NOTES

ON BOREL FIELDS OVER FINITE SETS

By G. Szexeres anp F. E. BINET

University of Adelaide and University of Melbourne

1. Summary. It is shown that the number of Borel Fields over a set (S) of
n elements is equal to the number of equivalence relations within S. This num-
ber is asymptotically equal to

B+1)™exp{n@B—-—1+p8") -1} where gexpp =n.

2. Enumeration of Borel Fields over a finite set. Borel Fields are usually
(e.g. Wald [8]) defined over a set of non-enumerably infinite elements: with
quite trivial changes, the definition is applicable to finite sets, as follows:

Let A, B, C, - - - denote distinct subsets of a set S of n elements. 8 = {4, B,
C, -+ -} is called a Borel Field (BF) if and only if

(i) 9B is not empty;

(il) AeB, Be®B imply

AnBeB, AuBeB, S — AeB.

It follows from.the definition that a BF contains at least the empty set (&)
and S, and is closed with respect to the formation of unions, intersectioms, and
complements.

To enumerate the BF’s,. consider the subset P consisting of all PneB(m =
1,2, ---,r; for somer = 1,2, ---, n) such that

6] P # &,

2) A=g, AP, A8 implies 4 ¢P;

in others words, no P contains an element of B as a proper subset. It follows that
3) ' PunPu =& (for m = m')
and

4) UnPn = 8.

If (3) were not true, the intersection, itself being an element of the BF and also
a proper subset of a P, would involve a contradiction with (2); if (4) were not so,
the complement of this union, being an element (other than &) of the BF and
" therefore not containing a subset of any other P, would itself be a P, namely
P,.1, contradicting the definition of P = {Pn}.

~ Itis obvious that a BF defines a unique B; conversely a P defines a unique BF
~ as follows: - '

8= {F; P, P, -, Pr; (2 elements like P, U Py ;
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(3) elements like P, U P, U P3; --- ; S}.

Thus every BF consists of 2" elements, the number of BF’s with 2" elements
being the same as that of P’s with 7 elements. This latter, however, is known to
be A'0"/r!, where A'0" is the leading rth difference of nth powers of the non-
negative integers.

It is obvious from the foregoing that the total number of BF’s over S is the
same as the total number of PB’s, namely

5) > A0Yrl = G,

re=al

say; it is also equal to the number of equivalence relations within 8. It is well
known that

(6) }; 2"Gn/n! = exp (¢ — 1);

in conventional symbolic notation Gnya = (1 + G)". Bell [2] gives this ret
currence relation as well as several realizations of G, . We give two further simple

realizations:
First, (6) shows that G, is the nth power-moment, around zero, of the Poisson

distribution with unit parameter,

Pr(X = z) = ()7, z=0,1,--
Second, (see, for example, Fisher [4]),
R

(7) A0%/r! = E{nl]_—‘[l (y!)"'k.!}\,
where summation takes place over all R, », k, such that

R
(8) Zl vk, = n,

R -
9 dk,=1.

y=l

The typical term is the number of ways n elements can be distributed corre-
sponding to the partition of n, symbolically represented by

1128 ..M L R
with », k, satisfying (8) and (9). Dropping the restriction due to (9), but keeping
that due to (8), the sum becomes G, .

3. Evaluation of G, . For n = 1 to 20, Epstein [3] tabulates G, , using (5).!
He also gives an asymptotic evaluation of G, , expressed in terms of the function
¥(x) = d/dzx log T'(z) and the numbers a, defined through the relation

a¥(an + 1) = n.

1For n = 21 to 51 an unpublished table has beeil prepared by Francis L. Miksa, 613
Spring Street, Aurora, Ill., U.S.A.
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We shall give here a more direct asymptotic expression for G, in terms of ele-
mentary functions; it is obtained by evaluating

(10) I, = 5{ 2" exp () dz,
(4

where C is a simple contour enclosing the origin of the z-plane. Clearly by (6)
and by Cauchy’s theorem,

. ol
(1) Gn = 2mie

ne

To obtain an asymptotic expression for /, , we specify C.in (10) by |2z | = B,
with 8 = B(n) defined by
(12) e’ = n;
then C intersects the positive real axis very nearly at a point where the derivative
of the integrand vanishes, and the integral can be evaluated by the method of

steepest descent. By a modification of Watson’s Lemma (see Jeffreys [6]) it can
be shown (details are given in the Appendix) that

