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1. Summary. The paper is divided into two parts:

A. An elementary derivation of Bartlett’s results on the distribution of the
canonical correlation coefficients using exterior differential forms. Briefly, our
method consists of taking the original multivariate normal distribution, trans-
forming to the canonical correlations and other variables, and then integrating
out these extraneous variables. ‘

B. A new method of calculating the conditional moments which appear in
Bartlett’s expansion of this distribution, based on the process of averaging over
the orthogonal group. This method allows the calculation of moments of any
order.

Parr A

2. Introduction. Bartlett [1] obtained the general canonical correlation dis-
tribution as a multiple power series in the true canonical correlations p; . In the
case of more than one non-zero correlation p;, the coefficients in this expansion
depend on the conditional moments of the sample (ordinary) correlations s; be-
tween the pairs of transformed variates representing the true canonical vari-
ates, when the sample canonical correlations r; between the sample canonical
variates are fixed.

Bartlett derived his results by a formal generalization of the argument used
by Fisher [2] in calculating the distribution of the multiple correlation coefficient.
We shall give a new proof of Bartlett’s results in a concrete form more suitable
for our purposes. Throughout this paper we shall use the concepts of exterior
differential forms and alternating products of these forms. The definition and a
discussion of these concepts may be found in James [6].

Consider a dependent vector variate with p components and an independent
vector variate with ¢ = p components. (Here the terms “dependent” and “in-
dependent” are to be understood in the regression sense.) If we take a sample
with n(=p + ¢) degrees of freedom, we may represent it by the p + ¢ column
vectors &1, &, -, Epand 1, 92, * -« , 1, €ach containing n components. The
dependent vector is considered to be a normal variate, and we may distinguish
two cases, according as the independent variate is assumed to be (a) a normal
variate or (b) a set of fixed vectors in the sample space. In either case we may,
without loss of generality, assume the &; and 7; to be the canonical variates (see
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CANONICAL CORRELATION 1147

Hotelling [4]). This means that in case (a) the n components of each vector are
standard normal variates with the joint distribution
P

H{(21r)—"(1 — exp[—(& &~ 2p:&; ";i + m)] ﬁ o dm,-}
i= 2(1 - pt) o=l

(2.1) : )
_I’I_H{(21r 2 exp [—n;1;/2] H dﬂvj} )

In case (b), the non-central means case, we may assume the components of the
£ to be independently distributed with unit variance, and the 5; to be vectors
lying along the first ¢ co-ordinate axes of the sample space. 1, « -+, 5, may
also be identified with the mean vectors of &, - -+, £ . The joint distribution
of the £,; is therefore

(2~2) H{(zﬂ') e exp [ (Ei & — 2& 15 + 1 77')/2] II dfm}

We denote sample correlations between £; and %; by s; and the sample canoni-
cal correlations between the sample canonical variates by r;. The r; may also
be interpreted as the cosines of the critical angles between the two planes
spanned by 2y, --- ,z,and y1, - - - , Y, respectively, where the z; and y; are the
sample canonical variates. The distribution of the r; for each of the two cases
mentioned above will be derived in sections 3 and 4 respectively.

3. Distribution of the canonical correlation coefficients. Our starting point is
the distribution (2.1). The distribution of the canonical correlations r; will be
obtained by expressing this distribution in terms of the »; and other variables
and integrating over the ranges of the latter. First of all, let us dispose of the
lengths of the vectors £ and ;.

Put & = raw; and n; = oj2; where 7; and o; are the unit vectors along §; and
n; respectively, and w; and 2; are their lengths. Then

(3.1) II1 dtyi = wi™ dw; dS(ry)

where dS(r;) is the element of area on the unit sphere in n-space. With an
analogous expression for | [ d#,; the distribution (2.1) becomes

2 1
g{zn_z(l — )™ T(n/2))
- exp [—2(1—i_};5 (w} + 2f — 2Pt‘siwizi):| (wi2:)" ™ dw; dz,-}
32

q

1 19
X 11 swmiyg) o -4l

: x T2 3o,

n/2

_.ld HI‘(n dS( 1)
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where s; = 70; (see section 2). The constants have been split up to make the
latter factors probability distributions.

