POLYA TYPE DISTRIBUTIONS IV. SOME PRINCIPLES OF ‘SELECTING
A SINGLE PROCEDURE FROM A COMPLETE CLASS'

By Samurrn KARLIN
Stanford University

0. Introduction. In previous publications [1], [2], and [3], various aspects of
decision theory in which the underlying distributions are Pélya type have been
studied. For example, complete classes of decision procedures were determined,
all Bayes procedures were characterized, and the problem of admissibility was
investigated as related to various kinds of loss functions.

Usually the minimal complete class of decision procedures, to which the stat-
istician would obviously restrict himself in practical application, is still quite
large. Consequently, without any additional knowledge or further conditions, it
is a hopeless task to justify preferring any given admissible procedure to another.
It is therefore of importance to introduce new criteria which will single out a
procedure for use. It is the object of this paper to discuss some further principles
which select a single statistical procedure from the class of all “monotone’”
procedures.

In the n = 2 action problem (essentially the testing problem) some of the
classical principles used to determine a single admissible procedure for use are
related to the concepts of unbiasedness, maximum likelihood, invariance,
minimax, etc. These principles have received much attention and their justi-
fication and relevance are well understood for the parametric testing problem.
For a detailed analysis of these classical concepts in the case of two action
problems when the underlying distributions are Pélya type, the reader is referred
to [1]. Our present discussion deals with the extension and analysis of some of
these principles to the n-action problem. In the sense that the estimation problem
may be obtained as a limit of finite action problems, the ideas here shed further
light on the estimation problem.

The language and notation we use is that of the introduction of the previous
paper [3]. However, a knowledge of the results of [3] is not necessary for an
understanding of the present discussion although a reading of the introduction
would more than provide sufficient familiarity with the terminology to be used
here as well as a general background for Pélya type distributions. Henceforth, we
assume that the notation of this manuscript is that of [3]. Nevertheless, for
clarity of exposition, we review briefly some of the main quantities to be used.

Let the distribution of the observed real random variable X (usually a sufficient
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statistic), depending on the unknown parameter » (w ¢ ©, an interval of the real'.
line), have the form

(1) Pl ) = [ a o) duld)

‘where the density p(¢, w) possesses a monotone likelihood ratio (Pélya type 2)
and p is g countably additive measure defined at least for the Borel field of sets
containing the open subsets of the real line. Occasionally, we shall assume the
stronger condition that the density is Pélya type 3.

The main transformation property of Pélya type 2 densities used in our analysis
is as follows: If g(x) changes sign at most once (say from negative to positive
values), then -

W) = [ 9@l ) duo)

changes sign at most once. Moreover, if h(w) does indeed change signs, then it
must change in the same direction as g, i.e., from negative to positive. For a
thorough discussion of these properties the reader is referred to [2].

There are n possible actions, and Li(w) (¢ = 1, - - - , n) represents the measure
of the loss when taking action 7 and w is the state of nature. We require that the
set

8: = {w] Li(w) < Lj(),j # i} = (o, o3)
where the o} satisfy
—w = <l << e < wp = o,
The set S; represents the set of w values where action 7 is favored if the state of
nature were known. Also, we assume that L (w) — L;11(w) has exactly one sign
change which must occur at wl.

We shall assume throughout what follows that the loss functions L;(w) and
the density p(z, ») satisfy sufficient smoothness conditions to guarantee the
existence of all integrals involving these quantities and to justify all differentia-
tion operations. In most particular examples these smoothness requirements
can be readily verified.

A statistical procedure is an n-tuple

¢(w) = (¢1(x)7 Tt (oﬂ(x))’

where ¢;(z) is interpreted as the probability of taking action ¢ when observing z.
A “monotone” procedure is characterized by a tuple

(xl’xh'"’xn—l;)‘l:"’y>\n—1)

where 2; £ 22 £ -+ < 21,0 = \; = 1. Explicitly, when the z; are distinct,
then

1 fry <z <z,
0 fz <zia,z> 2, .

¢1(x) A ifr =2, = 17 ) Ty
1— )\.'_1ifx = Ti-1,
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and by définition o = — 0, \p = 0, 2, = +«, A\, = 1. In the case where some
of the z; coincide then appropriate changes in the form of the definition of ¢i(z)
at the values z; must be made. If the measure p of (1) has no atoms (jumips),
then a monotone procedure is fully specified (up to equivalence almost every-
where with respect to u) by the critical values (z;, z2, - - - , T.—1). For the sake
of simplicity of exposition, we restrict ourselves henceforth to the case of a con-
tinuous distribution. However, we remark in passing that all of the results of
this paper may be extended, subject to suitable modifications, to the general
case where we allow the measure u to possess atoms. The risk corresponding to

any given strategy ¢ = (g1, @2, *** , @a) 18 given by the expression
@ o) = [ 2la, ) {35 Lol dut.

The collection of all monotone procedures constitutes a complete class [4].
‘When the loss functions satisfy additional assumptions, then all non-degenerate
monotone procedures are also admissible [3].

The set of all monotone strategies 9 form an n — 1 dimensional family in the
sense that they depend on the n — 1 critical values which determine the proce-
dures. Our problem, in choosing a specific strategy from 917, is in essence finding
n — 1 conditions which will cut the class 9T down to a unique member. Alter-
natively, we could impose some global restrictions which also single out a mono-
tone procedure. For instance, if an a priori distribution of nature F(w)is known
to be meaningful, then the Bayes procedure with respect to ¥ determines a spe-
cific monotone procedure. [See [3], [5].] The assumption of the existence of F is |
often hard to justify and appears contrived.

Another global condition frequently followed is to choose a monotone mini-
max procedure. However, minimax procedures are often very unreasonable on
the basis of statistical intuition and there exists feeling that minimax philosophy
is in general too conservative and unrealistic. Of course, modifications of the
minimax principle lead to the so-called regret principles. Various complications
appear also for the case of the criteria of minimax regret [6].

