LARGE-SAMPLE THEORY: PARAMETRIC CASE!

By HermMAN CHERNOFF

Stanford University

1. Introduction. Large-sample theory is a branch of statistics which seems to
have developed because the existence of certain theorems in the theory of prob-
ability made it relatively easy to obtain good approximate results if the sample
size is large. These theorems, like the law of large numbers and the central limit
theorem, are extremely elegant, and frequently their elegance is captured by these
‘“easily” obtained results. This elegance has undoubtedly stimulated a great
many people to do work in statistics.

However, since one is seldom faced with an infinite sample, it is relevant to
ask whether asymptotic results are useful, and if so, where. In particular, one is
often asked whether a given sample size is large enough to justify the use of
asymptotic results. Frequently this question is embarrassing, and no answer is
available simply because the answer would involve the solution of the more dif-
ficult finite-sample-size problem and the use of nonexistent related tables. In
some cases, where this question has been treated, it has been shown that these
asymptotic results are very good approximations. One example is the study
wherein it was shown that the chi-square goodness-of-fit statistic has approxi-
mately the chi-square distribution for rather small sample sizes [1].

Even though results of this type are not available for a particular problem, the
study of the large-sample case could be justified on other grounds. Asymptotic
solutions of a problem frequently give insight into what constitutes a reasonable
procedure for the finite-sample-size case. Everyone who has had the experience
of seeing how obvious the solution to a certain problem is after spending hours de-
riving it can appreciate how suggestive an asymptotic result can be for the finite-
sample-size problem. For somewhat similar reasons, the method of maximum
likelihood estimation, which has various good large-sample properties, has be-
come extremely popular, even for small samples. In fact, a glance at the litera-
ture gives the impression that the property of being a maximum likelihood esti-
mate has almost been adopted as the criterion of optimality.

In this paper we deal with the parametric case. Ordinarily this is assumed to
mean that our observations come from a population whose distribution is speci-
fied by the value of a parameter 6, which may be a k-dimensional vector. A
specific problem would be that of testing whether two normal populations with
the same variance have the same mean. It seems that once more we must face
the fact that our problems may not reflect reality completely. There is a con-
siderable class of problems for which the parametric formulation is more than a

1 Presented as a special invited address at the Annual Meeting of the IMS in Berkeley,
California, December 27, 1954. This work was prepared with the partial support of the
Office of Naval Research.
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2 HERMAN CHERNOFF

convenient and very rough approximation. On the other hand, there is a consider-
able class for which this is not so. Even in these cases the same sort of reasoning
which was advanced to advocate the study of large samples results is apropos
to justify the study of parametric theory, and even of its application to problems
where the parametric formulation seems quite rough.

Another point of some interest is that the normal distribution, on occasion,
plays the role of a worst distribution. In such cases one may obtain quasi-
maximum likelihood estimates, i.e., estimates derived by the use of maximum
likelihood on the not necessarily correct assumption that certain random vari-
ables are normally distributed. These estimates may be inefficient compared
with the true maximum likelihood estimates. Still, these quasi-maximum likeli-
hood estimates have the same or as good asymptotic distributions as they would
have were the assumptions of normality correct. They also have the advantage
that their computation does not involve the knowledge of the true distribution of
these variables. Some complex examples are treated in [2]. A trivial example
which illustrates this point is the following. On the basis of a sample of » inde-
pendent observations, estimate the mean of the population when it is assumed
to be normal and it really is rectangular. Here, X is the quasi-maximum likeli-
hood estimate and the true maximum likelihood estimate is 4, the average of the
smallest and largest observations. The asymptotic distribution of v/n(X — p)
is normal with mean 0 and variance o° (the variance of the population), whether
the population is normal or rectangular. However, if it is rectangular, 4 will
be considerably more efficient.

This paper will be divided into two main parts. In the first I shall summarize
several techniques and results which are useful tools in the study of large-sample
theory and which, I feel, have been unfortunately neglected in the literature.
In the second part I shall consider some results in inference in the large-sample
parametric case. There, much of the space will be devoted to material which
has been of special interest to me. In this way I hope to communicate some of
my outlook rather than merely to present a long list of accomplishments.

Part 1

2. Stochastic limit and order relationships. The title of this section is taken
from that of a paper of Mann and Wald [3]. Their stated purpose was to provide
readers with certain general results which would eliminate the necessity on the
part of future authors of laboriously proving special cases, not to mention con-
fusing the readers. This aim seems to have been largely frustrated mainly by the
fact that the paper was practically forgotten. I wish to discuss some of these
general results and notations and some useful generalizations of these.

In standard notation one writes a, = O(r,) if {a,} is a sequence of real num-
bers and {r,} is a sequence of positive numbers such that a, / r, is bounded.
If a, / r» — 0 as n — o, one writes a, = o(r,). This notation is frequently con-
venient and suggestive. For example, if a, — 0 and b, is bounded, it follows that
axb, — 0. This may be simply written as follows: o(1) O(1) = o(1).
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An analogous notation may be defined for sequences of chance variables
{z,}. We may write 2, = O,(r,) (z. / 7 is bounded in probability) if for each
€ > 0 there is an M. and an N, such that

Pr{|z,| = Ma,} = ¢ forn = N..
Finally, we may write z, = 0,(r,) (|z.| / r» approaches zero in probability) if
Pr {|z.| = ern} 0 asn — © for each ¢ > 0.

It might be well to note here that these concepts are easily extendable to the
case where z, is not necessarily a real chance variable, but where z, may take on
values in an arbitrary space on which an “absolute value’ is defined.

