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N-DIMENSIONAL DISTRIBUTIONS CONTAINING A NORMAL
COMPONENT!

By CHARLES STANDISH
Cornell University

In this paper we obtain necessary and sufficient conditions for an n-dimen-
sional distribution function F(z;, --- , z,) to contain as a factor the distribu-
tion function of » independent normal random variables having common mean
zero and variance 1. That is we obtain conditions for F(z;, --- , ,) to be of
the form

(1) F(zly""xn)=£"'[ G(xl—U1,"',xn—un)dP(u1,"',un),
where P(u, , --- , u,) is a distribution function and

1 n zy Zn
Gy, -+, 20) = <77—r> [ [ exp [—(ui + -+ + ul)l dus - duy.

If we denote 9"/92; - -+ 0xn F(z1, -+ - , @a) by f(z1, -+ - , 2a), the problem be-
comes that of representing f(x;, --- , z,) in the form

1 n -]
f(ly"'y n)= /-
@) ’ ’ (:/}) L
: ]_.wexp (—lor — W) + - @0 — w)]} dPCus -~ , up).

The one-dimensional case has been treated by Pollard [1] employing properties
of the heat equation. We use a different approach to prove the following

THEOREM. f(21, - - , 2.) Us representable in the form (2) with P(wy , - - , Us) @
distribution function if and only if

@ f f f(xl,“',xn)d-’l?1"'d$u=1
(i) f@1, --- , zx) is bounded and has mized partial derivatives of all orders
satisfying
akl PPN akn " k .. IC,.
axlltl axkn f(xl y T xﬂ) = A"2 —L+—77+— kl! e k”!’

vy oo ka=1,2 -
vy 2 (=)t L e R ghe
Gi) > --- k,.z=:0 Ty Y B R TR ax:’”f(xl y tt,Za) 20,

k=0

o]l <1, -, |ta] <1
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Proor. We carry out the proof for n = 2, the proof for n > 2 proceeding in
exactly the same fashion. The necessity of (i) is obvious. As for (ii) we have

o1 gt
azkt ozl S o] @ @)

1 1°r”
= ™ L:. f_w | Hiy (21 — w) Hiy(@2 — ua)

- exp {—[@ — w)’ + (2 — u)’} dP(ur, wa) |,

where H;(z) is the kth Hermite polynomial which satisfies
2

3) ' | Hi(@) | < A2"*\/F exp;—

(2], p. 236). Hence the integral above is majorized by

a2t B e [ ew (-4 — w? + @ — w)l) P, w),

which is 4% 2 Iﬁl;—h V'kke!. To establish the necessity of (iii) we observe

that we have formally
0 [ ( l)kl'HCztkltkg a2kl aﬁko
Km0 kgm0 AkitRef Lkl 9x¥k g2 fr, )
© oo 0 ( 1)k1+k2tk1tkg
- [ f F1=0 k5=0 W Hoy(@y — ) Hawy (22 — )
] 1= 9=

X exp {—[(x1 — ’ul)2 + (z2 — u2)2] dP(uy, us).

From (3) it is seen that the double series in the integrand converges if all terms
are replaced by their absolute values provided [t;| < 1, |tz] < 1, and the integral
may be written as

f f [k;-o 4,‘11)1: 'tl Ha (2 — ul):l [kzno (= 4,‘13: 'tz Hay., (2 — uz):l

X exp {—[(@1 — w)* + (@ — u2)l} dP (w1, wa),

but
( 1)*gks % >
k12= 4k1k ! Hya(z) = \/1 exp T1—4

({1], p. 580), and (4) becomes

o [ 7= - {5 5= foww

which for fixed # and ¢, is = constant [Zw[Zw |[dP(u1, us)|. This justifies the
formal manipulations above and (5) is clearly non-negative establishing the
necessity of (iii). For the sufficiency we need a couple of lemmas.
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Lemma 1. Denoting the left-hand side of (iii) by T%,,.f(x1, x2) we have for
functions f(x; , z2) satisfying (ii)

tim [ [ exp (= w4 (o — N Ty fl, ) du i = o, 20

t1»1 J—
ta>l

Proor. The estimates furnished by (ii) enable us to write
§%1 gk

f f exp { — [ — w)’ + (@ — w)} 5 %lg GuF g (s ) dur dua

k1 a2k
9 9™

= f_: exp [— (22 — w)’] dua f exp [— (@ — w)’] Wf(uly uz) du,

and upon integrating the inner integral 2k, times by parts we have

0 . © aZkl . 62162
f exp [—(z: — w)] duz[ a7 &P [= (@ — w)] mf(ul, uz) dua

—00 ) 1 2
0 2k

- —o0 6“%’“ f(uly u2) duz.

exp [— (21 — w)’] du f_ : exp [— (& — w)] 2 b

We integra,te 2k, more times by parts and obtain finally
f f FuT - exp [—(z — ul)zl exp [— (@ — w)’1f(ur, us) duy dus.