A third method for choosing a monotone procedure is inherent in the construc-
tion of complete classes as introduced in [4]. Suppose that for a given problem
there has been in use a common or accepted mode of action which is not a mono-
tone procedure. Then, there exists at least one monotone procedure which im-
proves everywhere on it for the decision problem of more than two actions. If

the original procedure is described by an n-tuple of functions ¢ = (@1, -+, @n),
then any monotone procedure @ = (o1, -+, ou) (and there is at least one)
which satisfies
© i o i >0 for w= o}
[rela[Zee - Xt | auta :
—o0 j=1 j=1 =< for o = w;

improves on ¢.
This method is constructive. That is, for any non-monotone procedure in use
we can explicitly exhibit a monotone procedure which yields a smaller risk uni-
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formly for any choice of the state of nature w. The apparent disadvantage to this
idea is that it involves only an improvement relative to a given non-monotone
procedure and sheds no light on the intrinsic question of selecting a specific mono-
tone procedure from the class 9.

In this study we will analyze three principles of selecting a single monotone
procedure from M. The first represents an extension of the maximum likelihood
estimate to the circumstance of the n-action problem. The monotone test ob-
tained in this case has a lot of intuitive appeal and will be referred to as the
maximum likelihood procedure.

The following section examines another approach called the principle of maxi-
mum probabilities (abbreviated M.P.). This principle, as well as the maximum
likelihood procedure, does not depend on the specific values of the loss functions
but rather on the preference regions S; = (wi_; }). Any other loss function satis-
fying the properties of a monotone preference pattern and giving rise to the same
preference sets S; will possess the same class of monotone procedures obeying the
principle of M.P.

The precise description of this principle is as follows: A decision procedure
which is defined by an n-tuple of functions ¢ = (¢, - - - , ¢,) is said to have the
property of maximum probabilities (¢ has M.P.) if for every ¢

3) hi(w’) = hiw”) for any o’ in S;, w” £ S;,
where
@) hw) = [ oD, o) dua).

For the case of two actions a procedure ¢ has the property of M.P. if and only if

¢ is unbiased in the classical sense. Therefore, this principle may be considered

to be a generalization to the case of n actions of the concept of unbiasedness.

The quantity h:(w) may be interpreted as the unconditional probability for the

procedure ¢ of taking action ¢ when the state of nature is w. The condition (3)
states that h:(w) is larger when w is in S; than when « is outside S;. This last

property is the reason for the name, principle of maximum probabilities.

It will be shown that there always exist monotone procedures having the
property of M.P. for the case of » < 5 actions. In fact, we shall exhibit a one
parameter family of such procedures. When n > 5, in general there ceases to
exist such monotone procedures.

The final principle investigated is the principle of unbiasedness (in the sense
of Lehmann [7]). A decision procedure ¢ is said to be risk unbiased with respect
to the loss functions L; if Ee[L(w, ¢(z))] = EoL(8, ¢(z))] for all w and 8, where
Ey(-) denotes the expected value given that the state of nature is 6, and

L(w, (@) = 22 Liw)e:(®).

For the case of two actions, this definition reduces to the usual concept of un-
biasedness. This principle of unbiasedness differs from the principle of M.P. in
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that the former depends in a very crucial way on the magnitudes of the loss
functions while the latter depends only on the preference regions. We shall prove
that if L;(w) = L;;for win 8; and the L;; satisfy suitable assumptions, then there
exists a unique admissible monotone procedure unbiased in the sense of Leh-
mann. The method of proof of the existence will in effect be constructive. In
general, risk unbiased procedures need not exist.

AckNOWLEDGEMENT. I wish to thank Mr. R. Miller for his help in the prep-
aration of this manuscript.

1. Maximum likelihood principle. We assume throughout this section that the
density p(x, w) of (1) has a strict monotone likelihood ratio and further that

p(z, w) possesses continuous second order, partial derivatives. The fact that
p is of Pélya type 2 implies (see [2]) that

| p(z, w) a% p(z, w)
(5) 2

a
'a—x p(x: w)

for all z and w. An additiona: assumption is imposed to the effect that the in-
equality of (5) is strict for all 2 and w. Finally, we assume that for each z in X
the equation

1%
=

F)
Frem p(z, w)

©) 0@ @) = 0

has a unique solution, w = w(z), which is a differentiable function of z. These
assumptions are not as stringent as may appear offhand. A wide class of distribu-
tions, including the exponential family (p(z, w) = €““f(w)), the noncentral ¢,
the noncentral x°, etc., fulfills these requirements. For the exponential family,
w(z) is the-solution of the equation —g'(w)/B(w) = z.

LeMMmA 1. w(x) 2s a strictly increasing function of x.

Proof. Differentiating Eq. (6) with respect to x leads to

- Pl o@) | I2050(0) i) g

By assumption,

p(z, w(z)) 'p(x w(z))

> 0,
p(z, w())

2 p(a, ola)

which implies 8"p(z, w(z))/d2dw > 0 because of (6). Since p(z, w) assumes a
maximum at w = (z), 3'p(z, w(x))/dw’ = 0. Thus from (7), «'(z) > 0.

As z varies over the sample space X, w(x) varies over the whole € interval.
Suppose not; then there exists an wo such that wp is not the upper endpoint of
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@ and for w > wy. Ip(x, w)/dw < O for all 2. (Or similarly for the lower end
of ©2.) But this contradicts the fact that for all w ¢ ,

f_w 56; p(z, w) du(z) = 29% [W p(z, @) du(z) = 0.

Since w(zx) is a 1 — 1 strictly monotonic mapping of X onto €, the inverse
function " is well-defined. Set 2% = w (w}), 7 = 1, - -+, n — 1. The maximum
likelihood principle dictates that the monotone procedure which should be used
is the one defined by the critical numbers (27, - - - , 2%_1). For z € (231, 2?), take
action?, 7 = 1, ---,m, 2y = —» and & = -+ . This principle has the feature
that for any observed 2 the proper action 7 is taken whose corresponding interval
(wi_1, wy) includes the maximum likelihood estimate of w. In less precise lan-
guage, that action is taken which is most likely.

2. Principle of maximum probabilities (M.P.). The principle of maximum
probabilities is one type of extension of the concept of unbiasedness in hypothesis
testing. Consider the n-action problem defined by the points —®© = w) < wi
< -+ < wy = 4« in which action 7 is preferred in the interval S; = (wi-1 , wi).
A decision procedure which is defined by an n-tuple of functions ¢ = (1, * -+ , ¢n)
is said to have the property M.P. if for every 7, h;(w’) = hi(w”) for any o’ € S;,

w” 2z S;, where

0

h@ = [ ool o) du(@).

