A CONSTRUCTION FOR ROOM’S SQUARES AND AN APPLICATION IN
EXPERIMENTAL DESIGN

By J. W. ArcuBorLp AND N. L. JouNSON

University College, London

1. T. G. Room [1] recently proposed the following problem: To arrange the
n(2n — 1) symbols rs (which is the same as sr) formed from all pairs of 2n differ-
ent digits in a square of 20 — 1 rows and columns such that in each row and
column there appear n symbols (and n — 1 blanks) which among them contain
all 2n digits. .

He remarked that the problem is soluble when n = 1 (trivially) and n = 4 but
not when n = 2 or 3; and he gave one solution for n = 4.

Squares of such a type have uses in experimental designs. We explain below a
simple construction for squares where n has the form 2°"~'. Each square con-
structed in this way is represented in a canonical form by applying a well-known
theorem of J. Singer [2]. In this form as soon as the top row of entries in a square
is known, all the other entries may be written down immediately by means of a
straight-forward cyclic process. Thus an index of first rows is all that is necessary
to catalogue squares in their canonical forms.

It may be permissible to give here a slight modification of the proof of Singer’s
theorem in order to show a natural application of the regular representation of
linear algebras.

2. Let @ be a linear associative algebra, of order m and with modulus, over a
commutative field K. It is well known that @ is isomorphic with an algebra of
m X m matrices whose elements belong to K (c.f. Macduffee [3], Section 123).

A Galois field GF(p™) is such a linear algebra over a GF(p"). If the elements

of the GF(p™") are 0, &, &’, - -+ ,a” = 1 the irreducible equation, of degree m
and with coefficients in GF(p"),
f@)=2" —az™ ' — - —an =20

which is satisfied by « is called primitive (Dickson [4], Section 35). A basis for
the algebra consists of 1, a, a’, - -+, @™ " and the modulus is 1.

The primitive equation is-both the minimum and characteristic equation of
the companion matrix
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The correspondence a” <> A" determines an isomorphy, or regular representa-
tion, of the GF(p™") on the algebra or Galois field whose elements are the m X m

matrices 0, A, A%, --. , A?""-1 = I, where I is the unit matrix (c.f. Macduffee
(3], Section 109). If N = 1 + p" + - + p"" " then the matrices A’¥, for
j=1+--,p" — 1, are the multiples of I by the elements of GF(p") and form

a sub-algebra, of matrices, isomorphic with GF(p").

In a finite projective space PG(m — 1, p") over the GF(p™), let x and y denote
column coordinate vectors. Then the equation ky = Ax, where k is any non-zero
element of GF(p™), determines a homography in the space of period N. This is
Singer’s theorem; and the proof differs from his more in form than substance.
It is significant for us that N is also the number of points in the space.

3. Confine attention now to the case where p = 2 and n = 1. The space, a
PG (m — 1, 2), contains u, = 2™ — 1, points, with three on every line.
The following are primitive irreducible polynomials over GF(2):

x2_(x+1)’ xa_(x"l'l); 1?4—(13',-1),
2 — (@’ + 1), 2t — (z + 1), g — (z+1)
B — @+ 1), 2 — (Bt 2+ 2+ 1)

This list is taken from Dickson ([4], p. 44); it is not exhaustive for the degrees
mentioned but for each degree the second largest exponent of z is as small as
possible.

For a given m, choose any appropriate primitive polynomial and consider the
associated homography of PG (m — 1, 2) of period- u. If P; is any point of the
space, let its successive transforms under the homography be Pz, Ps, ---,
Pn(Pn+l=P1)' .

Now consider the space PG (m — 1, 2) as being a prime in a PG (m, 2). To
achieve this, suppose x;, - - - , X, are coordinate vectors for Py, ---, P,. Then
coordinate vectors for all but one of the points in PG(m, 2) are obtained by
adding a further zero or unit coordinate at the end of each x; ; and the last point
by taking coordinates consisting of m zeros followed by 1. Denote this last point
by Qo and let Q; be the third point on the line QP; ; @; and P; have the same first

m coordinates.
To fix ideas, take m = 3 and f(z) = z° — 2 — 1. Then u = 7 and the corre-

sponding homography is
Yo 0 1 0\/x
k )= 0 01 T
Yo 1 1 0/\2

YoiY1iYe = Ty T2 i%o + 2.

or
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Starting with 2y = 1, z; = 2, = 0, we obtain for PG (3, 2) the following points:

p, P, P, P, Py Py Py

1 0 0 1 0 1 1

0 0 1 0 1 1 1

0 1 0 1 1 1 0

0 0 0 0 0 0 0
QO QI 2 3 Q4 Q5 QG Q7
0 1 0 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1

4. The idea is now to rename the points @, -, @, as Ry, - -+, R, in some

order to be determined with the object, when possible, of ensuring that whenever
the line Q.Q; passes through a point P, then the line R:R; passes through a -
different point P, .

The various incidences are then registered in a table of u rows and 4 columns
as follows: if the line QQ; passes through P, and R.R; passes through P, make
the entry

i,j  (orj,1)
in the place belonging to the rth row and sth column of the table.

The number of entries in each row and column is the number of lines through
a point of PG(m, 2) which do not lie in a prime through the point. This number
is (@™ — 1) — (2™ — 1) = 2™, And the entries in every row and column are
all the integers 0, 1,2, 3, --- , 2™ — 1 taken in pairs. No two pairs are the same
and there are 2™ (2™ — 1) entries altogether.