Thus

t _.1 [ / exp - [(xl - ul) + (-T'2 u2) ]}Th tgf(ul, uz) duy dus

ta»l
L (—1)krl (=1)"4
= thfif f w [h-o i Al —w) [kzz—o gy @ — w)

to—»1

X exp {—[(z1 — w)” + (@2 — )]} flur, ua) dux dus,.
By (4) and (5) this becomes

( vi=i [ [‘%::?‘)-] d“*)

X <e3+1 \/1_—_&[ exp[ —;——Lz):lf(ul, Ug) dU2> = f(zy, z,).

LeEMMA 2.

}1;‘[ [ Tt].lg (uly uz) dul du2 = 1, ltll < 1, ltzl < 1.
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Proor.

% ,[_m -[oo T‘lvtzf(ul; u2) dul dfu2

= % [m [ - dzy dxo .Lo [m exp — [(2 — ul)z + (x. — W)letl,tg‘f(ul, uz) duy dug

=t [ Lo ] [ r=men{ {55+ 522])

X flus, uz) duy duy

= }r [: f_:f(uluz) duy dus [: f_: = tt)(l — &)

2 2
X exp {—[(””‘1 __’Z) + (?; - ’t‘:) ]} dey e, = 1.

By the above lemma and (iii) the family of functions
z1 z2
le.t,(ilh, xz) = _[ j; Tzl.z,f(ul, uz) duy dus

is monotone in the sense of Bochner ([3], p. 383) and uniformly bounded; hence
there exist sequences {£1.} {f2x} such that &, — 1, £, — 1 and a function P(z; , x2)
monotone and bounded such that

lim Py, iz, (71, 22) = P21, 22)
([3], p- 389-390). By Lemma 1,
f(z1, z2) = lim _[ _[ exp { — [(@ — )’ + @ — )1} Py e, (un, Un).

By the formula for integration by parts in two dimensions [4] the above integral
becomes

. 0 ro0 62
1”1_1’101° [_w‘[w Piraten (w1 , un) m €xXp {—[(171 - ul)z + (27 — uz)zl} duy dus ,
and integrating by parts again
fe,m) =2 [ [ e =l — w + @ — W) P, .

To complete the proof that P(u; , up) is a distribution function we observe that
by condition (1)

1= [_:[:f(%, x2) doy de

L[ aptnd [ exm (=l = " + s = ) d

[:[:dP(ul,W)-



TESTS OF FIT 1165

REFERENCES

[1] H. PorLArD, “Distribution functions containing a Gaussian factor,”” Proc. Am. Math.
Soc., Vol. 4 (1953), pp. 578-582.

[2] G. 8zreo, Orthogonal Polynomials, American Mathematical Society New York, 1939.

[3] S. BocHNER, ‘“Monotone Funktionen, Stieltjessche Integrale und harmonische Ana-
lyse,” Math. Annalen, Vol. 108 (1933).

[4] W. H. Young, “On multiple integration by parts and the second theorem of the mean,”
Proc. London Math. Soc., Vol. 16 (1917), p. 276.

i

A CERTAIN CLASS OF TESTS OF FIT!
By LioNEL WEISS
University of Oregon

1. Summary and introduction. Suppose X;, X», ---, X, are known to be
independently and identically distributed, each with the density function
f(z), with [of(x)de = 1. Let ¥, £ Y, £ -+ < Y, be the ordered values of
Xl,Xz, s ,Xn, and deﬁne W1 = Y1, W2 = Yz - Yl, cre Wn = Yn —_
Yoa, and Wopp =1 — Y,, so that Wy + --- + W,y = 1. Finally, define
Zy, -+ 5 Znya as the ordered valuesof Wy, -+, Wy ,s0that0 < 2, £ Z, £
cor 2 Zpp, with 2y + -+ 4 Z,1y = 1. We are going to test the hypothesis
that f(x) = 1 for 0 < z <'1, and we are going to consider only tests based on
Zy,Zy, -+, Z,. The intutitive justification for this is that, roughly speaking,
deviations from the hypothesis on any part of the unit interval are treated alike.
Several authors have discussed tests based on Z; , - -+ , Z, . (See references [1],
(2], [3].)

If u is a number greater than unity, it is shown that the test of the form “‘re-
ject the hypothesis if Z + -+ 4+ Za,1 > K” is consistent against a very wide
class of alternatives. When u = 2, the resulting test has some desirable proper-
ties with respect to alternatives with linear density functions.

2. The distribution of Z;, --- , Z, . It is easily seen that P[Z; = Z; for any
1 # j]is equal to zero. We want to find the joint density function h(z;, - -- , 2,)
of Zy, -+, Z.. The joint density function of Wy, ---, W, is equal to n!
Fa)f(wy + we) -+« flwr + we + --- +'w,.) in the region w; = 0, wy + --- +
w, < 1, and is equal to zero elsewhere. Let {j(1), j(2), --- , j(n 4+ 1)} be any
permutation of the first n -+ 1 integers, and let _, denote summation over all
the (n 4+ 1)! permutations. Given any set of numbers 0 < 21 < 2, < -+ <
2 <1 — (a4 -+ + 2z.), we denote by Q[j(1), 7(2), --+ ,j(n + 1)] the con-
ditional probability that W; = zju for¢ =1, --- ;n + 1, given that Z; = z;
fors =1, -+, n + 1. It is understood that if j(z) = n 4+ 1, then zj;y = 1 —
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