One of the results obtained by Mann and Wald is part of their Corollary 1,
which states essentially that the algebra of o and O extends to 0, and O, . A
paraphrase of this result, which I have found very useful, is due to John Pratt
and is stated as follows: Suppose that {z,} is a sequence of chance variables de-
fined on an arbitrary space. Let {g.(z,)} and {f’(.)}, 7 = 1,2, -+, k, be
k + 1 sequences of measurable functions, and let {r,} and {r{’} be k + 1
sequences of positive numbers.

TuroreM 1. Suppose that

o 1) = 05r), P=1,20
FP@) = 0,(r), G=hat 1, kit 2,00,k
and that
(2) for any (nonrandom) sequence {a,} for which
f(an) = 0(D), =12k,
and

1) = o), j=lt 1, kit 2,k

hold, it follows that g.(a,) = O(ry).

Then, it follows that g,(x,) = Oy(r,). Furthermore, if the last line of (2) is re-
placed by g.(a,) = o(r,), the conclusion is §,(x,) = 0,(rs).

The following are some examples which may serve to illustrate the use of this
result.

ExawmeLe 1. If 4, 5 v, i.e., if y, approaches y in probability, or y, — y =
0,(1), and if 2, 5> 2, then y.2z, 7> yz. This result follows because we are given,
on the one hand, that y, — ¥ = 0,(1) and 2, — 2z = 0,(1). On the other hand,
it is easy to prove (and is well known) that b, — b = o(1) and ¢, — ¢ = o(1)
(ie., that b, — b and ¢, — ¢) imply that b.c., — bc = o(1). Consequently,

Yn2a — Y2 = 6p(1).

Several remarks may be made about this example. It may seem to involve a
tremendous amount of machinery for a very simple result. In fact, a direct proof
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may seem to be no more difficult than the “on-the-other-hand” part. Actually,
my own experience in class has shown that the direct proof is usually instructive
because students find it so difficult. The tremendous machinery is not so tre-
mendous if this approach is used frequently, for then it becomes standard.
Finally, this example illustrates how this approach clearly separates the non-
stochastic asymptotic elements of a problem from the stochastic elements.

One point which may have not been thoroughly clarified in the above exposi-
tion is the specification of z, , 2, 9., and a, in this example. To be perfectly
specific, we may let

Tn = (Yn, 20, Y, 2); ﬁcl)(xn) =Yn — Y,
9(@a) = Yuzn — 23 @) = 20 — 2
a, = (b,, ¢, b, ).

Exawmeie 2. If 2, = 0,(1), it follows that sin 2,/A/z, = 0,(1). All that needs
to be shown is that sina,/~/a, — 0 if a, — 0.

ExampLE 3. The following is the simplest of several results which concern:
Taylor Series Expansions.

CoroLLARY 1. If

(1) Tp = a + 0p(rs),

where r, — 0, and
(2) f(x) has s continuous derivatives at x = a, then

. sp(s)
(o = D@ 4 0,00,

flzn) = fl@) + (@ — a)f'(@) + -++ +
The following is a considerably more sophisticated example. Here the sepa-
ration of stochastic and nonstochastic elements is a blessing, for the problem is
not completely trivial under the best of circumstances.
ExampLE 4. Suppose that #; , z,, «- - , &, are n independent observations on a.
chance variable with density

f(x‘a’ﬂ,’Y):ﬁ for0 =z = o,
f(xla:B)’Y):"Y fOI‘Ot<.'L'§1,

whereof + (1 — a)y = 1,0 < a < 1,8 > 0,y > 0, and B # v. It is not
difficult to show that the maximum likelihood estimate &, of a maximizes

[M]Fn(a) [1 ;fn(a):,l—Fn(a),

where F, is the sample c.d.f.; i.e., F,(z) is 1/n times the number of observations
less than or equal to z. (Note that the function F, is itself random.) We may
write &, = ®(F,). A proof of the consistency of &, (i.e., that &, > a0 if a is
the true value of the parameter) is partially complicated by the possibility that
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&, may get close to zero or one. We shall merely outline the proof that &, is
bounded away from zero in probability, i.e., 1/a, = O0,(1).
First, it is known that

(1) sup | Fa(z) — Fo(@) | = o0,(1),
0<zg1

where Fo(z) is the true c.d.f., and it can be shown that

Fi®)

= 0,(1).
x

(2) sup
<zl

Secondly, it can be shown that if {G,} is a sequence of nonrandom c.d.f.’s
such that

(1) Sup, | Galz) — Fo(z) | = 0(1),
@) sup. [ @ _ o),
0<z<1 T

then 1/&(G,) = O(1). It follows that 1/&, = 0,(1).

One may observe that the role of x, in Theorem 1 is played here by the sample
cdf., F,. ‘

Another important consideration in the Mann-Wald paper involves a general-
ization of a well-known result which states that if z, has a limiting distribution,
then for a continuous function g, g(x,) has the corresponding limiting distribu-
tion. Hence, if x, is asymptotically normally distributed with mean 0 and vari-
ance 1, 5, has an asymptotic chi-square distribution with one degree of freedom
“This result was generalized to allow for the possibility that g has points of dis-
continuity. Unfortunately, through an oversight, a slightly weaker result than
could have been obtained was presented. The stronger version will be stated
after we introduce some appropriate notation.

We write £(z,) — £(x) (read: the distribution law of z, converges to the dis-
tribution law of z) or lim, .. £(r,) = £(z) if F.(a) — F(a) at every point a
of continuity of F, where F, and F are the c.d.f.’s of z, and z, respectively.
Here, £(x,) and £(z) represent the probability measures associated with z,
and z. Let D(g) be the set of discontinuities of the function g.