Our object is to try to establish the existence of monotone procedures possessing
the property of M.P

It is necessary in studying this concept to assume that the density p(z, w) is
strictly Pélya type 3, and that the equation dp(z, w)/dw = 0 is well-defined
and has a unique solution w = w(z) for each value of 2. For any constants a < b
it is tacitly assumed that differentiation with respect to w is valid inside the
integral sign of

fa p(z, w) du(x).

Also, assume that u 1s a continuous measure without discrete mass points whose
spectrum is an interval. This last assumption is not essential but without it
additional care must be taken in handling randomizations and the lack of unique-
ness of various quantities caused by gaps in the spectrum.
For the purpose of exposition our analysis is divided into a series of lemmas.
A randomized strategy is now defined by n — 1 points (@1, ---, Z,1). Let
i(i =1, -+, n — 2) be fixed for the moment and define (z;(a), zi11(a)) by
the equations
Tit1
hinld) = [ ol ) dula) = o,
®)
Ti41
hi+1(w%+1) = f p(z, w2+;) du(z) = a.

H



POLYA TYPE DISTRIBUTIONS IV 7

(zi(), x:11(a)) are uniquely defined since by Theorem 3 of [1] there is a unique
monotone strategy which improves on the non-monotone strategy o(r) = a.
Moreover, it is clear that h,41(w’) = hipi(w”) for any o’ € S;1; and o” £ S;11 when
(8) is satisfied.

LemMmA 2. z;(a) ©s a monotone decreasing and x;.(e) 1s a monolorie increasing
Sfunction of a.

Proof. From (8),

zi41(a)
©) L0 e o) = pla, ok due) = 0
for all a. Since p(z, w) is strictly Pélya type 3, p(z, w3) — p(z, wi+1) has at most
one zero; by (9) it has at least one. In order that the relation (9) be preserved
for all «, either z;(a) increases and z;y1(a) decreases, or z;(a) decreases and
z;11(a) increases, as a increases. It is clear from (8) that the latter must hold.

It also follows from the variation diminishing properties of the density p(z, w)
[2] that

me) = [ p@,0) duta)

is a monotone decreasing function of w, and

m@) = [

Tp—

p(z, w) du(z)

is a monotone increasing function of w for any z; and z,_; respectively.
Consider z:(a) and z;41(a), which are defined by the equations k. i(w)) =

‘@ = hip(win), and zig(e) and zi42(a), which are defined by hiyo(wls) =
a = h,-+2(w2+2). Then
LemMA 3. For all a, z:(a) < zipa) and zim(a) < zige(a),i=1, -+ ,n — 3.
Proof. Let
I = 1, a<r=s0b
=5 =10, otherwise.

Suppose zi(a) = wiq(e). Then I leivwipy] — 4 (] 120 ) is always of one sign
or at worse changes sign from — to 4. But

J> 0 for o < win

(10) f_ Ui zirn — 1), 2, 1P(@, @) dp(z) 4 = 0 for o = oin
' l<0 for o > wip

which is an impossibility in that it changes sign in the wrong direction [2] so
zi(a) < x2+1(a).

Suppose i41(a) = ia(a). Then I, . o — L,
which contradicts (10).

As o — 1, 24(@), Tipa(a) = — o and Zi4(e), Tizala) — + o (or the ends of
the spectrum of u), and as a — 0, za) — z¥, zipn(e) — zF, and zipla) —

2, ,) 18 always of one sign
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Th, x2+2(a) — 2% . Lemma 5 below asserts that z¥ < zHa but first it is
necessary to prove Lemma, 4.
LeMMA 4. dp(x¥ | w)/dw does not vanish at «® or wis1 but does vanish for some
w,wherew¢<w.<w?+l,z—1 ce,m— 2.
Proof. By the mean value theorem for some wi(a) € [0 , wiil,
3 zi41(a)
p(x, w) du(z)

zip1(a)

o= D ple, i (a) dule) =

w=w* (a) zi (a)

0w Jz;(a)

for every a £[0, 1. As @ — 0, wf(a) — of; ap(zt, w¥)/dw = 0. Suppose w, =
w . Then, ap(xf, w)/dw > 0 for @ > w} which- implies that p(z¥, w}) <

p(zt, w.+1) Since p(z, w) is continuous in each varlable there exists e > 0 such
that p(z, w3) < p(z, wip) for all z satisfying |z — zf| < e But this implies

that for sufficiently small «,
41 (a )

zip1(a)
Lo pwaddua) < [ pla,eten duta)

i (a
a contra,dlctmn of the definition of x;() and x,+1(a) Similarly, ¥ # w},; . Thus,

wie (w, , w.+1)

Lemma 5. x.<a,.+1,i=l, ,n— 2.
Proof By Lemma 3, 27 < x..H Suppose zf = x.+1 Then, ap(x. , wi)/0w =
ap(xt, win)/dw = 0, where wf & (0, wiy1), Wi e (Wi, w;+2), which is im-

possible by assumption.

This lemma can now be utilized to construct decision procedures possessing
the property of M.P. For the 2-action problem any monotone procedure (defined
by a single number ) is unbiased. In the 3-action problem each monotone pro-
cedure (2, , x,) which satisfies hs(w]) = a = ha(ws) for some a & [0, 1] is unbiased.
This means the monotone M.P. procedures are a one parameter family since
once z; is specified as possible, z; and a are determined. For n = 4 consider
(), xz(oq) defined by ha(wl) = ai = hy(ws) and z3(e), x3(as) defined by
hy(ws) = = hy(w]), where a; and @, are chosen small enough to insure that
xz(al) < xz(az) By Lemma 5 this is possible. Increase a; and ay until ze(a;) =
2(as). The monotone procedure defined by (21(as), Za(an), z5(z)) has the property
of M.P. Again the monotone M.P. procedures form a one parameter family
since any point y & (zf , z7') will determine a; and a, by the condition that To(ay) =
y = 23(a).

For the case of 5 actions the same method of construction is employed and a
one parameter family of monotone M.P. decision procedures is designated.
Define

1(cr), Ta(a) by ha(wl) = an = ho(ws),

Il);(az), x;(ag) by hx(wg) = az = hs(wg),
@5 (as), 4 (a5) by ha(ws) = a5 = My(wd),

where a1, a2, a3 are chosen so small that xg(al) < 1132(012) and xa(ag) < w3 (as).
Increase a; and a3 untll Z2o(on) = :L‘z(az) and xa(az) = 3 (a3). The monotane pro-
cedure (x1(a1), x2(a1), x3(a), 4 + (a5)) has the property of maximum probabilities.
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The family has only one parameter since the point y & (zf , z7) determines
o1, o, and a; through the relation zs(a) = y = zs(aw). (Note that some values
of y in the interval may not be legitimate parameter points. This will happen
when the condition y = xs(as) is satisfied by an a, for which z3(as) > z¥.)

