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We have thus shown that any test is dominated by a test in ¥, i.e. that ¥ is
essentially complete. It remains to prove admissibility. Suppose ¢ and ¢* are
given by ¢ and g*. Without changing the characteristics of the tests, we may re-
define g and g* so that they are left-continuous and so that g(u) = —1 where
g(u) = w, and g*(u) = —1 where g*(u) < u. Suppose there is a %’ such that
g(u’) > g*(w’). Choose u” such that g(u’) > u” > g*(w’). (See the diagram.)
Let “area” be measured with respect to the density 27 "n(n — 1)(v — w)" °du d.
By left-continuity, g*(w) < u for all % in an interval whose right endpoint is u’.
Therefore either the “area’ below g in T'(u’ + 1) is less than that below g*, or
the “area” below g in T'(w” — 1) is greater than that below g*. But the “area”
below g in T'(6) is just Ee(¢). Thus either E.r1(¢) < Euria(¢*) or Epr_i(p) >
Ew_(¢*). But v’ + 1 > 0and v” — 1 < 0, so this shows ¢ doesn’t dominate
¢*. Hence if ¢ dominates ¢*, g(u’) = ¢g*(w’) for all «’. But in this case either
¢ and ¢* are essentially the same or Ey(¢) < Eo(¢*) for sufficiently small positive
0. Therefore ¢ cannot dominate ¢*. Since ¢ and ¢* were arbitrary tests of the
essentially complete class ¥, it follows that all tests in A are admissible.

This proof of admissibility is spelled out analytically in [2]. The proof of es-
sential completeness given there uses a general property possessed by the rec-
tangular distribution.
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A METHOD FOR SELECTING THE SIZE OF THE INITIAL SAMPLE
IN STEIN’S TWO SAMPLE PROCEDURE

By Jack MosEMAN
Corporation for Economic and Industrial Research, Arlington 2, Virginia

1. Summary and Introduction. The use of an upper percentage point of the
distribution of total sample size in conjunction with the expectation of the latter
is proposed as a guide to the selection of the size of the initial sample when
using some version of Stein’s [5] two-sample procedure. It is a rapidly calculable
function -of the underlying population variance based on existing tables of the
x distribution. A rule-of-thumb is proposed to be used in making the actual
selection of initial sample size. It is a simple matter to investigate the nature
of the percentage point for different values of the variance over a limited range;
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1272 JACK MOSHMAN

a recommended conservative choice when the variance is not known is the se-
lection of a large initial sample.

Dantzig [2] proved the nonexistence of nontrivial tests of Student’s hypothesis
whose power was independent of the variance, a result extended by Stein to the
general linear hypothesis. In the same paper Stein proposed a two-sample pro-
cedure whose power was independent of variance. The same two-sample method
could be used to obtain a confidence interval for the mean of a normal distribu-
tion with predetermined length and confidence coefficient.

Stein gave no specifications for the choice of the initial sample size, but
Seelbinder [4] suggested that it be selected to minimize the expectation of the
total sample. In a recent paper, Bechhofer, Dunnett and Sobel [1] used Stein’s
procedure for another application, noting that the variance of the total sample
size increased as the size of the first sample decreased.

An efficient choice of the size of the initial sample will hold the ‘expectation
of the sample small, and will further reduce the probability of an extremely
large total sample. This note will explore the matter in further detail and show
that an upper percentage point of the distribution of total sample size, when
used in conjunction with the expectation, is a rapidly calculable guide to an
efficient choice of the size of the first sample.

2. Basic theory. As developed by Stein, the two-sample procedure involves a
preliminary, arbitrary choice of a positive integer Ny and a number z > 0. The
value of z will depend, when constructing a confidence interval of length 2L for
the mean, on the precision of the estimate, i.e., the length of the interval, and
its reliability, the confidence coefficient. Specifically, if ¢, is the upper 100 v
percentage point of Student’s distribution with n degrees of freedom, one would
take 2 = L’/ty,—1,1—(a2 t0 Obtain a confidence coefficient =1 — a.

A sample of N, observations is taken and s* = D _(x; — £)*/(No — 1) is com-
puted as an estimate of the unknown variance ¢° with n = N, — 1 degrees of
freedom. The total sample size, N, is then

(1) N = max ([:—2] + 1, No>,

where [t] is the largest integer less than t.
Hence it follows that

2) Prob (N = N¢) = Prob <8~2 < N> PI‘Ob( - 2( ) < nNo z)’

where x’(n) is distributed as x* with n degrees of freedom. Furthermore, for
integral m > N,

2
Prob(N=m)=Prob<m—1<§—§ m)

3)
= Prob (ﬁ(’—n}:—l)—'—z < x'(m) £ nT_n:z) .
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Therefore, letting A = 2/¢”, one may easily show

o =N Prob(x*(n) < mANo) + %Prob O3(n + 2) > AN

+ 6 Prob (5*(n) > nANy)
and

Var (N) = N3 Prob (xz(n) < nANo) + (n + 2)

(®)

Prob (5*(n + 4) > nAN)

