N-DIMENSIONAL DISTRIBUTIONS CONTAINING A NORMAL COMPONENT¹

By Charles Standish

Cornell University

In this paper we obtain necessary and sufficient conditions for an n-dimensional distribution function $F(x_1, \dots, x_n)$ to contain as a factor the distribution function of n independent normal random variables having common mean zero and variance 1. That is we obtain conditions for $F(x_1, \dots, x_n)$ to be of the form

(1)
$$F(x_1, \dots, x_n) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} G(x_1 - u_1, \dots, x_n - u_n) dP(u_1, \dots, u_n),$$

where $P(u_1, \dots, u_n)$ is a distribution function and

$$G(x_1, \dots, x_n) = \left(\frac{1}{\sqrt{\pi}}\right)^n \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} \exp\left[-(u_1^2 + \dots + u_n^2)\right] du_1 \dots du_n.$$

If we denote $\partial^n/\partial x_1 \cdots \partial x_n F(x_1, \dots, x_n)$ by $f(x_1, \dots, x_n)$, the problem becomes that of representing $f(x_1, \dots, x_n)$ in the form

(2)
$$f(x_1, \dots, x_n) = \left(\frac{1}{\sqrt{\pi}}\right)^n \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left\{-\left[(x_1 - u_1)^2 + \cdots (x_n - u_n)^2\right]\right\} dP(u_1, \dots, u_n).$$

The one-dimensional case has been treated by Pollard [1] employing properties of the heat equation. We use a different approach to prove the following

THEOREM. $f(x_1, \dots, x_n)$ is representable in the form (2) with $P(u_1, \dots, u_n)$ a distribution function if and only if

(i)
$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) \ dx_1 \cdots dx_n = 1$$

(ii) $f(x_1, \dots, x_n)$ is bounded and has mixed partial derivatives of all orders satisfying

$$\left|\frac{\partial^{k_1}\cdots\partial^{k_n}}{\partial x_1^{k_1}\cdots\partial x_n^{k_n}}f(x_1,\cdots,x_n)\right|\leq A^n2\frac{k_1+\cdots+k_n}{n}\sqrt{k_1!\cdots k_n!},$$

$$k_1, \cdots, k_n = 1, 2, \cdots$$

(iii)
$$\sum_{k_1=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} \frac{(-1)^{k_1+\cdots+k_n} t_1^{k_1} \cdots t_n^{k_n}}{4^{k_1+\cdots+p_n} k_1! \cdots k_n!} \frac{\partial^{k_1} \cdots \partial^{k_n}}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} f(x_1, \dots, x_n) \ge 0,$$

$$|t_1| < 1, \dots, |t_n| < 1.$$

Received September 28, 1955.

¹ The research of the author was supported in part by the United States Air Force under Contract No. AF18(600)-685 monitored by the Office of Scientific Research.

Proof. We carry out the proof for n = 2, the proof for n > 2 proceeding in exactly the same fashion. The necessity of (i) is obvious. As for (ii) we have

$$\left| \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_1}} f(x_1, x_2) \right| \leq \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |H_{k_1}(x_1 - u_1) H_{k_2}(x_2 - u_2) \cdot \exp \left\{ -[(x_1 - u_1)^2 + (x_2 - u_2)^2] \right\} dP(u_1, u_2) |,$$

where $H_k(x)$ is the kth Hermite polynomial which satisfies

(3)
$$|H_k(x)| \le A2^{k/2} \sqrt{k!} \exp \frac{x^2}{2}$$

([2], p. 236). Hence the integral above is majorized by

$$A^2 2 \frac{k_1 + k_2}{2} \sqrt{k_1! \, k_2!} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} [(x_1 - u_1)^2 + (x_2 - u_2)^2] \right\} dP(u_1, u_2),$$

which is $\leq A^2 2 \frac{k_1 + k_2}{2} \sqrt{k_1! k_2!}$. To establish the necessity of (iii) we observe

