NOTES

AN EXTENSION OF THE OPTIMUM PROPERTY OF THE
SEQUENTIAL PROBABILITY RATIO TEST

By M. A. GirsHICK!

Stanford University

Let f(x, 6) be a family of densities or discrete probability functions depending
on the parameter 6. Let H, be the hypothesis § = 6, and H; the hypothesis
that 6. = 6. A sequential probability ratio test of Ho versus H; is defined by
two numbers A and B. After drawing the mth observation, sampling is con-
tinued if

61)

1 B < [t 4,

( ) 'I"Il f (17, ’ 00)

where z;, -+, Zm are the first m observations. If the probability ratio is at

least equal to A, H; is accepted, and if it is not greater than B, H, is accepted.
For any sequential procedure T, let the operating characteristic be

(2) L(9, T) = Pr {Accepting H, | 6, T},

and let &(n | T') be the expected number of observations required by 7' when
sampling from f(z, 6). The so-called optimum property (see [5], for instance)
of a sequential probability ratio test, say T*, is that if L(6, T) = L(6,, T*)
and L6y, T) < L(6,, T*), then

800(”' [ T) = 800(”’ I T*)7 801(”' l T) = 801(" I T*)

In many cases this optimum property can be extended to all values of the
parameter. Suppose 6 < 0;, and let 8§ be a number to be defined later such that
8o < 8 < 6;. Under conditions stated below, we give the extended optimum
property. If

3) L@, T) = L, T*), 6 <86,
L6, T) = L6, T, 6>,

for all § = 8, then

4) & |T) 2 &(n|T*
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1 The result reported in this note was mentioned by the late M. A. Girshick to several
of his colleagues, but was unpublished at the time of his death. Since I think the result
is of sufficient interest to be in the literature, I have taken the liberty of writing this note
in Girshick’s name. T. W. Anderson.
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for all 6. Inequalities (3) indicate the premise that T is everywhere as good as
T* in the sense that the operating characteristic for 7' is at least as high as for
T* for 6 on one side of 8 and is as least as low as for 7* on the other side of 8.
Then T* is everywhere as good as T in terms of expected number of observa-
tions.

To demonstrate the property we assume that for = 8 there is a unique
nonzero root, say h(9), of

® o[fen] -,

and that A(8) > 0 for § < 8 and h(6) < O for § > 8. (See [4] for discussion of
the assumption and of the technique used here.) This implies that given 6, and
6, the value of 8 for which the assumption holds is unique. We make the further
assumption that for each 6 there is a 6’ such that

1(6)
© [ Kt a0 = 162,00,
We now prove (4) for § < 8 by assuming (3) for  and ¢’. Since
h(0") = —h(6),

we have & > 6. The sequential probability ratio test 7* defined by (1) can also
be defined by

® o[ fza, 6) T @
@ B® < g [f (s, 00)] <4
or by
) f(:, 0) )
® o < [IfE < 4.

Then (4) follows by the usual optimum property because T* is a sequential
probability ratio test for testing hypothesis 6 versus the hypothesis 6. For
§ > 0 a similar argument can be used.

The conditions assumed for this extended property are satisfied by many
distributions. In particular the existence of such so-called conjugate pairs for
distributions of the Koopman-Darmois form has been shown [2]. Savage [3]
has shown that the assumptions restrict the families to have a certain exponen-
tial form (which includes the Koopman-Darmois form). This note makes ex-
plicit Blasbalg’s statement [1] that a sequential probability ratio test is opti-
mum at an infinity of parameter points.

REFERENCES

[1] H. BLAsBALG, ‘“‘Sequential analysis,” Ann. Math. Stat., Vol. 28 (1957), pp. 1024-1028.
2] M. A. GirsHICK, ‘“Contributions to the theory of sequential analysis II, II1,”” Ann.
Math. Stat., Vol. 17 (1946), pp. 282-298.



290 V. R. RAO

[3] L. J. Savaag, “When different pairs of hypotheses have the same family of likelihood-
ratio test regions,” Ann. Math. Stat., Vol. 28 (1957), pp. 1028-1032.

[4] A. WaLp, Sequential Analysis, John Wiley and Sons, New York, 1947.

[5] A. WaLp anp J. WorrowiTz, ‘‘Optimum character of the sequential probability ratio
test,” Ann. Math. Stat., Vol. 19 (1948), pp. 326-339.

—

A NOTE ON BALANCED DESIGNS

By V. R. Rao
University of Bombay
0. Summary. It is proved that a necessary and sufficient condition for a
general design to be balanced is that the matrix of the adjusted normal equations
for the estimates of treatment effects has v — 1 equal latent roots other than
zero.

1. Estimates and their properties. We consider a design whose incidence
matrix is Noxpe = [n:;] in which the 7th treatment is replicated r; times and the
blocks are of sizes k1, - - -, ky . With the usual assumptions, the adjusted nor-
mal equations for the treatment effects are

(1.1) Q = C%,
where
. 1 1
1.2) Q—T—Ndlag(l-c-l,~-~,E)B
and
(1.3) C=diag(r1,~~,r,,)—Ndiag(l—,---,L)N'
k1 ky,
with the condition
(1.4) B, =10

(where E,, denotes a p X ¢ matrix with all its elements as unity).

It is well known that if rank C = v — ¢, a set of # — 1 independent treatment
contrasts are not estimable. But if rank C = v — 1 every contrast is estimable
and in this case the design is said to be connected.

If the design is connected there are v — 1 non-zero latent roots, say, A,
Az, -+, Ao—1. As the rows of C add to zero, (™7, - - -, v™"/%) is the latent vector
corresponding to the root zero.

Let

(1.5) L= [,,—fél] = [vggl]

be an orthogonal matrix transforming C into diagonal form.
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