ON THE EFFICIENCY OF ESTIMATES OF TREND IN THE ORNSTEIN
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1. Summary. The problem is that of estimating the trend of a normal process
when the trend function is known up to a finite number of coefficients. That is,

ye = 2 + f(0), 0<t=T,
where 2. is a normal process with mean zero and covariance function
EX., X,] = C(u,v)
and
J@) = ki(®) + -+ + ku(2).

The ¢:() are known functions and the k; are to be estimated.

The standard procedure in such a case is to derive the estimates by the max-
imum likelihood method. However, if the covariance function C(u, v) is not
completely known, this is usually impossible, and it is essential to find an al-
ternative procedure. The method of least squares has been proposed by Mann
[1]. The estimates obtained by this method are independent of C(, v) and have
the additional advantage of being easily computed. Mann and Moranda [2]
showed that for the Ornstein Uhlenbeck process the asymptotic efficiency of the
least square estimate relative to the maximum likelihood estimate is one, in
the special case that the ¢:(f) are polynomials or trigonometric polynomials.
Mann defines the efficiency &(T) of an estimate f(£)

B[ [ v - sor ]
5] [ 70 - sor a ’

where j(£) is the maximum likelihood estimate. For the cases that shall be of
particular interest—the Ornstein Uhlenbeck process with f(#) a linear unbiased
estimate—Mann and Moranda [2] have shown that é(T) = 1.

In the present paper the asymptotic. efficiency of the least square estimates
will be computed for a wider class of functions ¢;(¢). It will be shown that except
for a special case just slightly broader than the one treated by Mann and Mor-
anda, the asymptotic efficiency is actually less than one. Thus except for this
special case, the least square estimates could be improved upon. An alternative
estimate k;(c) is proposed. It will be shown that for @ = B, where g8 is the true
correlation parameter in the Ornstein Uhlenbeck process, the estimates Fs(c) are

T =
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asymptotically more efficient than the least square estimates, and in fact as
a — B from above the efficiency increases (strictly) to one.

2. Introduction. The least square estimate is obtained by minimizing the ex-
pression

T
[ w - rora
and is given by
8 ii T
E = Z G¥(T) f i)y, dt,
i=1 0
where
T
1) Gi(T) = f o:i(t)¢;(t) dt.
o
The maximum likelihood estimates £; minimize
T T
[ [t = sivs — s, 0) e o
and are given by

k; = E 3(T) fo ' fo ’ &i(w)y, C(u, v) du dv,

J=1

where
@) &(T) = f f )i (v)C(u, v) du db.

It will be assumed that the ¢;(¢) and C(u, v) are such that these integrals exist.
The efficiency of the least square estimates can now be computed.

H(T)d™(T)]

0 = e

where

3) ¥ = [ [ 4000 1) dudo.

The trace of the matrix is ¢.
It will further be assumed that there are functions H,(T) such that the limits

) Gi(T) _
lim i) ~ %
. ®,4(T)
———— = @;' ]
4) im e -
tim WD) _ g,

row H{(DH,T)
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exist and are positive definite matrices. The asymptotic efficiency then is
s HGETY)
(5) e = 1;_{1;10 e(T) = m .

‘Necessary and sufficient conditions that & = 1 will be found for two classes of
@, ®, V. The first, which includes the cases treated by Mann and Moranda, re-
quires that G, ®, ¥ be of the form

(6) ¢ = ic»Gn;

where the @, are positive semi-definite matrices and the ¢, are distinct positive
real numbers. The second requires that

& = BGB”
¥ = BTGB + C,

where B is positive definite, and C is positive semi-definite.
Results will be applied to the case that z, is an Ornstein Uhlenbeck process and
the ¢;(¢) are of the form first

@)

N ¢

6:(8) = 2 (Gins SID Wt 4 binr COS @, 1)
1

n=1 r=
and second
4’6(‘) = 3“‘, a; > 0.