that we have formally

$$\begin{split} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} t_1^{k_1} t_2^{k_2}}{4^{k_1+k_2} k_1! \, k_2!} \frac{\partial^{2k_1}}{\partial x_1^{2k_1}} \frac{\partial^{2k_2}}{\partial x_2^{2k_2}} f(x_1, x_2) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} t_1^{k_1} t_2^{k_2}}{4^{k_1+k_2} k_1! \, k_2!} \, H_{2k_1}(x_1 - u_1) H_{2k_2}(x_2 - u_2) \\ &\qquad \qquad \times \exp \left\{ -[(x_1 - u_1)^2 + (x_2 - u_2)^2] \right\} \, dP(u_1, u_2). \end{split}$$

From (3) it is seen that the double series in the integrand converges if all terms are replaced by their absolute values provided $|t_1| < 1$, $|t_2| < 1$, and the integral may be written as

(4)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\sum_{k_1=0}^{\infty} \frac{(-1)^{k_1} t_1^{k_1}}{4^{k_1} k_1!} H_{2k_1}(x_1 - u_1) \right] \left[\sum_{k_2=0}^{\infty} \frac{(-1)^{k_2} t_2^{k_2}}{4^{k_2} k_2!} H_{2k_2}(x_2 - u_2) \right] \times \exp \left\{ -\left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] \right\} dP(u_1, u_2),$$

but

$$\sum_{k_1=0}^{\infty} \frac{(-1)^{k_1} t_1^{k_1}}{4^{k_1} k_1!} H_{2k_1}(x) = \frac{1}{\sqrt{1-t_1}} \exp\left(-\frac{x^2 t_1}{1-t_1}\right)$$

([1], p. 580), and (4) becomes

(5)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(1-t_1)(1-t_2)}} \exp \left[-\left\{\left[\frac{(x_1-u_1)^2}{1-t_1} + \frac{(x_2-u_2)^2}{1-t_2}\right]\right\} dP(u_1, u_2),$$

which for fixed t_1 and t_2 is \leq constant $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |dP(u_1, u_2)|$. This justifies the formal manipulations above and (5) is clearly non-negative establishing the necessity of (iii). For the sufficiency we need a couple of lemmas.

LEMMA 1. Denoting the left-hand side of (iii) by $T_{t_1,t_2}f(x_1, x_2)$ we have for functions $f(x_1, x_2)$ satisfying (ii)

$$\lim_{\substack{t_1+1\\t_2=1}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\exp\left\{-\left[(x_1-u_1)^2+(x_2-u_2)^2\right]\right\}T_{t_1,t_2}f(u_1,u_2)\ du_1\ du_2=f(x_1,x_2).$$

PROOF. The estimates furnished by (ii) enable us to write

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ - \left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] \right\} \frac{\partial^{2k_1}}{\partial u_1^{2k_1}} \frac{\partial^{2k_2}}{\partial u_2^{2k_2}} f(u_1, u_2) \ du_1 \ du_2$$

$$= \int_{-\infty}^{\infty} \exp \left[- (x_2 - u_2)^2 \right] du_2 \int_{-\infty}^{\infty} \exp \left[- (x_1 - u_1)^2 \right] \frac{\partial^{2k_1}}{\partial u_1^{2k_1}} \frac{\partial^{2k_2}}{\partial u_2^{2k_2}} f(u_1, u_2) \ du_1,$$

and upon integrating the inner integral $2k_1$ times by parts we have

$$\int_{-\infty}^{\infty} \exp\left[-(x_2 - u_2)^2\right] du_2 \int_{-\infty}^{\infty} \frac{\partial^{2k_1}}{\partial u_1^{2k_1}} \exp\left[-(x_1 - u_1)^2\right] \frac{\partial^{2k_2}}{\partial u_2^{2k_2}} f(u_1, u_2) du_1$$

$$= \int_{-\infty}^{\infty} \frac{\partial^{2k_1}}{\partial u_1^{2k_1}} \exp\left[-(x_1 - u_1)^2\right] du_1 \int_{-\infty}^{\infty} \exp\left[-(x_2 - u_2)^2\right] \frac{\partial^{2k_2}}{\partial u_2^{2k_2}} f(u_1, u_2) du_2.$$

