of degrees 1 and 2 (Section 2) enable us
to express SSE at once as a linear combination of bipolykays. The result, to-
gether with similar ones for the other S8’s, is contained in Table 2.

The equations represented by the first four rows of Table 2 can be solved to
produce the following inverse relationships, where it is convenient to use MS’s
in place of SS’s:

®) (% :) — MSB,
11
@ 1) = asr - M) /6
®) (i :) = (MSC — MSB) /1,
®) (f ’1') = (MSM — MSR — MSC + MSB) / rc.
TABLE 2
Coefficients for SS’s as linear combinations of bipolykays
) (1! (i2) (D)
SSR r—1 c(r—1) 0 0
SscC c—1 0 ric — 1) 0
SSB r—1-1) 0 0 0
SSM 1 ¢ r re
SST rc — 1 c(r —1) ric — 1) 0
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Finally, it follows immediately from the definitions that, for a population
matrix,

ox = MSR' / C
()
oo = MSC' / R
()
ox = MSB'

(9) B (2 ->'
b. Expectations in the case of no interactions. We suppose now that all the
N’s in (2) are zero, and for the present that b = 1, so that the model is

(10) xii=0+7]i+£1’+wi}; ":=1’2;""7;‘7‘:‘1)2"";6'

Our first problem is to find the average values of bipolykays defined over the
r X carray of z’s (and distinguished here by having no prime or asterisk) in terms
of the polykays (one to four primes) of the four populations described in Table 1.
The procedure is to apply bipolykay pairing formulas to (10). The populations
from which come the 7’s, £’s, w’s, and 9 are all special cases (numbered I to IV,
respectively, below) and will now be considered one at a time.

Cask I. The population of #’s is not a matrix population, but it can be thought
of as a matrix whose Ith row is a vector of C components, each equal to 7,
(I =1,2, -+, R). Any sample of r 9’s can then be regarded as a bisample of r
rows and ¢ (arbitrary) columns from this matrix. Bipolykays of this bisample
will be written (|| « ||)*, with a single asterisk. Referring to Case I of Section 7

of [3], we see that
(Il @ )* = khn...,  if the entries of (|| a [|)* are all 1’s in different columns

=0 otherwise,
m, n, + - - p being the row sums of the entries in || « ||, and k* denoting a polykay
for the sample #;, - -+, 4, which defined the bisample in question. The same is

obviously true for the population.
Case II. The remarks just made for the »’s apply to the population of £’s
if we change rows to columns, single primes and asterisks to double primes and

asterisks, etc.
Cask II1. The population of w’s enters as in Case IV of Section 7 of [3]. There



88 ROBERT HOOKE

it was shown that (|| @ ||)*** becomes, on the average (over the kind of randomiza-
tion that is pertinent here),

kit%.,  if m,m, -+ -, p are the entries of || « || and if all are in different row

and in different columns

0 otherwise.

Case IV. In sampling 6 we take a sample of size 1 and make it a bisample by
putting this one number into every cell of the » X ¢ matrix. Referring to Case III
of Section 7 of [3], we see that

(|| e [[)**** = ¢™  if all m entries of || « || are 1’sin different rows and differ-

ent columns

=0 otherwise

Hence ave (|| a|)**** = (m)""” or 0, respectively.

Keeping these facts in mind, together with the fact that k1 = ki = ki’ = 0,
we can apply the pairing formulas to the bipolykays of degree 4 or less to obtain
some useful results that are collected in Table 3 below. We first derive a few
of these results to show how the pairing formulas are used.