TurorewM 2. If

(1) £(@,) — £(x)
and
2) £(z; D(9)) = P{z ¢ D(9)} = 0,
then
Llg(xa)] — Llg@)].

ExawmpiE 1. If £(x, , ¥.) — £(z, y), where z and y are independently and nor-
mally distributed with mean 0 and variance 1, then £(x./y.) — £(z/y), which
is a Cauchy distribution.
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This theorem was extended by Rubin [4] to the case where z, and x take on
values in a topological space X. Here, the notion of convergence in distribution
law must be extended. Rubin uses the following definition:

£, — £ if for every closed set S, £(8S) = lim sup £,(S)

n -+ 0

or, equivalently,
£, — £ if for every open set S, £(S) < lim inf £,(S).

n —» o

For many spaces, in particular for metric spaces, this definition coincides with.
the following one used by other authors [5], [6]: £, — £ if for every bounded.
continuous function &,

fh(x) dL,(z) — f h(z) de(x).

Both of these are extensions of the definition for Euclidean spaces. With Rubin’s
definition, it follows rather easily that Theorem 2 applies whenever ¢ is a measur-
able transformation from one topological space into another.

Rubin [7] has applied this result to find the limiting distribution of quasi-
maximum likelihood estimates of the parameters of certain sets of simultaneous
linear stochastic difference equations. Donsker [8] derived a related result while
engaged in the justification of a heuristic derivation of the asymptotic distribu-
tion of Kolmogorov-Smirnov statistic given by Doob [9]. It is interesting to
note that in terms of our Theorem 2, Doob’s paper dealt mainly with finding the
distribution of g(z), after indicating that it seemed reasonable to expect that in
some sense £(x,) — £(z). There the role of z, was played by the sample c.d.f.
in the Kolmogorov-Smirnov problem.

The above exposition is far from complete. For example, the following result
for Euclidean spaces is rather useful. Note that it can be reworded so as to be
extended to metric spaces.

TueorREM 3. If £(x,) — £(), then L£(z, + 0,(1)) — £(x).

Furthermore, it seems to me that there still remains some work to be done
with a view to making the application of Theorems 1 and 2 more cut and dried.
Finally, it should be remarked that direct derivations which do not separate the
stochastic and asymptotic elements of the problem are sometimes simpler and
neater than the techniques suggested by the above results.

3. The Cramér extension of the central limit theorem. In 1938, Cramér [10}
obtained an elegant extension of the central limit theorem which, for some reason,
seemed to have been overlooked by statisticians. This seems to have been un-
fortunate, since it appears to be more relevant than the central limit theorem in
many statistical applications.

The central limit theorem is loosely described as follows. The average X,

2 The Borel field associated with the distributions is assumed to be that generated by the
closed sets.
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of n observations on a chance variable X is approximately normally distributed.
More precisely,

'\/;I'(Xn_ l") < fa e—t2l2
Pl‘{——-—a—=a —>_w—\—/=dt asn — o,

if X, is the average of n independent observations on a chance variable with
mean p and variance o”. Suppose, now, that a is not fixed but is replaced by a, ,
where @, & — © as n — «. Then both sides of the above expression would
approach zero. In this sense, the above equation could be considered to be still
valid. Even so, it is of importance, as we shall see in Section 6, to determine how
fast each side approaches zero and whether the two sides are asymptotically
equivalent, i.e., whether the ratio of the two terms approaches one.

In fact, Cramér has essentially shown that as long as a, does not approach
— o too rapidly, the two sides are roughly equivalent. However, this result
fails to hold when a, is of the order of magnitude of\/7. Note that if a, = —b\/n,
b > 0, we are essentially interested in Pr{X < ¢}, where ¢ < u. This case is an
espec1ally important one. Here, it is shown that roughly speaking, Pr{X < ¢} ~
m", where m = inf, E{e'*?}.

A result of Esseen [11] permits us to eliminate one of the conditions which
Cramér had to apply, and which led him to obtain weaker results for the case
where the chance variable is discrete. We shall state a version of Cramér’s
result.

TueoreM 1. If E(e'*) < o« in some neighborhood of t = 0, and if a, < —1,
and a, = o(~\/n), then

(M s 0l - [ a] o [ (G5)]

IOEA!

where A(?) is an analytic function of ¢ whose coefficients depend on the moments
of X.

A similar result is obtainable for the case where a, is positive. Note that

(a%/v/n)\(an/~/n)

may become large if a, is larger in magnitude than n"". However, this term con-

tributes a relatively unimportant amount compared with the normal approxi-

mation term which is asymptotically equivalent to (\/2ra,)™ exp (—a/2).
TueoreM 2. If E(e'*) < <« for ¢ in some neighborhood of 0 and ¢ < E(X), then

P{X, = \/~ [bo+ 4 - --+b’§;‘1+0< )]

where by > 0 and m = inf, E(e'™™); the quantities b; depend on ¢, and k is an
arbitrary positive integer.

1/6
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Cramér’s results were generalized by Feller [12] for the case where the ob-
servations do not necessarily have the same distribution.

PArT 11

4. Estimation. The development of the large-sample theory of estimation was
given great impetus with the publication by Fisher [13], [14] of his works on esti-
mation, where he proposed the method of maximum likelihood and suggested,
among others, the concepts of consistency, efficiency, and sufficiency. The im-
portance of the notions Fisher developed was soon recognized and the method
of maximum likelihood became very popular among statisticians. However,
these notions and the properties of the method of maximum likelihood were some-
what more complicated than Fisher or his immediate followers realized. Conse-
quently, many proofs dealing with the properties of these estimates were found
to be in error. Considerable light was thrown on these complications when J. L.
Hodges, Jr., produced an example of superefficiency. This concept was later
treated by Le Cam [15], who also presented an excellent historical survey of the
field of maximum likelihood estimation. We shall discuss these notions very
briefly, referring the reader to Le Cam’s paper for a more detailed discussion.