In the cases examined below, the desired objective is reached when m is_odd
by defining R, to be Q. , where » = 2™ — ¢; and then no position in the incidence
table contains more than one entry of the form (7, 7). When m is even, the same
definition is used for R: but this leads to two entries in each position in the south-

TABLE 1
1 2 3 4 5 6 7

1 24 56 37 01
2 35 67 41 02

3 46 71 52 03

4 12 63 04 57
5 23 74 05 61

6 15 06 72 34
7 07 13 45 26
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west to north-east diagonal of the table: no better definition for R, has been
devised which will prevent two entries from occurring in the same position.

6. For the case m = 3, which we began to consider in Section 3, let us define
R;tobe Qs _; (2 =1, ---,7). We then obtain the incidences shown in Table 1.

It will be noticed that, beginning with the second, each row or column is
obtained by a cyclic change in the positions, and values modulo 7, of the entries
in the preceding row or column: that is, if X,,, Y, are the entries in row r and
column s and X,, # 0, then, modulo 7,

Xr.a =1+ Xr—1.3+1 5 Yr.a =14 Yr—l,a+1 .

The whole table is therefore completely determined by the entries in any one
row or column.

6. For m = 4, we have u = 15 and we take f(z) = ' — z — 1. R; is now
defined to be Qis_; for ¢ = 1, - - -, 15. Table 2 is obtained.

Here the NE-SW diagonal is shared by two sets of entries. This is a character-
istic feature arising when m is even but not when m is odd.

In fact, going now to the simplest case where m = 2 and f(z) = 2* — z — 1,
the table which arises is as follows:

1 2 3
1 01
2 3
2 0 2
31
3 0 3
1 2

Form = 5, u = 31. Take f(z) = 2* — 2’ — 1. Define R; to be @s2—; . Then we
obtain Table 3 (only the first line of entries need be given).

TABLE 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ' 15

12,20(8,23 9,21 [14,15 10,17 27,29 2,19 18,31

16 17 J8 19 20 21 22 23 | 24 l 25 26 27 28 29 30 31

22,26|5,11 \16,25' 3,6 | 13,24 7,284,301 0,1
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7. If the columns of the first design of Section 5 be regarded as blocks, the
rows as a set of treatments a;, -+, a7, and the numbers in the squares as a
second set of treatments bo , - - - by, then the design is an incomplete block with
respect to the first set of treatments and a complete randomized block with
respect to the second set of treatments. The design is also balanced with respect
to combinations of different levels of treatment a, with different levels of treat-
ment b. The usual parametric model (Model I) would be

Tiij = A + B + ai + B + 244

(where z.;; denotes the observation on treatment combination ab; in the /th
block, >_B; = > a; = >.B; = 0 and the z,;’s are mutually independent ran-
dom variables with common variance and mean zero). The analysis of variance
appropriate to this model is obtained as follows:

(i) Carry out the standard incomplete block analysis on the means & of
pairs of observations for treatments @; in the same (#th) block. Multiply the
resultant sums of squares by two. This will give the Between Blocks and Ad-
justed Between Treatments @ sums of squares in the final table.

(ii)) Compute the Between Treatments b sum of squares in the usual way
(that is, 7 D im0 (&.j — &..)%).

(iii) Compute the Residual sum of squares as Residual in (i) +
Z, Z,- Zi (€7 — %) — Between Treatment sum of squares in (ii).

The degrees of freedom appropriate to these sums of squares are then

BlOCKS. . . ottt e e 6
Adjusted Treatments @....................covieiineeen.... 6
Treatments b...........couiuiiniiiiiii it iieiannnns 7
Residual........co i i e 36

One advantage of this design lies in the fact that the treatment b sum of squares
is orthogonal to the treatment a sum of squares. It is, unfortunately, not possible
to test for interaction between the two sets of treatments. Certain specific inter-
actions may, however, be isolated from the Residual sum of squares. For example
the contrast b, vs. by in the presence of a; can be compared with the average
effect of the same contrast in the presence of azaz - - - a7, provided it is assumed
that other interactions between a and b are negligible. The calculation of the
sum of squares for such a contrast could be based on a two-way table with
entries

. 7 7
bya1 , bua be _Z'ai ’ by 22 as
=

=2

in the usual way.

Alternatively, the design may be regarded as an incomplete block design for
treatments a, with main plots split for treatment b. In this case the design should
be regarded as an incomplete block design also with respect to treatments b. The
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model becomes
Tij = A+ By + a; + Bi + uu + 245

where the u.’s are independent random variables, with zero mean and common
variance, which are also independent of the z.;’s. The two incomplete block
analyses may be carried out separately (except that the Blocks sum of squares
in the Treatments b analysis is the Total sum of squares in the Treatments a
analysis). The sums of squares in the complete analysis, and their associated
degrees of freedom, are

Blocks 6
Adjusted Treatments a 6 As in the original
Error (i) 15 analysis (i)
Adjusted Treatments b 7
Error (ii) 21

As in the earlier analysis it is not possible, in general, to test for interaction-
between @ and b, but certain specific interactions can be isolated from Error (ii).

Similar -considerations apply to the second design of Section 7.

The design shown in paragraph 8 is a supplemented incomplete block design
(in the sense of [5]) with respect to treatment a. The analysis of the design will,
however, be similar to that described above for the designs of Section 7, and in
particular the Treatment b sum of squares will again be orthogonal to the ad-
justed Treatment ¢ sum of squares.
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