When the covariance C(u, v) involves some unknown parameters an attempt
can be made to estimate them along with the k; by the maximum likelihood
method. However, this frequently leads to equations which cannot be solved.
In this case, a natural procedure is to make an estimate C*(u, v) of C(u, v) by any
convenient method and then use the maximum likelihood estimates of the k;
based on the covariance C*(u, v).

For the Ornstein Uhlenbeck process

Clu, v) = oe? ™,
Let
ifu=ouo,

otherwise.

C*u,v) = 1.
(u, v) {0
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This covariance function yields the least square estimates. If the true value 8 is
replaced by «, & family of estimates is obtained by this method.

ki)

8) s T, T
® T s + 60w+ L [ 650 aye+ o [ wson ],
j=1 @ Jo 0

where
®,,;(T)

9 T, T
A t[e@em + 0080 + L [ 060 @+« [ s0a0at].

Clearly
]-im Ei(a) = Et' )

a-»%

E(B) = k..

3. Efficiency of estimates for G, ®, ¥, of form (6). Assume that G, ®, ¥,
defined by (1), (2), (3), and (4) are the special form (6). Then from (5)

G — G G T(@Y — GQ)]
1w (¥G) ’

(*¥ — GG) + (¥ — GA)"

1—¢=

[V]z

Z{%GG—GG+ GG—GG]

m=1

N 2
Z (Cm - cn) GnGm.

m=1 CnCm

(10)

3
=

[V]z

I
-

GG, are positive semi-definite and

(Cm - cn)2

>0, all m # n.
CnCm

Thus, ¥ — GGQ is positive semi-definite. In order that 1 — & = 0, it is necessary
and sufficient that

®r — GG = 0.
This is equivalent to requiring
HGnG.) = 0, all m # n.

This result will be stated as a theorem.
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TaroreM 1. If G, ®, ¥ are nonsingular and of the form

N
G =2 G,

n==1

N

<I>=Zc,.G,.,

n=1
51

¥ = Z o Gn.
n=1 Cn

where the G, are positive semi-definite matrices and the c, are distinct positive real
numbers, then

if and only if
H(GnGs) = 0, adlm # n,

For the Ornstein Uhlenbeck process the theorem can be applied to obtain the

special result.
THEOREM 2. Let

y: = z + f(0),
where x, 18 an Ornstetn Uhlenbeck process with mean zero, and

@) = k() + - -+ + kuts(?).

Suppose
N T
¢1(t) = Z Z tr(ainr Sin Wn t + bim' COS wyp t)
n=1 r=1
are such that

oi() = 1" nZ: (@iny; SID wn & 4 Diny; COS wn t)
are linearly independent. Then the asymptotic efficiency of the least square estimates
of the kj is one, if and only of
2 GingQimy = 0,
(11) > Gingbimy = 0,
22 bingbimy = 0,

for all v and m = n. The sums extend over all ¢ for whichv; = 1.
Proo¥. Let H(T) = T"*% The only terms which appear in the limits (4)
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will be those of maximum order, that is, those of the ¢*(¢). Denote @iny; by @in
and biny; by bin . Then G, ®, ¥ can be eomputed and are of the form (6) with

G o= Qin Qjn + biu bjn
" (it i+ Dvelys U
_ B+ o
Cn = 28 .

The G, can easily be shown to be positive semi-definite. Thus by theorem 1,
¢ = 1if and only if

HG@nGr) = 0, allm = n.