Let X be a chance variable whose distribution is determined by the value of a
parameter 6 which is assumed to be in a prescribed set Q. For the purpose of
large-sample theory, Fisher defines an estimate T as a sequence of functions
(T, = Tou(X1, X2, -+, Xa)}, where T, (X1, -+, X,) represents the “esti-
mated” point of @ when a sample X, - - -, X, of n independent observations on
X are observed.’

DeriniTiON 1. T is consistent if T,(X;, - - - , X,) — 0 in probability as n — .

Suppose that the distribution of X is characterized by the density f(z, 6).
Then, an estimate T* is a maximum likelihood estimate of 6 if] [%, f(X:, 6)
assumes its maximum value at § = T5(X;, Xz, -+ , X,). (In most applications,
the class of distributions may be represented by densities with respect to some
o-finite measure.) It may turn out that the maximum likelihood estimate does
not exist. For example, there will be no such estimate for the mean u of a normal
distribution if it is assumed that u is in the open interval (—1, 1) and that the
sample mean is greater than one.

When Fisher introduced the notion of asymptotic efficiency, he did this for
the case where § was assumed to be on the real line. Then 7' was said to be
asymptotically efficient if its asymptotic distribution (when properly normalized)
was normal with no larger variance than that obtained for any other consistent
asymptotically normally distributed statistic. (The variance of the asymptotic
distribution will be called the asymptotic variance and is, in general, no larger
than the limit of the variance of the normalized estimate.) Apparently, the re-
striction to asymptotically normally distributed statistics was felt necessary,
because Fisher had no way of comparing two dissimilar limiting distributions,

3 The extension of this notion to the case where the observations need not be independent
nor identically distributed is rather evident and we shall not formally treat of that case here.
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Fisher and various followers claimed that under suitable mild restrictions the
maximum likelihood estimates were consistent and efficient. That the attempts
to establish efficiency with the above definition would encounter grave difficul-
ties seems clear when an example of superefficiency is given. Le Cam’s example
is that of observations from a normal population with unknown mean p and
variance 1. Let T, represent the maximum likelihood estimate which is the mean
of n observations and let T, be defined as follows:

’ . 1
Tn = T” lf IT“I g W,

, . 1
Th=als i |To <—p,

where « is an arbitrary constant. Then it is clear that*
£{vn(Tn — w)} = N(, 1),
while
e{vVn(Tn — W)} > N©,1)  if u =0,
but
£{vVn(Tn — w)} = N0, ifp=0.

Hence, if 0 < o < 1, T is asymptotically normally distributed with asymp-
totic variance which is never larger, and sometimes smaller, than that of T, .
Let us call the set of 6, on which a statistic T, is more “efficient” than the maxi-
mum likelihood estimate T,, the set of superefficiency. Le Cam has shown
under certain conditions-that a set of superefficiency must have Lebesgue meas-
ure zero. In this sense the maximum likelihood estimate is efficient.

In his paper Le Cam makes use of Wald’s decision-theory formulation [16]
of the estimation problem. (Similar techniques were independently applied by
Wolfowitz [17].) His definition of efficiency and superefficiency involves the loss
function L, (¢, 8), which is introduced to represent the loss to the statistician
when he observes a sample of size n and estimates ¢, while 6 is the true value of
the parameter. Le Cam derives and uses the properties of Bayes’ estimates in
his attack. I wish to indicate an alternative approach which yields somewhat
weaker results but which will be useful to us later. We may assume that L is
measured in terms of negative utility [18], so that it makes sense to attempt to
select T so as to minimize the “risk” or expected loss E{L,(T,, 8)}. Then, cor-
responding to an estimate 7, we have a sequence of risk functions

Rn(Tn 3 0) = E{Ln(Tn(Xl y Ty Xn), 0)}'

This formulation permits us to compare estimates which are (1) not necessarily
confined to the real numbers and (2) do not necessarily have similar distribu-

4 N (0, 1) represents the normal distribution with mean 0 and variance 1.
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tions. However, a difficulty appears. First of all, it is usually quite difficult to
evaluate the loss function that the statistician really faces. On the other hand,
in many cases, it is reasonable to assume that L,(¢, 6) is a minimum at { = 6
and is well behaved near ¢ = 6. Hence, it is often reasonable to assume (in the
one-dimensional case) that for ¢ close to 6, L,(¢, 6) is approximately

con(8) + c2a(60)(¢ — )’

where ¢:,(8) > 0. Intuitively, this would seem to furnish a good excuse for
selecting estimates which minimize the second moment about 6. However, some
misgivings may arise when we note that lim,,. n{E(T, — 6)’} and the variance
of the limiting distribution of v/n(T, — 6) need not coincide. In extreme cases,
it is possible for an estimate to have a very good asymptotic distribution but
have infinite variance for each sample size. This estimate would not show up
well if we used E{(T, — 6)’} as a criterion. In fact, a utility function which
satisfies the von Neumann-Morgenstern axioms [18] must be bounded. Hence,
L,(t, 6) should be taken to be bounded, whereas the above approximation, which
may be reasonable for ¢ close to 6, is not. It is difficult to say what is an appro-
priate criterion without referring to the true L,(#, §). One might propose the
asymptotic variance of T, — 6 (when suitably normalized), but objections
could easily be raised against this.
Suppose that one considered estimates T such that

T, — 6 = 0,(1//n).