We integrate $2k_2$ more times by parts and obtain finally

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{2k_1}}{\partial u_1^{2k_1}} \exp \left[-(x_1 - u_1)^2\right] \frac{\partial^{2k_2}}{\partial u_2^{2k_2}} \exp \left[-(x_2 - u_2)^2\right] f(u_1, u_2) \ du_1 \ du_2.$$

Thus

$$\lim_{\substack{t_1+1\\t_2\to 1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\left[(x_1-u_1)^2+(x_2-u_2)^2\right]\right\} T_{t_1,t_2} f(u_1,u_2) \ du_1 \ du_2$$

$$= \lim_{\substack{t_1+1\\t_2\to 1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\sum_{k_1=0}^{\infty} \frac{(-1)^{k_1} t_1^{k_1}}{4^{k_1} k_1!} H_{2k_1}(x_1-u_1) \left[\sum_{k_2=0}^{\infty} \frac{(-1)^{k_2} t_2^{k_2}}{4^{k_2} k_2!} H_{2k_2}(x_2-u_2)\right]\right]$$

$$\times \exp\left\{-\left[(x_1-u_1)^2+(x_2-u_2)^2\right]\right\} f(u_1,u_2) \ du_1 \ du_2.$$

By (4) and (5) this becomes

$$\left(\lim_{t_1 \to 1} \frac{1}{\sqrt{1 - t_1}} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1 - u_1)^2}{1 - t_1}\right] du_1\right) \times \left(\lim_{t_2 \to 1} \frac{1}{\sqrt{1 - t_2}} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_2 - u_2)^2}{1 - t_2}\right] f(u_1, u_2) du_2\right) = f(x_1, x_2).$$

LEMMA 2.

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} T_{t_1,t_2} f(u_1, u_2) \ du_1 \ du_2 = 1, \quad |t_1| < 1, |t_2| < 1.$$

PROOF.

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} T_{t_1,t_2} f(u_1, u_2) \ du_1 \ du_2$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \ dx_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] T_{t_1,t_2} f(u_1, u_2) \ du_1 \ du_2$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \ dx_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(1 - t_1)(1 - t_2)}} \exp \left\{ -\left[\frac{(x_1 - u_1)^2}{1 - t_1} + \frac{(x_2 - u_2)^2}{1 - t_2} \right] \right\}$$

$$\times f(u_1, u_2) \ du_1 \ du_2$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u_1 u_2) \ du_1 \ du_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(1 - t_1)(1 - t_2)}}$$

$$\times \exp \left\{ -\left[\frac{(x_1 - u_1)^2}{1 - t_1} + \frac{(x_2 - u_2)^2}{1 - t_2} \right] \right\} dx_1 \ dx_2 = 1.$$

By the above lemma and (iii) the family of functions

$$P_{t_1,t_2}(x_1, x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} T_{t_1,t_2} f(u_1, u_2) \ du_1 \ du_2$$

is monotone in the sense of Bochner ([3], p. 383) and uniformly bounded; hence there exist sequences $\{t_{1n}\}\{t_{2n}\}$ such that $t_{1n} \to 1$, $t_{2n} \to 1$ and a function $P(x_1, x_2)$ monotone and bounded such that

$$\lim_{n\to\infty} P_{t_{1n},t_{2n}}(x_1, x_2) = P(x_1, x_2)$$

([3], p. 389-390). By Lemma 1,

$$f(x_1, x_2) = \lim_{n \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ - \left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] \right\} dP_{t_{1n}, t_{2n}}(u_1, u_2).$$

By the formula for integration by parts in two dimensions [4] the above integral becomes