The only first-degree bipolykay is, of course, indecomposable, so its pairing
formula (Section 2) gives us

! n n nn
woaver (1) = (L) + () + (1) + (1)

=ki+ 8+ 0+ R

2z
=k,

since k1 = ki’ = k' = 0.
The indecomposable bipolykays of degree 2 can be treated in exactly the
same way; e.g.

weaver (2 )= (2 ) + (20) + (C0) + )
= k;’/’

2 - " . 2 o i . . e
since the term (_ _) is really aver ( _ _ , which is k2 by the remarks

under Case III above. The other terms, i.e. those with one, two, and four primes,
vanish in accordance with the remarks made in Cases I, II, and IV, above.
Decomposable bipolykays lead to more complex expressions. Averaging

(1 I), for example, produces

1_ 1_/ 1_’/ 1_’// 1~_IIII
a"”"er(— 1) = (— 1) +<— 1) +(— 1> +<— 1)

= ki + ki + ki’ + @)
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As an example for degree 4, we consider the decomposable bipolykay

-11
Fu={1--]).
1 - -
The pairing formula is

ave aver Fy, = ave aver (F5, + Fiit + Fi** + Fi¥™)
-+ ave aver Z <1 i) (i :) ,

where % and v represent different numbers (1, 2, 3, or 4) of asterisks. By the re-
marks made under Cases I through IV, each term of the form ave aver Fy; vanishes,

L3 v
1- .
as does each term ave aver (_ _) ave aver {  _ except in the case where

u and v represent a single and double asterisk, respectively. (The assumption of
independence in sampling provides that the average of the sum of products is
equal to the sum of products of averages.) Hence we have

1 1 * 1 —\ Xk
ave aver F;; = ave aver (_ _) <1 _)

= koks'

Continuing in this way, we obtain the results shown in Table 3.

The following, omitted from Table 3, have expectation 0: T, Ts, T ; Fuo,
Fls,Fu,Fni,Fle,F17,F20,F21,Fzz,Fzs,F24,F25,er,Fzs,Fso,Fsl,andFsz-

The following have expectations which are complex expressions that will not

be used in this paper: <1 I) 3Ty, Ty, Ty, T7;F1,Fs,Fs,Fg,Fr,F1y, and Fos.

The first formula in Table 3 says that (1 :>, the mean of the z’s, is an un-

TABLE 3
Bipolykays (column A) and their expected values (column B) in model (10)

4 B 4 B
(1 -) B F, kn

- - ! Fs kgé
(1 1) Y Fs ky

= T 2 F 9 4
) " i
- Fw /lcam
2 -) K Fi ky K
- Fou 2
T, ks Fy K
Ty ks

T ks
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biased estimator of the mean of the 6 population, which is obvious, since the
other populations have zero means. The second formula (reading down) says
that (i i) is an unbiased estimator of the component of variance for rows.

In (4) it was pointed out that
(1 1) (MSR — MSB) / ,

so this is the usual result. Similarly for the third formula. The fourth says that

is an unbiased estimator of the “error variance.” Since is

M 8B, this is well known. Interpretation of the formulas for the F’s will be given
in Section 6.

The two-way model with replications,
(11) Zie = 0 + 0 + & + wie, k=1,2,---,b,

where everything is as in (10) except for the greater number of «’s sampled,
can be treated in the same way if we suppose the population of w’s to be infinite.
First we find z;; = z;;. , the average in each cell. Then

=0+ 7+ & + wij,
and we have the same situation as before, with this exception: if P, represents
the population of w’s, the w;;. come from the population P, of samples of size b
from P; . It remains only to find the polykays of P, in terms of those of P; .

Any wijy = Z,,w. ;7% can be thought of as a sum of b numbers from b populations
all equal to P; . Hence if kis* k3* ) represent polykays forthe wi;y and w;;. ,
respectively, we have, by the pairing formula for ke , for example,

ave aver ki ¥ = bkiy’ + b — l)ké"k;"
b2klll
Finally, since ks is of degree 4, we divide by b* to obtain
ave aver ki " = ks''/b%.
In similar fashion we find that
ave aver k3 **) = k;''/b,

11" 2
ave aver k3**© = k'’ /v,
" 3
ave aver ki**® = k"’ /v%,

It follows that for model (11), Table 3 remains as it is, except that ks ', k3'/,
kss', and ki'’/, wherever they appear, must be divided, respectively, by b, ’,

b, and b°. For example,

24
aver aver Fyg = koks ' /b,

Fys being defined over the matrix ||z,;.||.
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6. Estimating variance components and their variances in the case of no
interactions. In this section we consider applications to the case described by
model (10) or (11). We begin with model (10), where components of variance
for rows, columns, and “error” are ks, ks', and k;’’, respectively, and for which

respective unbiased estimators (Table 3) are (1 1), (i :), and <2 —).