Let us treat-the expectation of the normalized loss function

LX(,60) = n [I_(_t%g_@]

where we assume
L(t, 6) = nl(t — 6)" + o(t — 6)’],
and o is assumed to hold uniformly in n as ¢ — 6. Then,

*
lim inf BAL(T», 0))

" W {min [(T — 0, g]}

BILAT,0) 5

=z

lim lim inf
k> n->00 f . _ 2 kz:l}
nE 1m1n I:(T,, 0) o

If \/n(T, — 6) has a limiting distribution with second moment a*(0), it follows
that

2
lim lim nE{[min (T. — 0)%, %]} = o(6)
k>0 n->o0
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and the asymptotic variance ¢(8) may be regarded as a lower bound for the
normalized risk function.

On the other hand, if P{|T, — 6| > k} = o(1/n) for each k, it is possible to
show that

.. nBE{(Ts — )%}

o S (LT, 0] = b
and then the normalized risk is sandwiched between the real variance (norma-
lized) and the asymptotic variance. A similar discussion is given by Hodges and
Lehmann [19].

I believe that without unreasonable modifications the standard derivations of
the asymptotic normal distribution of the maximum likelihood estimates can be
used to show that for the maximum likelihood estimates lim, . E{L%(T,, 6)}
is equal fo the asymptotic variance. As far as I know, no such proof exists yet in
the literature.

The above discussion extends easily to the k-dimensional parameter case
where the role of the asymptotic variance is played by an expression of the form
> @ii(0)o:;(0) Here A = llas;]| is a nonnegative symmetric matrix whose
elements correspond to the second-order partial derivatives of the loss function
at 6 (provided that these derivatives or their ratios converge as n — ), and
llo:i(6)]| is the asymptotic covariance matrix.

A technique that had been used in previous attempts to establish the effi-
ciency of maximum likelihood estimates was the derivation of a lower bound for
the variance of an estimate and the proof that this lower bound was “asymp-
totically” attained by the maximum likelihood estimates.

Results in this direction were apparently first obtained by Fréchet [20] and
Darmois [21] and later given by Cramér [22] and Rao [23] and called the Cramér-
Rao inequality. Savage [24] has tentatively suggested alternatively using the
name ‘“Information inequality”. These results were extended in various direc-
tions by Bhattacharya [25], [26], Barankin [27], Wolfowitz [28], Seth [29],
Chapman and Robbins [30], Kiefer [31], and Fraser and Guttman [32]. Be-
cause these results invoked regularity conditions on the estimates, the possi-
bility of superefficiency was hidden. Let us consider the following form of this
result which does not use regularity conditions on the estimates. (This form and
a variant of it were communicated to me by Charles Stein and Herman Rubin,
respectively.)

First, we consider the nonasympiotic case where the parameter space Q is a
subset of the real line containing the origin as an inner point. Let us define
Fisher’s information by

16) = [(6 log;’;X, 0)>2:| ’

where Ej represents expectation with respect to the distribution determined by
6. We digress slightly to point out that I(6) is additive. That js, if several inde-
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pendent observations are combined, the corresponding information is the sum
of the individual informations. In particular, when n independent observations
are taken on a chance variable X, the information is multiplied by .

Now let T'(X) be an estimate based on the observation X. Under mild condi-
tions on the distribution of X (and not on 7T') we have

Lemma 1. For every ¢, 0 < € < 1, and any estimate T,

sup [Eo{(T(X) — 0)*}I(0)] = 1 — ¢
—a<ll<a

if
1 [ do aé
20 LaI(6) = 12(1 — ¢~
Otherwise,
22
sup Eo{(T(X) — )"} = 2°.
—a<i<a 4

This result can be applied to the large-sample case. To deal with estimates
which may behave well asymptotically, but which may have large or even in-
finite variances, we introduce the truncated estimate 7%,

T*=Tif|T| £2; T*=2aifT>2a; T*=—-2aifT < —2a.

Since min [(T — 6)%, 16a%] = (T* — 6)’ for —a < 6 < a, we can easily derive
the following theorem for the case of n independent observations on X.
TurEOREM 1.
2
~ lim lim inf sup E, {nI(O) min [(t -0, ’i]} =1

k>0 ne0 —k/4/ A0k T n
if 1(8) is measurable and bounded away from 0 in some neighborhood of § = 0.
(This statement might be easier to read if it were weakened by replacing, under
“sup,” the interval —k/4\/n < 0 < k/47/nby —8 < 0 < 8.)

This result clearly allows for the possibility of superefficiency. It is weaker
than Le Cam’s results, since it does not confine superefficiency to a set of measure
zero. On the other hand, this statement fits in very well with our discussion of
the normalized risk functions. It states that for an arbitrary estimate the recipro-
cal of the information is “essentially” asymptotically a lower bound for the asymp-
totic variance and hence for the normalized risk function. This, together with the
above-mentioned conjecture that for the maximum likelihood estimate, the
normalized risk approaches the asymptotic variance (which coincides with the
reciprocal of the information), would give the “essential” efficiency of the maxi-
mum likelihood estimate from the normalized risk-function point of view.

Theorem 1 also has the advantage that it can be easily extended to the case
where the independent observations are not necessarily from the same popula-
tion. If the average information per observation is given by

LO = 3 L@ + - + LO),
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where I;(8) is the information corresponding to the jth observation or experi-
ment, we can replace I(8) in Theorem 1 by I,(6), provided I,(6) is measurable
and

lim inf 1.00) >0
n>0—k//ROLk/ /T

for each k. The case where

lim sup I.(0) = 0
n>0 —~k//7<0<k/ /7

for each k gives no difficulty.

b. Optimal designs for estimating parameters. Suppose that there is available
a class of experiments {E}. A design will consist of a selection of n of these ex-
periments to be performed independently. Suppose that the outcome of each
experiment depends only on a real-valued parameter 6 which is to be estimated.
We shall assume that the true value of 6 is approximately known so that it
makes sense to consider locally optimal designs. That is to say, that we shall be
interested in selecting n experiments so that an estimate of 6, based on the out-
comes, will be very good if 6 is close to some specified value 6°.