Gn = nlexp (nf — 1)g7{2mn(8 + 1)}
(13)
X{1 — (268" + 968° + 166" + 68 + 2)(24n)~'(8 + 1)~° + 0(8'n7H)};

or using Stirling’s formula this simplifies to
Go=(@B+1)"exp{n@—1+6") -1}

(14) X {1 — 6°(26" + 78 + 10)(24n) (8 + 1) + 0(8'n ")}

(15) =@+ 1) exp (n(8 — 1487 — 1}{1L 4+ 0Bn™")}.

These are the required asymptotic formulae. It should be mentioned that (15)
can also be obtained from Epstein’s result, with the help of Stirling’s formula;
but (14) would require the knowledge of Epstein’s second asymptotic term which
has not been determined explicitly in his paper.

The following table gives comparative values of log Gs: as computed from the
varjous asymptotic formulae:

log Gs; (true value) 111.707033
from (14) 111.707084
from (15) 111.712500
from Epstein 111.706867

The true value was obtained from Miksa’s value for Gs; (1.c. footnote 1).
By a similar method as above it can be shown that for r < n/log n

(16) A" = " exp{(%? — r> e_”/'} X {1 +0 <}ﬁ>} .
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This sharpens Jordan’s result [7]
lim r"A0" = 1,

and establishes a connection between (5) and the known formula (see, for ex-
ample Bell, [2])

o0
G, =et 2 r"/rl.
raal

Other asymptotic formulae for A0" have been obtained previously by Hsu [5]
and by Arfwedson [1], the former being valid when n — r = 0(n'?), the latter
when r = Kn, for any constant K < 1.

4. Appendix. From /10) we get (with z = ge*)

I, =+ [ B exp{ —nip + exp(Be”)} do
(A1) )

+6 x —d

8" exp(e’ ){ f_ , T f, + f_ | exp(—nip + exp(Be™) -—e’)} de,
where 0 < § = x. We can choose
(A2) o = n5,
Then we have, ford < ¢ < ,

| exp {—nip + exp (Be’p) — &} | < exp (¢ °*° — &)
< exp {—%ﬁe’(l — cos )}
< exp {—cn'’"},

for a suitably chosen constant ¢ > 0. Hence

I
and similarly

I

in (Al).
For —§ = ¢ = § the integrand in (A1) can be rewritten

(A3)

< mexp {—cn'")

< mexp {—cn'")

exp {—nip + exp (8e*) — ¢’}
= exp {—nip + exp (8 + B — 380" — 4ot + 0(6¢")) — &)
= exp {—nip + (1 + iBp — 180" — 4B’ — 3167’

— 38%° + 0(8%") — ¢}
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= exp {—ine’(1 + 8)} X {1 — #in(1 + 38 + £)¢’
(A5) + 0(n’8'e° + n's")}
by (12), where the O-notation refers to n — . Use has been made of ng%"
being small when | ¢ | < & and 7 is large; this follows from (12) and (A2).

The second term in (A5) is an odd function of ¢, therefore its integral from
—& to +6 vanishes and we get

[: = [: exp {—ine’(1 + B)} de
(A6) +0 ( [: (W8’ + n6'") exp {—1ne’(1 + 6)} d«»)

k
= o+ O [ 57 do + 08",

where k& = 8(3n(1 + 8))"*. Now
fk e‘“vz dv < ‘/; ve""z dv = %e—kﬁ = 1 exp {—%n(l + ﬁ)52} < Lexp (__;_nlis),

and a similar inequality holds for F-% ¢~ * dv. Therefore replacement, of the
limits £k by Z=o in (A6) causes au error not exceeding exp (—i~."®), and we
get

(A7) = (2r / n(1 + B))"*{1 + 0(8/n)}.

Summarizing (10), (11), (A1), (A3), (A4), and (A7), the leading term of (13)
is obtained. The term with 0(8/n) (and if necessary, any further terms in the
asymptotic expansion) can be obtained by carrying further the expansion under
(A5).
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