In order to find the variances or covariances of these estimates, one may proceed
as in this example:

(22 = sveer (1) fove e (2 )
var\ )= aveaver| | —Javeaver|\

(12) .
ave aver (1 1) — (ks)*

Referring to the relevant multiplication formulas, we find that

hpyr=Et1

=1 kzz +5 k4

([51, p. 516) and that
(f 1) fre(r + 1)(c — DFs + o(r — D) — DFs
+ 4r’(c — 1)Fy + 2r°Fyy + 4r(c — 1)Fy
+ 4(r — 1)(c — 1)Fy + 2rFy
+ 2(r — 1)Fy] / re(r — 1)(c — 1)

by Section 9 of [3]). N\
From Table 3 it follows that

ave aver<1 1) [re(r 4+ 1)(c — Dkas + c(r — 1)(c — ks + 4r(c — 1)kaks”’
+ 2rkss’) / re(r — 1)(c — 1)

Hence (12) becomes

1 1 2 III 4 IERAL4
"“( ~)=c(r— D=1 ™ T =D ~1) fraks
(13) )
+(~—T_ 1 >k22+<"_1‘a>’°‘
In similar fashion one obtains
1 - ) 2 124} 4 1,1
(i) - YTBT——Dk Tre=pht

(14) 2 1
+<c"—__ 1 C >k22+<"_6)k47
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var(% :) = <r~lc — %) Kl
+{(7‘ - 1)2(c -1 3 1)} k32’
1o COV{<1 1)(1 :)1 = 2kiy’ / re(r — Die — 1),

17) cov {<— :

(15)

| =

i>’(% :)} = —2ks' /c(r — 1)(c — 1),

(18) cov{(} :)(_2_ :)} = —2k /r(r — (e — 1),

Formulas (13) through (18) have, of course, been derived without the use
of bipolykays, and are now new. Our interest here is in using them to derive
unbiased estimators of the variances and covariances of estimated variance
components. In the above formulas each variance is given in terms of population
polykays ks , ks , etc. If one could observe the actual #’s, £’s, and w’s that are
sampled, the sample polykays k3, k3", etc., would then provide unbiased esti-
mators of the population polykays. In practice, however, one cannot do this,
so that the formulas above do not provide unbiased estimates.

Inspection of formulas (13) through (18) shows that one would like to have
unbiased estimators for the following:

’ rn 1224 19717 411 7 n "
kzz,kzz,kzz ;kzkz ,kzkz ;k4,k4,k4 .

Such estimators are provided at once by Table 3, and are, respectively, the
following bipolykays computed over the matrix of a’s:

F4,Fﬁ,F27,F18,F19,F8,F9’F88-

Substituting these into formula (13), we have

: . 11 2
Unbiased estimator for var ( ) = m—_—l—) Fo

4 2 2 1 1
e(r — 1)F‘8+<r— 1 k- 1>F‘+(F'"R>F8’
and similarly for the other formulas.

Turning now to model (11), with replications, and again supposing the popu-
lation of w’s to be infinite, we note that estimators for ks, ki’, and ki’ are,
respectively, <1 1), <} :), and <§ :> / b, these bipolykays being applied
to the matrix ||z;;.||. Hence (13) through (18) give us the formulas for the vari-
ances and covariances of these estimators if only we divide the entire right-hand
sides of (15), (17), and (18) by b’, b, and b, respectively, and change (in all for-

+
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mulas) all of the three-primed quantities in the manner indicated at the end of
Section 5.

7. Moments in bisampling. The problem that led originally to the development
of bipolykays (see [1]) came from this model of the educational testing process:
Given a population of C' questions (a “test”) and a population of R examinees,
suppose that the score of examinee I on question J will be ;. A “test form,”
consisting of a random sample of ¢ of the C questions, is given to each of a random
sample of 7 of the R examinees. The “test score” of the ith examinee is Z;‘_]_xij ,
the average test score of the group is D> ;;/r, etc. One wants means and vari-
ances of quantities such as these.