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}P_{t_{1n},t_{2n}}(u_1,u_2)\frac{\partial^2}{\partial u_1\partial u_2}\exp\left\{-\left[(x_1-u_1)^2+(x_2-u_2)^2\right]\right\}du_1du_2,$$

and integrating by parts again

$$f(x_1, x_2) = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ -\left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] \right\} dP(u_1, u_2).$$

To complete the proof that $P(u_1, u_2)$ is a distribution function we observe that by condition (1)

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 dx_2$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dP(u_1 u_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ -\left[(x_1 - u_1)^2 + (x_2 - u_2)^2 \right] \right\} dx_1 dx_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dP(u_1, u_2).$$

TESTS OF FIT 1165

REFERENCES

- H. Pollard, "Distribution functions containing a Gaussian factor," Proc. Am. Math. Soc., Vol. 4 (1953), pp. 578-582.
- [2] G. Szego, Orthogonal Polynomials, American Mathematical Society New York, 1939.
- [3] S. BOCHNER, "Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse," Math. Annalen, Vol. 108 (1933).
- [4] W. H. Young, "On multiple integration by parts and the second theorem of the mean," Proc. London Math. Soc., Vol. 16 (1917), p. 276.

A CERTAIN CLASS OF TESTS OF FIT¹

By LIONEL WEISS

University of Oregon

1. Summary and introduction. Suppose X_1, X_2, \dots, X_n are known to be independently and identically distributed, each with the density function f(x), with $\int_0^1 f(x) dx = 1$. Let $Y_1 \leq Y_2 \leq \dots \leq Y_n$ be the ordered values of X_1, X_2, \dots, X_n , and define $W_1 = Y_1, W_2 = Y_2 - Y_1, \dots, W_n = Y_n - Y_{n-1}$, and $W_{n+1} = 1 - Y_n$, so that $W_1 + \dots + W_{n+1} = 1$. Finally, define Z_1, \dots, Z_{n+1} as the ordered values of W_1, \dots, W_{n+1} , so that $0 \leq Z_1 \leq Z_2 \leq \dots \leq Z_{n+1}$, with $Z_1 + \dots + Z_{n+1} = 1$. We are going to test the hypothesis that f(x) = 1 for 0 < x < 1, and we are going to consider only tests based on Z_1, Z_2, \dots, Z_n . The intuitive justification for this is that, roughly speaking, deviations from the hypothesis on any part of the unit interval are treated alike. Several authors have discussed tests based on Z_1, \dots, Z_n . (See references [1], [2], [3].)

If u is a number greater than unity, it is shown that the test of the form "reject the hypothesis if $Z_1^u + \cdots + Z_{n+1}^u > K$ " is consistent against a very wide class of alternatives. When u = 2, the resulting test has some desirable properties with respect to alternatives with linear density functions.

2. The distribution of Z_1 , \cdots , Z_n . It is easily seen that $P[Z_i = Z_j \text{ for any } i \neq j]$ is equal to zero. We want to find the joint density function $h(z_1, \dots, z_n)$ of Z_1, \dots, Z_n . The joint density function of W_1, \dots, W_n is equal to n! $f(w_1)f(w_1 + w_2) \cdots f(w_1 + w_2 + \dots + w_n)$ in the region $w_i \geq 0$, $w_1 + \dots + w_n \leq 1$, and is equal to zero elsewhere. Let $\{j(1), j(2), \dots, j(n+1)\}$ be any permutation of the first n+1 integers, and let \sum_p denote summation over all the (n+1)! permutations. Given any set of numbers $0 < z_1 < z_2 < \dots < z_n < 1 - (z_1 + \dots + z_n)$, we denote by $Q[j(1), j(2), \dots, j(n+1)]$ the conditional probability that $W_i = z_{j(i)}$ for $i = 1, \dots, n+1$, given that $Z_i = z_i$ for $i = 1, \dots, n+1$. It is understood that if j(i) = n+1, then $z_{j(i)} = 1$

Received August 22, 1955; revised June 20, 1956.

¹ Research under contract with the Office of Naval Research.