When n = 6, the reader may verify that this method of construction breaks
down. The difficulty is that x;(a) does not have to decrease at the same rate at
which z;,1(e) increases. It may not be possible to choose a; and «; such that
a:;(ag) = 3 (a;) and still have 2} < xé(ag) and 74 (a3) < z¥ .

For the cases n = 3, 4, and 5, note what has been accomplished by introducing
the principle of M.P. The statistician, instead of having to choose a procedure
from the class of all monotone procedures which is defined by n — 1 parameters,
has only to choose from a class of procedures defined by only one parameter,
those monotone procedures which have the additional property of maximum
probabilities.

If the unknown parameter occurs in the density in the form of a translation
parameter, that is p(¢, w) = p(¢( — w), du(f) = d§, and p(-) is a symmetric
function with respect to the origin, then any monotone procedure ¢’ defined by
the critical numbers ; < z; < --+ < x,—; such that

2 2

satisfies the property of M.P. The proof of this statement is straightforward and
is omitted.

0 0
x~+x-1 wq Wig1 .
: w1 _ @i Hlfori = 1,2, -+ ,n — 2

3. Unbiasedness in the sense of Lehmann— A decision procedure ¢(z) is said
to be unbiased (in the sense of Lehmann or risk unbiased) if

(11) EyL(w, ¢(z))] 2 E4L(8), ¢(z))]

for all w and 6, where Eq(-) represents the expected value given that the state
of nature is 6. By specializing the loss function L(w, @), it can be readily verified
that this general definition of unbiasedness reduces to some of the classical
notions. For a full discussion of the significance of this concept, the reader is
referred to [7].

We search in this analysis to discover when unbiased procedures exist within
the class of monotone procedures for the case of multiaction problems. An effec-
tive method of explicit construction of such procedures would also be desirable.
Unfortunately, in general unbiased procedure need not exist. However, Theorem
1 below provides an affirmative answer for a substantial class of loss functions
satisfying assumptions (a) and (b).

It should be emphasized that in contrast to the principle of M.P., which also
embodies a generalization of the notion of unbiasedness in testing hypotheses’
the present extension involves the specific loss functions in a fundamental way

(a) Lj(w) = Ly for all win S; = (wi_;, wil,

t=1--,m J=1 - ,n
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Let L,'j - Li+1,j = Q4,5

b)0za1=ap= -+ = asanda; <0
Qiip1 = Giipe = - @in = O0and @g500 > Ofore =1,2,--- ,n — 1.
- Q5 ]=1,,2
Let b;; = 1=1:--,n—1
(42%] .7_2+17 R
Forj =i,k =7+ 2 1 =1, ,n— 1,
bs.; bix
c ’ ' = 0.
() bit.; biyik| =

Two important examples of decision problems whose loss functions satisfy
conditions (b) and (c) are worth noting.

I) Liw) =cl|t— 7| for win S;.
This case is referred to as the discrete absolute error loss function.
_ 0 w & Sj 3

The second example corresponds to the case where one assigns a constant loss
¢ for any error and zero loss for a correct decision.

The fact that, if it exists, the monotone unbiased procedure is unique lends
greater significance to this principle.

Examples I and II above are special cases of loss structures having the form
L;; = f(|% — 7|) = Ljij . Loss structures of this general pattern possess con-
siderable interest since many practical problems arise in which the incurred
losses can be assumed to be proportional to the magnitude of the error and unre-
lated to the type of error. In the event that L;; = L;;_; (we say L;; has a con-
volution form), condition (b) implies that L,_; is a concave function of |z — j|,
ie, Lry = 3Ly + Lyy), r = 0,1, --- , n — 2. This is to say the loss increases
concavely as the action actually taken diverges from the correct action. That
concavity implies condition (b) is also true, so condition (b) is fully equivalent
to the concavity of Lj;_; as a function of | — j|. Moreover, condition (c) is
automatically satisfied if L;;_; is concave since b;; = b;jy,;forj < 7and b;x =
bsyrx for £ = ¢ 4 2. Therefore, for this convolution case, the hypotheses of
Theorem 1 are equivalent to the statement that L;;_j; is a concave function of
its argument. ,

It should be noted that condition (c) is not the same as condition (II) of [3].
However, in the important case L;; = L;;—; , the two conditions are equivalent
since the two b;; matrices are identical. Consequently, when the loss function
L;; = Ly;—j is concave, all non-degenerate monotone procedures are admissible.

In particular, the unique unbiased procedure guaranteed by Theorem 1 which
is also shown to be non-degenerate (Corollary 4) is necessarily admissible in the
case where L;; is of the convolution form.
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(The proof of Theorem 2 of [3] is easily seen to apply in the case of loss func-
tions of convolution form satisfying (b) and (c), above.)

The principle theorem concerning unbiased procedures is the following:

TureoreM 1. If assumpitons (a), (b), and (c) are satisfied, then there exisis a
unique monotone procedure which is unbiased in the sense of Lehmann.

To avoid inessential tedious details we assume that p(z, ) is strictly Pélya
type 2, and g is a continuous measure whose spectrum is an interval. The anal-
ogous results when the assumption on p is relaxed are immediate.

The proof of Theorem 1 is more elaborate and will be presented in Sec. 4. We
dwell in this section on the important special case of (I) where the proofs are
considerably simpler and for which some additional results are obtained
(Theorem 2).

Proof of Theorem 1 for the special case (I). For a monotone procedure
(1, ++* , Tu) define

A(w) = ¢ L B p(z, ) du(x) + 2¢ f K Pz, w) du(z)

4+ (n— 1)cfw P(2, @) dp(z)

Zn—1

4:0) = ¢ [ ple,0) du@ + o [ pla ) dute)

4 (0 — 2e f (e, @) dule)

A = (= Do [ plo, ) dula) + (n = 2 | p(@,0) dula)

£3 1

+ o 4e fz"—l (z, w) du(z).