Insofar as problems connected with bisampling can be expressed in terms
of finding low moments of first- and second-degree symmetric polynomial func-
tions, they can be easily solved by application of bipolykays. For degree 1, we
have, for example,

w1 )= G-m)C ) + G- -0

by Section 10 of [3]

B <l - 1)(% - 1%:) MSB' by (3), 4, (5).

As far as first moments of functions of degree 2 are concerned, we can derive
the following formulas:

E(MSR) = MSB' + %,(MSR’ — MSB)

(19)
= <1 - %)crf + coy.
E(MSC) = MSB' + 1% (MSC' — MSB')
(20)
= (1 - %) af + roy.
(21) E(MSB) = o3.
We use one of these to illustrate the derivations:

_ <2 —>’ T <1 1)' by inheritance

- - on the average

(ESMR)= ave {(? :> +c (1 1>} from Table 2
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= MSB' + (%(MSR’ — MSB') by (3) and (4)

= (1 - g) o + cod by (7) and (9).

Equations (19), (20), and (21) lead at once to the following unbiased estimators
of the o”s:

(22) 52 = MSB - (2 ‘),
(23) # = Lusk - (% - -> MSB = < _> (_ _)/c
-}MSC—(%——)MSB (1 :>+<_:>/R.

We turn next to the variances of the functions of degree 2. Variances and
covariances of the bipolykays were tabulated in Section 10 of [3]. From these
it is easy to find expressions, in terms of the bipolykays of degree 4, for the vari-
ances of the mean squares of the bisample, though these expressions are quite
long. To find the variance of M SR, for example, we recall from Table 2 that

MSR = (_2_ :) + c<f f)
Hence

var MSR = var (f :) + 2 cOV{G :) ; C f)} + ¢ var (1 1)

The three terms on the right-hand side of this equation are given in Section 10
of [3], leading to an expression for var M SR in terms of bipolykays of degree 4.
Variances of the estimated variance components can be found in the same way.
These expressions for variances of quadratic expressions are long and clumsy.
Formulas for unbiased estimators of these variances, however, are less compli-
cated. Suppose, for example, that we want an unbiased estimator for the variance
of 4%. We have

(24) bo =

var 8% = ave (6%)° — (ave 8%)°

— ave 8% — {(ﬁ i) + <f :>' / 0}2 by (7)
-west {0+ L)+ e L))/ ¢
= ave 8z 03{ 231 L P + CF1 + 4F3% + Fz) + C*(4F1; + 2F1s)

+ C'Fil + % [F3s + C(8F3 + 4F3;) + 6C°F3y + C°Fyl }
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the last step following from the multiplication table in Section 9 of [3]. It follows
that we have this unbiased estimator of var &% :

6% — C"{g t1 [Fs0 + C(2Fy + 4Fs + Far) + C*(4Fy + 2Fs) + C°FJ

L 1P+ OGP+ 4Fu) + 6CFa + Ol

In a numerical case, an estimator for var 6% is not likely to be wanted unless
&% itself has already been computed, so there is no reason for expanding & 6% in
bipolykays. It is of interest to note that the exponent of C (inside square
brackets above) is one less than the number of columns appearing in the
primary notation for each of the accompanying bipolykays; those bipolykays
occurring in the first set of square brackets each have two rows, and those in
the second set have one row.

8. Analysis of variance with interaction. We return now to the full model
(2), supposing only for the present that b = 1, so that the model is

(25) Zij =0+ 9+ &+ Nij + w45

That part of the sampling which pertains to the #’s, £’s, N’s, and 6 can be
described more simply (from the algebraic point of view, at least) by saying that

=04+ n+ &+ N, i=1;2,~-,r;j=1,2,-~,c,

form a bisample from some R X C matrix. (See Section 4.) The model (25)
then reduces' to

(26) Ty = pis + wij,

where the p;; are a bisample from a matrix || prs || for which o% , 6% , and o} are
defined as in Section 4, and the «’s are a sample of size rc from a population of
variance . We shall use here one and two primes or asterisks to refer to func-
tions over populations or bisamples related to p and w, respectively.