+ =2 202 Prob (x*(n + 2) > nANo) + 65 Prob (5°(n) > nA\No) — (E(N)?,

where 0 = 6; = 1,2 = 1, 2, 3.
Whereas (4) defines E(N) within a maximum error of unity, (5) is not as use-
ful inasmuch as the factor 1/A may be, and frequently is, large.
Furthermore, it is somewhat difficult to translate Var (N) into working per-
centage points of the distribution of N. A more useful procedure is to calculate
a given percentage point N, of the distribution. This may be accomplished
directly from (2) and (3). Define N, as the smallest integer = N, such that

N,
©) Prob(N < N,) = 3. Prob (N = m) 2 p.
m=N o '

But this is equivalent, if one writes p,(x") as the probability density function
of x*(n), to setting

nNp\
™ [T adzp

and letting N, be chosen to satisfy (7), but not less than No. Thus

(8) N, = max {N 0, [ <100pth percentage point of X (n))] + 1} ,

which is tabulated in Hald [3] for example. Note that the upper percentage
points of x°(n)/n decreases monotonically as n increases. Conceivably, if N, is
chosen very large, one can be reasonably confident that no further sampling will
be necessary, but this is not an efficient procedure.

A rough, but ob]ectlve rule-of-thumb may be derived by the followmg con-
sideration: Let E(N | Ng) be the expectatlon of N if No = N and N,(Ns)
the 100pth percentile of N if Ny = Nj. Define

. n\E(N|ND) . .
) P(NY) = f a0 A,

as the proportion of time N will not exceed E(N | N 5). Let No be the value of
N, which minimizes E(N), i.e.,

(10) E(N | No) = E(N | No)
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for all No. Now one might investigate alternative values of N, by considering

¥(No) = (1 — p)(Np(No) — Np(No))

(11
— (1 — P(No))(E(N | No) — E(N | No))
and selecting N, as the integer for which ¥(N,) is a maximum. In effect, (11)
weights the expected changes in E(N) and N, by the probability of exceeding
those values. It would be expected that p would be chosen independently from
nonstatistical considerations.

3. Example. If one takes A = .1, where in the ordinary application considered
by Stein n = Ny — 1, then E(N) is a minimum for Ny = N, = 3. Values of
E(N | Ny) are tabulated in Table 1. It may be seen that E(V | No) is fairly
constant over a considerable range. The same table also contains N.¢s(No) which
decreases sharply where E(N | N,) is relatively constant.

It may readily be verified from (9) that P(N,) = P(3) = .64. Rapidly one
may evaluate ¥(N,) from (11), taking p = .95, and find that ¥(6) = .2686 is
the maximum. Hence the rule suggested specifies Ny = 6 as the proper choice.

4. Discussion. When the variance is unknown, two alternatives exist. It may
be feasible to express the length of the confidence interval desired as a propor-
tion of ¢; no difficulty then ensues since A is specified. If L is specified absolutely,
in most practical cases a range for ¢ is known. One can then investigate the
distribution of N for various values of ¢ in this range and make a subsequent
choice of N, .

The procedures suggested in this note are particularly applicable to those
situations where repeated sampling is not contemplated and/or there exists a
physical reason for wanting to avoid excessively large samples. The latter situa-
tion may obtain where larger individual samples may entail the purchase of
additional test equipment or require the supplementing of a regular interviewing
staff by extra employees.

TABLE 1
Dependence of E(N) and N g5 on N,
A=.
No E(N | No) N 55(No) No E(N|No) N %(No)
2 10.45 38.41 10 11.84 18.80
3 10.29 29.96 12 12.92 17.89
4 10.45 ) 26.05 14 14.35 17.20
5 10.51 23.72 16 16.15 16.66
6 10.63 22.14 18 18.02 18.00
7 10.80 20.99 20 20.02 20.00
8 11.18 20.10 22 22.01 22.00
9 11.43 19.38 24 24.00 24.00
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ON A PROBLEM IN MEASURE-SPACES

By V. S. VARADARAJAN

I n.dz'an Statistical Institute, Calcutta

Summary. Let § be the family of all random variables on a probability space
Q taking values from a separable and complete metric space X. In this paper we
prove that & is in a certain sense a closed family. More precisely, if {£.} is a
sequence of X-valued random variables such that their probability distributions
converge weakly to a probability distribution P on X, then there exists an X-
valued random variable on Q@ with distribution P. An example is also given which
shows that the assumption of completeness of X cannot in general be dropped.

1. Preliminary remarks. In what follows (2, 8, u) is a probability space and X a
separable metric space. We denote by & the class of Borel subsets of X defined
as the minimal o-field containing all open subsets of X.

A map ¢ of @ into X is called a random variable if it is measurable i.e., ¢
(A) ¢ 8 for each A ¢ ®. If ¢ is a random variable we define as its distribution
the measure u, on ® given by

uo(4) = nle-'(4))
for all A ¢ ®. A given probability measure P on ® is said to be induced from @
if there exists a random variable ¢ such that P = p, .

Suppose we are given a sequence {P,} of probability measures on ®. We say
that {P,} converges weakly to a probability measure P on & (P, => P in symbols)
if
lim [gdPn=fgdP

X X

n->00 ¢

Received November 12, 1956; revised May 19, 1958.



