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where ¢ is $p when p is even and 1(p — 1) when p is odd. In the region of ex-
trapolation, when | z | is large (12.2) gives

var uy(x) = (2p + 1){(2p)!/2"p"*}’x"* /n.

The deviations from these formulae when 7 is not large have been discussed
and tabulated [4].

4. Comparison of the two methods. In the central part of the range the uni-
form spacing method gives a smaller variance than the minimax variance
method. An asymptotic expansion of (13) using Stirling’s factorial approxima-
tion shows that the ratio of the variances is roughly 2/x. This ratio increases
steadily with |z |, and at the ends of the range the variance for the uniform
spacing method exceeds that for the minimax variance method by a factor
p + 1, while in the region of extrapolation this factor approaches 2 + p*. The
crossover points for the two variance curves occur at =4-0.58 for the quadratic
and =40.72 for the cubic. Thus over most of the region of interpolation the
advantage lies with the uniform spacing method, but at the extremes of the
region of interpolation and in the region of extrapolation the advantage lies
decidedly with the minimax variance method.

Fig. 1 shows the shape of the two variance curves in the region of interpola-
tion for the second and third degree polynomials. Since the curves are symmetri-
cal about the origin of «, only half of each curve is drawn.
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CONDITIONS THAT A STOCHASTIC PROCESS BE ERGODIC!

By EMANUEL PARZEN

Stanford University
In his work on statistical inference on stochastic processes, Grenander has
pointed out ([2], p. 257) that “the concept of metric transitivity seems to. be
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important in the problem of estimation of a stationary stochastic process.” In
this note, we give necessary and sufficient conditions in terms of characteristic
functions that a strictly stationary stochastic process X(#) be metrically transi-
tive or ergodic (see Doob [1], pp. 452457 for definition of the terminology)
More importantly, we state a mean ergodic theorem (or weak law of large
numbers) for stochastic processes which are strictly stationary of order K, by
which is meant that for every choice of K points 4, , - - - , x, the random vari-
ables X(#y + h), ---, X(¢x + h) have a joint probability distribution which
does not depend on A. ‘
TuareoreM 1. Let the random variables X(¢) be defined for £ in

T = {0, &1, +2,--- }.
Let K be a positive integer. Let #,, - - - , ¢x be points in 7. Assume that there
is a characteristic function ¢(u, , - - - , ux) such that, for all u,, ---, ux,
(1.1) Elexpi{wX(t, + h) + -+ + ueX(tx + h)}] = o(w1, - -+, ux)
for all hin T

Assume that, for each 7 in T, there is a characteristic function ¢(uy, -+ , ux ; 7)
such that

(12) Elexpi{u(X(t + b) — X(h + h + 7))+ -+ + ux(X(x + h)
— X+ h+ N} =0, - ,ux;7) for all hin T.
Let r = 1. Then for every Borel function g(z:, - - - , x) such that
E|gXt), -, X(tx)|" < =

the sample means

(1.3) M.(g) = Z g Xt + h), -+, X(tx + b))

n+1

converge as a limit in r-mean. A necessary and sufficient condition that the
limit, of the M. ,.(g) be the ensemble mean E(g) = E’g( X(t), - -+, X(tx)) is that,
for all real Uy, *+*, UK,

(14) s n + i §¢(uly ey ux;T) = |e(u, 0, ux) |2'

The meaning of these conditions is as follows: (1.1) states, in terms of char-
acteristic functions, that the stochastic process is strictly stationary of order K;
(1.2) states that the process of increments Y () = X(¢) — X(¢ + 7) is stnctly
stationary of order K; (1.4) represents a very weak form of asymptotic in-
dependence.

From Theorem 1, together with the Birkhoff-Khintchine ergodic theorem
(see Doob [1], pp. 464-473) we immediately obtain the following theorem.

THEOREM 2: A strictly stationary stochastic process X (#) is metrically transi-
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tive if, and only if, for every positive integer K, for any choice of K points
t, -, tx, and for any real numbers u;, ---, ux, (1.4) holds.

The conditions of Theorem 2 constitute a formulation in terms of character-
istic functions of known conditions for metric transitivity (see Logve [4], p. 435).

As an indication of the power of these theorems, let us mention that with
their aid one can readily establish the following statement made without proof
in the book of Grenander and Rosenblatt ([3], p. 44): If X (¢) is a normal process,
a necessary and sufficient condition for it to be ergodic (metrically transitive)
is that its spectrum be continuous. If X(f) is a linear process, then it is ergodic.

Theorem 1, and consequently Theorem 2, may be extended to the case of
continuous parameter stochastic processes. They provide a new proof of the
theorem of Maruyama (see [2], p. 257) that a continuous stationary normal
process is metrically transitive if, and only if, its spectrum is continuous.

Theorem 1 is very closely related to the weak law of large numbers for wide-
sense stationary processes (see Doob [1], p. 489), from which it differs in that
it does not require existence of second moments for X (¢).

The proof of Theorem 1 is fairly immediate. From (1.1), (1.2), and (1.4), it
follows (either by the weak law of large numbers for wide-sense stationary
processes, or directly by a simple argument [6]) that the theorem holds for
trigonometric polynomials gz, -+, zx) = expi(uws + --- + uxzx). To
extend the theorem to Borel functions g(z;, - -+, zx) such that E|g|"™ < o,
one uses the fact that to any ¢ > 0 one may find a trigonometric polynomial
ge(z1, - -+, zx) such that

E|gX@®), -+, X(r) — 9e(X(t), -+, X)) |" < e

In [5] one may find related theorems, including a discussion of convergence
with probability one of certain sample means M,(g) of stochastic processes
which are strictly stationary of order K.
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