If n is large, it seems reasonable to select these n experiments, By, E,, - - -,
E,, 5o as to make the sum of the corresponding informations > %, I(E;, 6°)
large. If I(E, 6") is maximized by an experiment Ey, it pays to repeat the ex-
periment, E,, n times. Then, by the Cramér-Rao type of theorem we treated,
the asymptotic variance for any design is at least as large as

1 n 1

= = >
n— = . a0 =I(E0;00),
;HE.,o)

which is the asymptotic variance for the maximum likelihood estimate based on n
repetitions of E,. Furthermore, if the conjecture that for maximum likelihood
estimates, the asymptotic variance is equal to the normalized risk is correct,
then the normalized risk is asymptotically a minimum for this design.

While the above problem is not very deep, there are certain remarks which
are relevant to the extension of this problem to the multidimensional parameter
case. First of all, it is quite possible that I(E, 6°) does not attain its maximum.
A trivial case is the following: Suppose that E, corresponds to observing a
normal deviate with mean 6 and variance o*, and suppose that all E, are avail-
able for ¢ > 1. Here, I(E,, 6°) = 1/¢" can be made arbitrarily close to 1 but
cannot equal 1. It is apparent that the theoretical difficulty posed by this situa-
tion is neither significant nor important.

In general, some experiments are more costly than others, and the formulation
involving the selection of a preassigned number of experiments may reasonably
be changed to that of selecting an arbitrary number of experiments whose
total cost is preassigned. Here, we would attempt to make Y I(E;, 6°) large,
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subject to the restriction Y, ¢(E;) = k, where ¢(E) is the cost of the experiment
E. Rewriting the above as

D I(E;, 6 =, [5%%700—)] c(B),

it is evident that we should select that E, which maximizes I(E, 6°)/c(E),
the information per unit cost, and repeat E,, k/c(F,) times.

Let us now extend the problem to the following case. Suppose that it is desired
to estimate a parameter 6; , but the distribution of the outcomes of the available
experiments depends not only on 6;, but also on 6, ---, 6, . A special case of
this would be that of estimating the slope 8 of the regression line of ¥ on z,
where Y = a + 8z + u, £(u) = N(0, 1). Each level z represents an experiment
E, ; then let us assume that one has available the set of E, for which —1 <z < 1.
It is well known that in this special example the optimal experiment consists of
performing E; and E_; each half of the time.

To formulate this problem properly, we first note that in the case of k param-
eters, the information is replaced by the information matrix

- d log f(X,0) 8 log f(X, 6)
Ie) = l E’{ 96, 30; }

The information matrix I(8) has the additive property; i.e., the information
matrix corresponding to the outcome of several independent experiments E;
is equal to the sum of the corresponding information matrices Y, I(E;, 6).
Another property of interest is the following: Consider the randomized experi-
ment where E; is performed with probability p; . Then, the information matrix
for the randomized experiment is given by the average > p(E;, 6).

Let I;;(6) represent the (i, 7) term of I(8) and let I*/(6) be the (¢, 7) term of
I%(0). As 1/I(6) represented the asymptotic variance in the one-dimensional
case, so I (0) represents the asymptotic covariance matrix in the k-dimensional
case. In particular, I''(9) represents the asymptotic variance of v/n(fy — ).

It now becomes very natural to formulate our problem as being that of select-
ing n experiments to minimize \

[; I(E:, o")]n.

We may equivalently minimize the (1, 1) element of the inverse of the average
information per observation, i.e., we minimize

TN = [-17; 2 I(E;, o°):|u.

Now the expression on the right-hand side corresponds to the randomized experi-
ment where each E; is performed with probability 1/n. By taking n large enough,
we can approximate each randomized experiment arbitrarily closely. Hence, we
might reformulate our problem as that of selecting that randomized experiment
for which I(E, 6°)" is minimized.

4,j=1,2,++,k

)




LARGE SAMPLE THEORY 15

Each information matrix is nonnegative definite symmetric and may be identi-
fied with the point in k(k 4 1)/2-dimensional space whose coordinates are the
elements on and below the main diagonal of the matrix. The class of matrices
corresponding to the randomized experiments is the convex set generated by the
matrices of the pure experiments. Hence, our problem reduces to that of minimiz-
ing a function on a convex set.

I" is a continuous function of I on the set of positive definite symmetric
matrices However, I'' is not defined for singular matrices. If the distribution of
the outcome of an experiment F depended on less than & independent parameters,
the information matrix would be singular. Nevertheless, in this case, it can be
shown that it would be meaningful to redefine I** by limy o, (I 4+ AA)", where
A is an arbitrary positive definite symmetric matrix. We then have [33].

TueoREM 1. If the set R of randomized information matrices I(6°) is closed and
bounded, the function I''(6°) attains its maximum on R at a matriz which s a con-
vex combination of r < k of the information matrices corresponding to the nonran-
domized experiments.

This theorem states that there is a locally optimal design for large n which
involves at most k of the original experiments. This result considerably reduces
the computational problem involved in computing the optimal design. It con-
stitutes a generalization of a similar result by Elfving [34], which applies to linear
regression problems with normal deviates. In connection with his result, Elfving
indicated an elegant geometrical technique of finding the optimal solution. His
technique applies to our more general problem if all the information matrices
resemble those of the regression case; i.e., if the typical information matrix for
each experiment can be expressed as || zi; ||. In fact, this case occurs quite fre-
quently in applications which are not normal linear regression.