To find E(M SR), say, for this model, we recall that

MSR = <f :> +e (f f) from Table 2.
Taking averages and using the pairing formulas (Section 2), we have

2 —\* 2 _\ k¥
E(MSR) = ave aver (_ _> + ave aver (_ _)

+ c{ave aver <i i>* + ave aver (i 1>**} .

. , 2 _\** " 1 1\**
For the population of w’s we have aver |~ ) = ks and aver ( _ _ =0,
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as was pointed out in Section 5. Hence

E(MSR) = (2 :)l + K+ (f f)l

- <1 - %) ot + cok + o by (3) and (5).
Similarly,
E(MSC) = <1 - 1%) o + 10% + o
and

E(MSB) = ¢} + o°

Such results have been obtained before, for example in [4], though perhaps
not so simply.

In model (26) the lack of replication of course leaves the w’s and A’s con-
founded. We suppose now that there are b observations per cell, so that the
model can be written

(@7) Zigke = pij + Wijk, k=12 ---,b.
As in section 5, we consider the matrix of
Zij. = pij + wij.,

supposing again that the population of «’s is infinite. We then obtain

(28) E(MSR) = <1 - .g,) o + cox + o*/b,
(20) EQIS0) = <1 _ i?:) o + 1ok + o¥b,
(30) E(MSB) = o1 + /b,

where MSR means M SR for the matrix || z;;. ||, ete. Since
— 1 1 s —_— s 2
MSW = o g b —1 ; (@i — ;)

has expectation ¢, we find from (28), (29), and (30) the following unbiased
estimators for the variance components:

& = MSW,
6 = MSB — MSW/b,
8% = TSR/ — (% - 61*) 3SB — MSW/bC,

4% = JISC/r — G - %) JISE — MSW/bR.
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One would like to know the variances of these estimators, but in general the
third dimension introduced by the subscript % seems to preclude finding them
by means of bipolykays. However, if we are willing to assume that R and C are
infinite, we have

= (MSR — MSB)/c = (1 1>,

- arso - sy = (10),

and the variances of these can be found as follows:

T 1\2 P 2
var 6% = ave aver <£ 1) - {ave aver <1 1)}

T q 2
= ave aver 2 a;F; — {ave aver <i i)} ,

T 1\2

where > a,F; is the expression for <£ i) in terms of bipolykays of degree 4,

the a; being functions of r and ¢ given in Section 8 of [3]. In this sum 8 distinct
F’s appear, and their pairing formulas in the present situation become as follows,
by virtue of the remarks under Case III in Section 5:

ave aver Fy; = Fy; + 2 <2 ) "+ ko,

ave aver Fig = Fis + < ) ks,
ave aver F; = Fi, i=4,8,18,17,22,29,

where k2, etc., are polykays of the population of w;;. and can be expressed in
terms of the polykays of the w;; as at'the end of Section 5. Finally we have,
again from Case III in Section 5,

<1 1) (1 1>’

ave aver ~ ),
I 1 2

{ave aver (1 i)} = Fi,

by Section 9 of [3], since R and C are infinite. Hence
re(r — 1)(c — 1) var 6% = 2rc(c — 1)Fs + ¢(r — 1)(c — 1)F,
+ 4*(c — 1)Ff; + 2°°F1r + 4r(c — 1)Fis
+ 4(r — 1)(¢c — 1)Fy + 2rF3 + 2(r — 1)F3

and so
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+ 4r(c — 1) C f) /b
2

’
+ 4r (_ :) ka'/b + 2rks’ /b,

9. Computation. In order to make use of the formulas developed in this paper,
it is of course necessary to be able to compute the bipolykays in particular
numerical situations. Those of degree 2 can be easily found from equations (3)
through (6) of Section 4, after MSR, MSC, etc., have been computed by standard
procedures. A method of computation has been developed for the bipolykays of
degree 4, but it will not be given here, as it is very lengthy, and it is hoped that
better procedures can be found; this method was reported in [2], copies of which
may be obtained on request by writing the secretary of the Statistical Research

Group, Box 708, Princeton, N. J.
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