Zn—-2
ForweSi,i=1,---,n, plw, ) = A(w). Define
Bi(w) = Ai(w) — Aipa(w), i=1,-,n—1.

It is immediate that
B(w) = —cf oo, o) due) + ¢ [ e, @) dula),  i=1,--,m -1,

In order that the monotone procedure be unbiased it is necessary and sufficient
thatB(w)>O]—1 , 1 — 1; B(w)<03——z n—lforwsSi,
1=1-,n—1 Choose the unique z; = a:1 which satlsﬁes Bl(wl) 0. Then
Bi(w) (§) 0 for all (>) ) . Since z; = i for i = 2, — 1,Bi(w) <0
for w < w) , =2, ,n— 1. Unblasedness further requlres that for we Sz
Bi(w) = 0 and B; (w) O for z =2, .- = 1. Determine the unique 2, = 23

such that By(ws) = 0. 29 > z since wy > i, and Bi(w) < 0 for we Sy and ¢ =
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2, .-+, n — 1. The continuation of this construction will produce the unique
monotone unbiased procedure (2} , - - - , Ta_1).

For the special loss function under consideration this unique unbiased proce-
dure is uniformly most powerful within the class of all unbiased procedures.
This is the substance of the following theorem which is a special case of Theorem 2
of [8]. The proof is included by merit of its simplicity and because it also illus-
trates on a small scale some of the ideas necessary in carrying out the argu-
ments of Theorem 1.

THEOREM 2. If Liw) = c|% — j|for w tn S;, then any unbiased procedure

= (@1, , ¢n) 18 everywhere zmproved upon by the unique monotone unbiased
procedure except possibly at wy , <+, way .
Proof. By definition,

Bie) = 4:(0) — Ase) = ¢ [ pu(alple, o) duta)

tof 0= a@l, ) dute)

¢ =2 [ ol o) duto)
and fork =2,--- ,n — 1,
B6) = Ae) = Aue) = ¢ — 26 [ @) + -+ + eao)Ipla, o) ).

Consider any other decision procedure ¢* which is not necessarily unbiased.
Fork=1-.--,n — 1,
B — BI'@) = 2 [_[(61@) + -+ o}@)

= (@) + -+ + e@)]p(z, ) du(z).

If ¢* is the monotone procedure constructed so that it improves upon ¢ according
to Lemma 4 of [4], then ¢* satisfies

BY(s) — BE'() =0 for w < wp
w) — w

* * =0 for w = wi
fork =1,---,n — 1. But Bf(wy) = 0. Therefore, Bf (wp)= 0 which implies

that ¢* is unbiased. Since there is only one monotone unbiased procedure, ¢*
must be identical with the ¢° of Theorem 1.

The limiting case of an n-action problem as n — -+  is an'estimation problem.
Suppose that for the problem under consideration the limit is taken in such a
manner that as 7 — 0, @i — — o, wh_y — + o, Iw;—w._ll——>0z—2 )
n — 1, and La(w, i.(a)) = ¢|a — |, where 2,(a) is defined by a £ S;, - The
resulting problem is an estimation problem with absolute error loss function. It
is easily verified that the estimate 8(x), which is the limit of the unique monotone
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procedures which are unbiased in the sense of Lehmann, is defined by the relation

(12) [ 9,56 dut) = [ 900, 80 dute).

This, of course, states the well-known fact that the median unbiased estimate
of 6 is the function &(z) which satisfies (12) when z is observed.

4. Proof of Theorem 1. For purposes of clarity the proof of the theorem is
divided into a series of separate steps. First, we introduce the relevant quantities
entering into the analysis. For a procedure ¢ = (¢1, @2, ="+, ¢n), let

Af(w) = La f_ : o(x)p(z, w) du(x) + -+ + Lia _: ea(2)p(z, w)du(x)

for i = 1, --+, n. When w ranges over S; the function A¥(w) coincides with
p(w, ¢), the expected risk. Also for¢ = 1,2, ---,n — 1, we define

Bf(w) = Af(w) — Alu(w)
= o [ @0, 0) dule) + -+ + ai [ @I, ) )

13 i i
a8 = —ba _Lo ai(x)p(z, w) du(@) — -+ — by | e:(2)p(z, ») du(z)

+ bosn [ oun@p(e, ) dul@) + -+ +bin | _en@Ip(a, o) du).

If a decision procedure ¢ satisfies the system of inequalities

Bf(w)20 1=k=:-1
(14) and win S;,
Bf(w) =0 1=k=n-1 :

then ¢ is clearly unbiased in the sense of Lehmann. In general, the converse is
not valid. However, it is true that for monotone procedures the property of
unbiasednesss implies that this system of inequalities is satisfied. The inequalities
are fulfilled for a monotone procedure ¢ = (1, 22, *** , Zn—y) if and only if

(15) Bf (v} = 0, i=12,+-,n—1

In fact, the variation diminishing properties of the density p(z, w) imply that
Bf(w) < Oforw < wg and Bf(w) > 0 for w > w? which in turn are equivalent to
the system of inequalities (14). Our problem reduces to the demonstration of the
existence and uniqueness of a set of values z = (1, Z2, Zn_1) Where z; =
2, < -+ S .1 which are a solution to the system of non-linear equations:

BiW) = —ba [ ot du(®) = -+ — b [ 2 o) dul®

Fi—-1

(16) $41 L
+ biina f p(t, o) du(®) + o+ A bin | D ) dul®) = 0.

z
ER Zn-1
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Turning to this task we start by showing that the mapping  — y which is

defined coordinate-wise by y; = Bi(w}),% = 1, --+, n — 1, and which maps the
n — 1 dimensional simplex of all n — 1 tuples z = (21, @2, -+ - , To1) satisfying
< @ < -+ < 2. into Euclidean n — 1 dimensional space (E"™) is a one-

to-one mapping. Precisely:

LuMMA 6. The mapping y: = Bi(w?), ¢ =1, --+,n — 1, defined on the set of all
monotone procedures by means of the formulas (16) with image in E™ space is a
one-to-one transformation.