Finally, this result extends to the case where one is interested in estimating
s out of the k parameters involved in the experiments. Then the optimal design
involves no more than k + (¢ — 1) + --- + (¢ — s + 1) experiments. This
last result is of limited computational applicability if © and s are not small
numbers.

6. Testing simple hypotheses. The easiest problem in statistical inference is
that of testing a simple hypothesis against a simple alternative. Suppose that the
hypothesis Hy specifies that n independently distributed observations, X1, Xz,
-++, X,, have density fo(z), whereas the alternative H, specifies the density
Si(x). It is well known that the class of best tests are the likelihood ratio tests
characterized by critical regions which contain all points where the ratio

T2 (X / T fo(X)

exceeds some constant ¢ and a subset of those points for which the ratio is equal
to c. It is peculiar that in this example, where the small-sample theory is so well
understood, the large-sample theory yields resulst of interest.

First, let us note that the above test can be considered to be one that is based
onY, = 1/n> " Y,, where ¥; = log fi(X.)/fo(X:). But for tests based on
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averages of observations, Cramér’s results, which were expressed in Section 3,
are applicable. These results also apply to tests which are not necessarily likeli-
hood ratio tests. In what follows, we shall assume that Y; is not necessarily of the
above form, but that the test consists of rejecting Hg if ¥, > a, and that uo =
E(Y|Hy) <EY|H) =m.

The probabilities of the two types of error are given by

on = P{Y,>a,|He} and B, =P{Y, < a,|Hy}.

There are several principles which may be invoked for selecting @, . One of these
is that of minimizing «, + AB, for some A > 0. This principle would be espe-
cially meaningful if there were an a priori probability £ 0 < ¢ < 1, attached to
H, . Then, if I;; represents the loss due to accepting H; when H; is correct, the
risk would be given by

R = Ew(l — o) + hoon + (1 — Hlufs + 1 — Hlu(l — 8a)

= too + (1 — Olu + £l — lo) [a,, +4 ;(zi)(imz;) b ﬂ,.].

But for reasonable loss functions, lo — Ly and li — lp are positive. Hence,
minimizing R is equivalent to minimizing a, + AB,, where

(= )l — )
A e

Another situation in which it would be appropriate to use this criterion would
be one where it is desired to minimize some function F(e, , 8,), where neither
8F(0, 0)/da nor 9F(0, 0)/38 vanish. Essentially, this boils down to requiring
that as n — «, a, and 8, converge to zero at the same rate.

Let

mi(a) = inf E{e"™ | H.}, i=0,1,
t

pla) = max [mo(a), m(a)], p= inf p(a).
KosSasuy
A consequence of Cramér’s result (see [35]) is
THEOREM 1.
lim [inf (8, 4+ Aea)]'™ = p (independent of \).
n->0 Gy
This theorem permits us to compare the relative efficiency of two tests. For
the above test, 8, + Aa, behaves roughly like p". Suppose that a similar test is
based on the average of another statistic Z. If p* is the corresponding value of p
for this new test, then
£

o= loge
log p
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is a reasonable measure of the relative efficiency of the test based on Z to the
test based on Y. The reason for this is that if n; and n, are large sample sizes for
which the a,; 4 AB8,; of the two tests are approximately equal, then n:/n, is
close to e. In other words, the first test requires ens observations to do as well as
the second. This measure of efficiency permits us not only to compare various
tests based on a given experiment, but also permits us to compare tests based on
different experiments.

In particular, let us consider the hkehhood ratio test for a given experiment.
We designate the corresponding p by prz , which can be shown to be given by

o = inf [ [A@ITHE do(z)
[24T<N

if fi(z) and fo(x) are the densities of X, with respect to the measure », under
H, and H), respectively. Because of the character of the above-mentioned meas-
ure of relative efficiency, it is natural to define the information in the experiment

by
= —log prz .

Fisher’s measure of information also had the property that if two experiments
yield informations I;(8) and I»(8), where I1(8) = 2I,(6), then one needs approxi-
mately 2n observations on the second experiment to get results comparable to
those obtained with n observations on the first experiment for » large. It is in-
teresting to note that while Fisher’s measure of information is additive, the
above is not. In fact, it has the following properties:

(1) The information derived from n independent observations on a chance
variable is n times the information from one observation.

(2) The information derived from observations on several independent chance
variables is less than or equal to the sum of the corresponding informations.

It occasionally happens in practice that it is important to obtain 8 very small,
whereas a relatively large value of «, like .05 or .10, is not disastrous. In such
cases, it makes sense to consider in our large-sample approach the problem where
one minimizes 8 subject to fixed a. Let ﬂf. be the value of 8, which corresponds
to a fixed value of o, say an, 0 < ap < 1. We have, as another consequence of
Cramér’s result,

THEOREM 2.

lim BE/" = p* = mu(uo)  (independent of av),

n->0

where wo = E(Y | Hy).
In particular, for the likelihood ratio test, it is easy to show that we obtain

pir , which is given by

pha = me) = ¢ = oxp | [ 1) 1622 o) |
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This result was first obtained by Charles Stein [36]. Here again, it makes sense
to define a corresponding measure of information by

I* = —log pir = — f log B%] fo(z) dv(z).
It is of interest to note that I* represents one of the Kullback-Leibler informa-
tion numbers [37]; also

kk fl(x)
1 = [ 5@ 1o 15

would arise naturally if 8, were kept fixed and a, — 0. The Kullback-Leibler
numbers do have the additive property. Incidentally, the above characteriza-
tion of the Kullback-Leibler numbers implies that they do exceed I = —log prz .