N N wn Wim Win Uim n bim Qjn b‘m '+' Qim biﬂ Qjm b'n + b b'm b'n b'm
t GmG” = Qin @ al a’] + a 7 J ) J m Ug 3 b
(@) = 2, 2, (e F 15+ 10 D0, )°

= Z Z Amn'/ Amn6 + Cmn‘y Cmn6 + Cnm'/ Cnm& + an'/ anb'
v 3 (v + & + 1)2(y1)2(s!)?

v and & are summed over all distinct values of v; and
Amny = 22 Qinlim
Bony = 22 binbim
Cony = D Qinbim -
The summations extend over all values of 7 for which y; = v. Since

1
CETESY:

is a positive definite matrix for v, 6 ranging over distinct integers,

H(GnGn) = 0, allm # n

if and only if
Amn‘y = Bmwy = Cmn'/ =0

for all v and m # n.
Thus, unless the special conditions (11) are satisfied, ¢ will be strictly less than

one. For example,

f() = ki + ko sin ¢ + k; sin 2¢
can be estimated efficiently by least squares, but

f@) = k1 + ks (sin ¢ + sin 2f)

cannot.
Grenander and Rosenblatt [3] in Section 7.6 obtain results very similar to those

of Theorem 2.
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THEOREM 3. If y; and ¢i(f) are as in the hypothesis of theorem 2, then the asymp-
totic efficiency &(a) of the estimate ki(c) (8) s monotone decreasing from 1 at o = B
toeasa— . If &€ # 1, then it ts sirictly decreasing.

Proor. First the efficiency of the £;(a) estimates must be computed.

1,0 = B[ [ G0 - 10" ]

= t[zl-c;(a)l-cj(a)(T)Gii(T)]'
Zkij@ = E[(k@) — k) (k@) — kj)]

= ! @ — 8 B8 —1
- o2 [C 7D v + Lo | o).

Voii(T) = fo ' fo ' (¢i(w) + E oi(w) (¢;(v) + i é;(©)e”"* ™! du dv,

and ®.(T) is defined by (9).
For ¢(t) as in theorem 2 and
H.(T) — Tw+l/2’

®..;(T) __1_

By = lim ol = o G o+ 1l
and
& = 2% B°G + ¢,
where
[ s0ei0 a
S = I 2 ey
Yoy = lim e = 5P+ R
Thus,
2. = o (e = £)6 + 268).
Let
A = (d — G + 262.
Then .
E(@) = lim K(T, o)

= A4 (o — B + 48(c" — B))G + 4678},
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and

da
It follows from (10) that

OE@) _ gop(a? — fA7A7GA7 (G — 376)]

Gy —o7'q
is positive semi-definite. Thus, for « > B, the derivative of E(a) is nonnegative
and E(e) is monotone increasing. If & = 1, then

HGTY — 37'G) > 0,

and at least one characteristic root must be nonzero. Since A'47'GA™'® is
positive definite dE(a)/da will then be positive, and E(e) is strictly increasing.

é(e) = lim r [for (ORESO) dt] |
e [fo (Ju®) = f®)? dt]

TG
E(a) °

4. Efficiency of estimates for exponential ¢;(f). Assume G, ®, ¥ are of the
form (7). Then

. _ @ - @7'6) _ Heq)

1= Tz I e 7o e
and ¢ = 1 if and only if C = 0.
Let
oi(t) = &
and
H ;(a) = GG‘T,
where the a; are positive and distinct. Then
1
Gi = ot o
6. - B+ 66+ a)
N a; + a; ’
Yo B4 a)B+a)aita) B+ a)B+a)
Thus,
B = (ﬂ + ai)aij
N v
c=1pB'Bxo,

28
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and hence
e < 1.

Since the least square estimates are not asymptotically efficient, it is of interest
to compute the efficiency of the k.(a) estimates. In this case

_etaata) 1,00

Paij = 2a(a; + a;)  2a
where
Ai; = (a+ a)d;;
¥, = = 4v4
[0
E(a) = t{@TAT'GATIGY (S — B)¥ + 206G}
L@ _ 9 — a6,
da
where
Y (@ — Ba; + (a + Bla; + 2a:a;

T @+ )@+ a )@ + a)(a + a)’

For a > B this matrix is positive definite. Thus, dE(e)/da is positive, and E(a)
is strictly increasing. Thus, for & > 8, the £:(e) estimates are more efficient than
the least square estimates.
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