Proof (by contradiction). Suppose there exist two different monotone procedures
o~T = (Ty,T2, ", %) and o ~2' = (%1, %3, -+ ,Tn_1) With the property
that B3 (w3) — Bi(wi) = 0 for¢ = 1,---,n — 1. Without loss of generality
assume 21 = 7. BY (@) — Biw}) = 0,4 =1,+-+,n — 1, yields the system
of equations

0= —(u+bw) [ oD due) + G — bw) [ (o, o) duo)

+ -0 4 (11 — bin) f " p(z, o) dulz)
0 = (b — ba) f l p(z, wg) du(z) — (bea + bes) f : p(z, wg) du(z)

Zp—1
+ M + (b2.n—l - b2,n) [ p(xa wg) dﬂ(x)
Zn—1

EH
0 = (bp1,2 — ba-1,) f p(z, wa_1) du(z)
z1

+ -+ 4 (baetn1 — ba1,n-2) f " p(z, wa_1) du(z)

Tn—2

Tp—1
— (bptn1 + ba-1,n) f p(z, wa_1) du(z).

Zn—-1

Since (by + biz) > (biz — biz + -+ + (b1,n1 — bun), it follows that there exists
ak, 1.<k =n — 1, such that

f:l p(z, w1) du(z) < j:k o(z, 1) du(z)

for 1 < I < k. If k is not unique, choose the largest ¥ which satisfies this prop-
erty. Consider the kth equation. For 1 £ 1 < k,

]; jl p(z, wi) du(z) < /; :k p(z, wp) du(z)

by the fundamenta;l chalnge of sign property for strictly Pélya type 2 densities
since T é Tk and r < Tk . But (bkk + bk,k+l) = (bkz o bkl) + e + (bkk - bk,k—l)
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+ (bkrsr — brgya) + -+ + (bkaes — bi,n). Therefore on examination of the
kth equation, if & < n — 1, there exists an 2 > k for which

[ o o) auta) < [ o, o) duto

for 1 £ 1 < h. If b is not unique, choose the largest h.
Continue this argument until at the last step it has been established that

z—1

=}
[ o b dut@) < [ pla, o) duta)
z] Zn—1
for1 <1 < n — 1. But this contradicts the fact that B’,‘.'._ll(we._l) — B% y(why) =
0 since (bn_1,”_1 + bn—l,n) > (bn_l,z - bn_1,1) + e + (bn—l,n—l - bn—l.n—2)-
CoROLLARY 1. There exists at most one monotone unbiased procedure.
The proof is immediate. We shall need the following slight extension

of Lemma 6.

Corollary 2 If ¢ is the monotone procedure x = (T1, Tz, ** , Ta) and ¢’ ~
2 = (x1 , 1}2 e x,._l) with Tw_y = Tny and BY (0}) — B’”(w,) =0 for i =
1, 2, lthenx;—xzforz—IZ ,n— 1

The proof of Corollary 2 is essentially a paraphrase of that of Lemma 6. We
sketch the details. Let k be the first index where zx = @ (k < n — 1). By ex-
amining the kth relation Bf (wy) — Bi(wi) = 0 as in the proof of the lemma,
when k < n — 1, we may find a larger index h > k such that for ¢ < h,

f, p(E, wp) du(t) < / :h p(E, wp) du(f).

From the variation diminishing properties of p(¢, w) we may conclude that
for ¢ < h,

[ o b au < [ pte o auco:

On continued inspection of the hth relation, we find a larger index -until we
reach the (n — 1)* index with the property that

[ o at auo) < [ T ) du®), = 1,2 ,m 2

The last inequality
n—l(wn—l) - :—1(603;—1) 2 0

is evidently contradicted.
One final extension in the same direction is the following:

7 7 !
COROLLARY 3. If o ~ (1, %2, *++ , Tna) and @’ ~ (T1, T2, =+ * , Tkc1,7, ***,Y)
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are two monotone procedures such that Bf (wi) — Bf(w) = 0 for i = 1, -+,
k—landy = 2.1, then

Bf'(wp) — Bf(w}) £ 0.
The proof follows the same line of reasoning as the preceding.
In view of Corollary 1 it remains to prove the existence part of Theorem 1.

We require the following lemma.
Lemma 7. Let the 2 X m matriz (ei;), 1 = 1,2,5 = 1, - -+, m, consist of non-

negative elements, and let Ay, - - - , A be non-negative constants. Let condition (E)
be satisfied:

ej e
(B) A

€2; O

forl1 ==Ll 4+2=2k=mIf0 <ea+ - +aMiSerphipet -0 +
e1,mA\m , then exh1 + -+ - + e\i = 149\ 142 + -+ + GmAm.

Proof. By (E), Z,_l (emer; — ewezi)\; = 0 for lc > 1 + 2. Therefore, ex O i

1
ejN; = ew 2.j-1€5\i, and Domrya euNe: D 2 2 D el D 2
For0 < D iied; = Domisenh, Zl_t+2 euhk = Dim1@2\j .

Proof of existence. It suffices to show there exists a monetone ¢ for which
Bf(w}) =0,i=1,---,n — 1. This holds trivially for n = 2. Suppose it is
true for the case of n actions. The argument is inductive. For n + 1 actions
and a2 monotone procedure, let

BIW) = =ba [ p@0) du@) = -+ =bu [ p(a,0) duta)

i1 ™
+ biinr fz ‘ p(z, w) du(x) + -+ + binpr f% p(z, w) du(z)

fore=1,---,mn.

(1) Choose z, = . The conditions (a), (b), and (c) are fulfilled so by the
induction hypothesis there exists a solution ¢ ~ (27, -+~ , Za—1, ©) of the
system of equations Bf (w$) = 0,7 = 1, --- ,n — 1. For this solution obviously
B3 (wh) £ 0.

(2) Choose Z,1 = .. By the induction hypotheSIS there exists a solution
(o ~(x1,---,x?._1— 2, 2% = 2°) of Bf(w?) =0, =1,---,n — 1. Since

,._1 (wn—1) = 0, the variation diminishing properties of densxtles possessmg a -
stnct monotone likelihood ratio lead to the conclusion that BZ; (w3) = 0. If

BX, (w,.) = 0, then it follows that :c = — o which in turn implies that
B (&)) > 0. On the other hand, if Bi;fw}) > O,letl =n — 1, m = n, ¢; =
b,...l,forj—l «,n — 1, 61, = bp_1,n41, eg,—b,.;for]—l n—land

= by.ns1in Lemma, 7. Then, by Lemma 7 B%; (%) > 0 1mp11es B’ (w,.)