Until now, we have not discussed sequential analysis from a large-sample point
of view. At a first naive glance, it may seem as though the very nature of sequen-
tial analysis is such as to rule out large-sample theory. That this is not so be-
comes clear when one considers that reducing the cost of sampling should in-
crease the expected sample size. In fact, let us suppose that the cost per observa-
tion is ¢. Consider the Bayes procedure corresponding to a fixed a priori prob-
ability £ that Hy is correct. The risk function is given by

Ro = loo + a(lo — lo) + cE(n | Ho),

R1 = lu + ﬂ(lm - lu) + cE'(n l Hl)
The Bayes risk, Ry + (1 — £)R;, is minimized by Wald’s sequential probability
ratio test [38]. As¢ — 0, E(n | Hy) and E(n | H,) — «, but

E(Ro — lo) + (1 — &) (B1 — ln) — 0.

An elementary application of Wald’s inequalities concerning the operating
characteristic function gives
THEOREM 3.

dv(z)

 Re—ly 1. . Ri—ly 1
11_31 (clog1/c) TI*’ lg}) (clog 1/c)  I**"

Note that these limits do not depend on lijp — loo nor on loy — I . This is due to
the fact that as ¢ — 0, the main part of the risk is the cost of sampling.

It is rather striking that the notions of information, which are natural for the
sequential and nonsequential cases, are not identical. Upon some consideration,
however, it is not surprising. In the sequential case, after many observations are
taken, one is almost sure which hypothesis is correct. Then if H, seems correct,
the remaining observations may be selected from an experiment for which the
corresponding Kullback-Leibler information I* is large. In the nonsequential
case, the experiment to be performed must be decided on before any data are
taken. It is natural that the corresponding information should differ from I*
and I**,
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It is of interest to note that as the hypotheses Hy and H, get closer to one an-
other, the three measures of information behave in the following fashion:
I* I**

I —r~—.

4 4

7. Composite hypotheses. A classical result in the large-sample theory applied

to tests of composite hypotheses is that of Wilks [39]. It states that?
£(—2 log \) = £(xir)

if A, is the likelihood ratio based on n independent observations for the test that
a parameter 8 lies on a specified r-dimensional hyperplane of k-dimensional space
and the hypothesis is true. It is striking that this result does not involve the dis-
tribution of the data except in that mild regularity conditions on the distribution
are required.

Many tests of composite hypotheses are not of this simple form. For example,
it may be desired to test whether 6 lies in the first quadrant of the plane, or it
may be desired to test whether 6 lies above a hyperplane or even whether 6 lies

inside a sphere.

For these problems, first suggested to me by Leonid Hurwicz, a natural
generalization of Wilks’ result is easily obtained.

Let f(x, 6) represent the density of the data. Suppose that 6 lies in k-dimen-
sional space and let w and 7 be two disjoint subsets of this space. We are in-
terested in testing Hy:6 ¢ w against the alternative H,:60 ¢ 7. Let

Pu(Xy, X, -+, Xa) = sup 2 f(Xs,0).
The standard definition of the likelihood ratio is given by
- P@(Xl’...’Xn)
PQUT(le X21 ) XY‘) )
It is somewhat more convenient to treat a more symmetric form

}\* - Pu(Xl,Xz, M ,Xn)
n PT(X1,X27"')X,,)'

s

These are related by

M=AbA < A=A > L
We call a set C positively homogeneous if X ¢ C implies aX ¢ Cforalla > 0. We
say that w is approximated by a positively homogeneous set C., if

ir:}f |z — y| = o(jy]) for ycow,

and
inf |z — y| = 0(z|) for ze¢C..

yew
Let I(6) represent Fisher’s information matrix.

5 x2_, represents chi-square with k¥ — r degrees of freedom.
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Under certain regularity conditions on f(x, 6), we have the following result
[40]:

TueoreM 1. If w and T are approxiimated by two disjoint positively homogeneous
sets C, and C, and the true value of 0 is af the origin, then the distribution of —2
log N3 is the same as it would be for the case where £(X;) = N(8, I(0)™) and w
and 7 are replaced by C., and C- .

The advantage of this result lies in the fact that the case of normally distrib-
uted data is relatively simple to treat.

It is now easy to show that if w is a smooth r-dimensional surface and 7 is
the rest of the k dimensional space and 6 ¢ w, then

lim £(—2log A,) = lim £(—2log \%) = €(xi—).

It is also easy to show that if w is the set on one side of a smooth (k — 1)-
dimensional surface, 7 is the rest of k-dimensional space, and 8 is on the boundary,
lim &(—2logAy) = S(ux1); lim &(—2log\s) = L(xi),
then where u is independent of xi and takes on the values 1 and —1 with prob-

ability 3 and v = }(u + 1).

In particular, this case applies to testing whether 6 lies inside or outside a
sphere, and to testing whether 6 lies above or below a hyperplane.

In the problem where one is interested in whether 6 is in the first quadrant or
not, the following is the situation. If @ is on the positive part of either axis,

lim &(—2 logA\%) = e(uxy).

If 6 is at the origin, the limiting distribution depends on I(0) and is not difficult
to evaluate mumerically.

8. Summarizing remarks. The topic of this paper is so broad and current re-
search in it is so vigorous that it is impossible for me to do more than men-
tion a few of those notions in it that have been of special interest to me. I have
tried to give some feeling for those aspects which attract me to the subject and,
in so doing, I have neglected a considerable amount of important work done by
many people including among others Neyman and Wald.
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