It has been shown thus far that there exists a strategy (27, -+, Zh-1, oo)
such that Bf (i) = 0, =1,---,n — 1, and BY (ws) < 0 and a strategy
(al, -+, 20y = o', 2 = z°) such that Bf (w}) = 0,2 =1,---,n — 1and

B2%(%) = 0. If it can be shown that for every z, satisfying z° < z, < » there
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exists a solution (z1 , *+* , Zn) t0Bf (w}) =04 = 1,---,n — 1, then by con-
tinuity a solution exists satisfying Bf (@) = 0,7 =1, -+, n; the continuity of
the solution as a function of x, being a simple consequence of Lemma 6.

The proof that for every z, z° < z < w, there exist (z1(2), - - - , Za-1(2)) such
that ¢ ~ (21(2), - +* , Zna(2), 2) satisfies Bf (w}) = 0,7 = 1,---,n — 1, pro-
ceeds in a stepwise manner.

@) Letzy S 2= +++ = Zuy = 2.

(a) Choose Ty = 2. Since bu = b13 = .. _2_ bl,n+l ,

20 (-}
~bu [ 9z, o) du@) + b [, 2@, du(o) < 0

1

which implies
—bn ‘[” P(x, wg) dl-t(x) + b1at1 f p(iv, wg) dﬂ(ﬁ) =0

since 2} = 75 < 2.
(b) Choose z; = — 0.

biz _[ ; p(x, w1) du(x) + b1wia fz ) p(z, o) du(z) = 0.

(¢) Thus by continuity there must exist an zi = zi(z) which satisfies
z} z o
—bu j_' " p(x, o) du(z) + b f  P(2, 1) dp(z) + binn f p(z, w1) du(z) =
zl s

(4) Let 21 < 1 < 23 = -+- = Z,—1 = 2. Consider the two expressions

c(w; 1, 22) = —bu [: p(z, @) du(z) + bie f, N p(z, w) du(x)
+ bis j; ‘ p(z, ») du(z) + b1 j; ) p(z, w) du(z),

co(w; o1, T2) = —ba j: : p(z, w) du(z) — by f " p(z, w) du(z)

+ b [ 9(,0) du@) + bra [ Pl 0) dua).

Of course c,(w, 21, 7)) = Bf(w), j = 1, 2, for the special procedure
¢ ~ (21, 22, 2, - -+ 2). Our immediate object now is to show that z; and z, exist
satisfying (z1 < 22 < 2) such that ael sy, 2) = 0and Cz(wz ;T1,22) = 0.

(a) Choose z; = 2. By (3) above there exists an z1(2) for which

a(@ ; z1(2), 2) = 0.

We assert that ca(ws ; xl(z), 2) = 0. Comparing for ¢ = 1, 2 Bf o(co‘.!) and
Bf(«}) where ¢° ~ (:c'l’, zy, -, Tag = z, 7o = 2) of (2) above and
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o~ (x;(z), 2,2, -+ ,2) with z > 2°, we see the conditions of Corollary 3 are met
and therefore we may conclude cz(m , 21(2), 2) < 0 as stated.

(b) Choose 2, = . ; then ¢;(w] ; — 0, —@) = 0 and (e} ; 2, 2) < 0 by
(3&) Thus there exists a u = 2, = 5 such that ¢;(w} ; u, u) = 0 which implies
Cl(w2 su, u) = 0 If ¢(ws ; u, w) = 0, then w = — oo which in turn implies
ca(wz ;u, w) = 0. If in the other circumstance er(ws ; u, u) > 0, then by Lemma
7 we infer that co(ws ; u, u) = 0.

(c) We next prove that there exists an z¥ = 27 (y) such that ¢i(w) ; 21, y) =
0 for every u < y < z. (This is like the larger problem we are trying to solve for
the special case when n = 2. The quantity z plays the role of « and u adopts the
role of z.) When 2, = y, c1(e} ; ¥, ¥) < 0 because ¢y(w] ; u, u) = O and y > u.
Obviously a(wl ; —®,y) > 0. By continuity there exists an 2} such that
a(ol ; af , y) = 0.

Since cl(wl ; 21, ¥) = 0 has a solution z7 for every y in the interval [u, z] and
ca(ws ; xl(z), 2) £ 0, calws ; u, w) = 0 by contmulty there must exist an z3(z) =
y € [u, 2] and z3(2) such that ¢;(w} ; 2}, z3) = co(ws ; 21, a3) = O.

(5) Let 1y < 2 < 23 £ @4 = -+ = z. Consider the three expressions

Doz a) = = 2 by [ pla,w) du

Tj—y

2 b [ bl du) + ba [ p(o,w) dute)

j=i+ i-1

b [ Pl w) du(a),

1 =1, 2,3, where 20 = — . Of course D;(w; 21, 25, 735) = BY(w) where ¢ ~
(T1, 22, 25, 2, 2, -+, 2). The next step is to try to solve D;(wy ; 21, 2, T3) =
0,z =1,2, 3.

(a) Choose 23 = 2. By (4) above there exists a couple (z}(2), 23(z)) such that
Di(wf ; 23(2), 73(2), 2) = Dy(wy : ; 23(2), 23(2), 2) = 0. Corollary 3 may be applied
and we ﬁnd that on comparlson with the relations B¢’ (wl) =0,7=1,2, 3, for
¢ ~ (21,23, - n) of (2), Ds(ws ; 21(2), 23(2), 2) <

(b) Choose Zz = 3. By (4) there exists a solutlon (xl(w), w) where z, =
23 = w to the equatlons Dy(wy ; 21, 22, ) = O, Dy(ws 5 1, X2, T2) =
Dy(ws ; %, w, w) = 0is a consequence of Lemma 7.

(c) There exists a couple (z1*(y), 25 *(y)) such that

Dy(wr 5 21*(y), %), ¥) = Dalws ; 21*(y), 23*(y), y) = 0

for every y € [w, 2].
The proof of this step requires a repetition of the previous arguments as carried
out for the function ¢; with y taking the role of «. To this end, we establish
(c.1) Choosex, = . For #; = — w0, Di(wy ; — 0, —w, y) = 0. For 2, =
Y, Di(wl 5y, v, y) < O since Dy(o) ; Zy(w), w, w) = 0 implies Dy(w) ; w, w, w) < 0
and y > w. Therefore, there exists z; = v such that Dy(w} ; v, v, y) = 0. It can
be shown by applying Lemma 7 that Dy(ws ; v, v, y) = 0.
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(c.2) Choose 2 = y. Di(w} ; —», 4, %) = 0and Di(w} ; ¥, y, y) < 0. Thus,
there exists x1(y) such that Dy(w) ; z:1(y), ¥, ¥) = 0. Da(ws ; 21(y), 4, y) = O.
The last inequality may be deduced from Corollary 3 by comparing the pro-
cedures ¢I ~ (xl(y): Y’ Yy 2,2, -+, 2) and o~ (il(w)y W, W, 2,2, *** ,Z)

In fact, suppose the inequality Ds(ws ; 21(y), ¥, ¥) < 0 is violated. Consider the
solution (Z:(w), w, w) to the system of equations

0
Dy(wi; 71, 23, T2) = Do(wd ; 71, 22, 12) = O.

Di(w? ; 2:(y), ¥, y) — Dilw) ; &1 (w), w, w)

(17) z1(y) : 0 y
= —(bu + b) f - p(x, 021) dﬂ(x) + (b12 - b14) f p(x, wg) dn(x)‘= 0,
* Da(wz ; (y), ¥, y) — Dalwr 5 E(w), w, w)
(18) z1 (@)

= =) [ 06 du@) = (bt bu) [ ' p(, o) du(z) > 0.

1(w)
Eq. (17) implies [% p(z, «3) du(z) > [28) p(z, i) du(z), but this contradicts
(18). Therefore, Ds(ws ; 2:(y), y, y) < O.

(c.3) For every ;€ [v, y], Di(w} ; 1, 22, 4¥) = O has a solution. By con-
tinuity, then, there exists an 23 *(y), 23 *(y) such that Dy(w} ; 1 *(y), 22 *(y), y) =
Dy(w2 ; 21 (y), 237 (y), y) = 0.

(a), (b), and (c) of (5) show that there exists a 3-tuple (z3(2), 23(2), z3(2))
which satisfies D(w) ; 25, 25, 23) = 0,7 = 1,2, 3.

The steps forx; < 22 < 23 < 24 < x5 = - -+ = z utilize the same principles as
those employed above. The general pattern should now be clear to the reader.

The next step would consider the four functions E;(w; 21, 22, 3, Z1) =
Bf(w),i=1,---,4 where ¢ ~ (21, 22, %3, %4, 2, 2, + , 2). It is necessary to
show that E;(w}) = 0,¢ = 1, 2, 3, 4, have a solution in @ , 25 , 23 , and z, . This
entails repeating the entire preceding argument for the case of one, two, and three
functions in each case using a suitable comparison monotone procedure. We
sketch the argument. Setting z; = z we obtain by (5) that there exists a tuple
(21(2), 22(2), 23(2), 2) for which E;(wi ; 21(2), 22(2), 23(2), 2) = 0 for 7 = 1, 2, 3.
Corollary 3 may be applied by using the second procedure ¢° ~ (23,27, - -+ , Z3)
to show that Ey(w] ; 21(2), z2(2), 25(2), 2) < 0. Next put 23 = 2, = ¢ < z and
again by (5) we obtain a tuple (z:(2), 22(£), ¢, £) for which Ei(w} ; z:1(8), 22(2), ¢, ) =
0 for i = 1, 2, 3. According to Lemma 7, Es(wi ; 2:(8), 22(£), ¢, £) = 0. Given v,
} <y < z, it would be enough to construct a solution to E(w? ; z1, 22, s, y) =
0,7 = 1, 2, 3, for then by continuity there would exist a solution to Ei(w}) =
0,7 = 1, 2, 3, 4. The analysis of B}z, 22, 25,9),¢ = 1, 2, 3, is similar to
the arguments of (5) this time using the comparison procedure

o ~ (T:1(2), 2(2), ¢, ¢, 2,2, -+, 2)

as ¢ ~ (Zi(w), w, w, 2, - - - , z) was used in (5). For the final step we repeat this
sequence of arguments n — 1 times. This completes the proof of Theorem 1.
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COROLLARY 4. The unique monotone unbiased procedure defined by Theorem 1 is
non-degenerate.

Remark. Since the density p(z, w) is assumed to have a strict-monotone likeli-
hood ratio, the set 0w = {z|p(z, w) > 0} is independent of w [4]. The concept of
an interval (z;, z:y1) being degenerate should therefore be understood as taken
with respect to du(x).

Proof. Suppose the unique unbiased procedure ° = (%o, Z1,Z2, *** , Ta1, Tn)
where z; = —  and x, = +  possesses a degenerate interval. We shall prove
that this assumption leads to an absurdity. First, observe that (zo, 1) must be
non-degenerate. Otherwise, let j, be such that (zj, 3 x,o+1) is the first non-de-
generate interval and jo g 1. By condition (b), Bjo_l(wjo_l) > 0, which con-
tradicts the definition of z". Now let ¢, be the earliest interval where (x,,, y Tig41) 18
degenerate. Therefore by what has been established 7o = 1 and also %o < n — 1
for in the contrary case BZ._1(v5—1) would be negative, Let kp denote the smallest
index larger than %, for which (2, , Zx,+1) is non-degenerate. A value of k must
exist, for otherwise Biy(w},) < 0.

The strict monotone likelihood ratio possessed by p(z, ) implies that

L ’.m P&, w3) du(f) f o (&, wi) du(t)
(*) 1 Ty » i
= N d ) d
2 [ o ) [ o6 o e

for every j < ipand r = ko with strict inequality valid for j = zo —landr = k.
Equation (*) in conjunction with conditions (b) and (¢) and B?o(w.,,) = 0 readily
leads to the result

Bio(ehy) > 0,

which is impossible. This completes the proof.

In any special case this construction is considerably more facile than the
general proof shows. We carry this out for the special case whose loss function is
(IT) of the preceding section. For any prescribed z;—1 < z: a value 2;41(%it1 > )
is determined recursively, whenever possible, by

(19) [ ot = [ o b

forz = 1, 2, ,n — 1 where 7 = — . For z; sufficiently near — o, it is
possible to solve (19) for each z; such that z; > x; and each is near — ®.
Allowing z; to increase, we observe that each x; increases; and ultlmately for
7 < o, x,. reaches . Let ¥ be the solution of (19) where z3 = + . The
procedure o* ~ (zf ,zs , -+, Tn_y) is the unique monotone unbiased procedure
for the case where

L = {5 0I5
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