The integrals of the factors containing z; forj = p + 1, - -- , ¢ are obviously
unity. Furthermore, by expanding the factor exp [(1 — p?) "pisawiz;] in a power
series and integrating term-by-term with respect to w; and 2z; (4 = 1, ---, p)
we obtain

[ )
b Jo 2"72(L — pD)™[T(n/2))
(33) - exp [— (w} + 2} — 2p;8;w; 2:)/2(1 — pD)](w;z:)" ™ dw; dz;
= (1 — p)"%Fi(n/2, n/2; 1/2; pis3) + an odd function of s;,

where oF; is the Gaussian hypergeometric function. Later on, we shall see that
the odd function of s; vanishes in the subsequent integrations.

The next step is to express the unit column vectors r; and o; in terms of the
canonical correlations r; and the vectors z; and y; which determine these corre-
lations. Let p and q be the p-plane and the g-plane spanned by the vectors 7;
and o; in n-space. Then p and q determine almost certainly (i.e. with prob-
ability 1) the orthonormal vectors z; and y; (¢ = 1, ---, p) which make the
critical angles between the planes, i.e. such that ziy; = r:, ziy; = 0 (& = 7).
Let further vectors yp41, - - - , Yo be defined as functions of p and q to complete
an orthonormal set spanning q. 7', 2, X, Y will denote the matrices composed
of the column vectors 7;, o;, @, y;, respectively. It follows that X'X = I,,
Y'Y = I,and X'Y = [R : 0] where R is the diagonal matrix with the r; down
the main diagonal. Furthermore we may write

(3.4) T=XA4, ==7YB

where A isap X p and Bisa ¢ X g matrix. Then T'T = A’A and 2'Z = B’'B.
The matrices A and B are subject only to the restriction that all their columns
a; and B; are of unit length.

We now substitute for [] dS(r;) and J] dS(s;) in (3.2), using the transfor-
mations (3.4). To avoid interrupting the continuity of the argument we shall,
for the moment, only give the results of the substitution, and defer the proof
until section 5. We have then from (5.4)

b4 p
(8.5) II]L dS(rs) = |A’A | 111 dS(es) dp + *(dX) dy

where dS(a;) is the element of area on the unit sphere in p-space and dp is the
differential form representing the invariant measure on the Grassmann mani-
fold of p-planes in n-space. The symbol *(dX) stands for certain differentials
involving the elements of X, which, when subsequently multiplied by other
differentials, will vanish. Similarly

(3.6) f[ldsw,-) — |BB|"0" Hl d8(6;) dg + *(@Y) dg
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where dS(3;) is the element of area on the unit sphere in ¢g-space. Multiplying
(3.5) and (3.6) we obtain

P q P q
(3.7) IIldS(n)IIIdS(a,-) = |AA " P2 ] dS(as) IB’BI(""')”IIIdS(Bj) dy da.
= i= =1 j=

The terms containing *(dX) and *(dY) vanish when multiplied by dp dg, since
dy dq is of maximum degree in p and q and X and Y are functions of p and g.

The differential form dp dq may now be expressed in terms of the r; and other
variables. Integration with respect to these latter variables yields

K. K(ri|p:i = 0)

where K, and K, are the normalising constants of the differential forms dp and
dq respectively, and ¢(r; | p; = 0) is the null distribution of the r; (see James

[6]):
¢(T,- | i = 0) = fIl {(,,.3) (q—p—l)l2(1 - ,',2:) (n—q—p—l)lz} H (1‘3 _ T?) fIl dr%

<7
and

e- Bl ()2 (05 () (1)

This distribution was first derived by Fisher [3], Hsu [5] and Roy [8]. The values
of K, and K, are given by

G —i+1) N 2x B
K"—H—W—’ G(z)~1‘_(i/—23’ v=Dp,4q.
After this integration, the right hand side of (3.7) becomes
(3.8) K,| 44| " PP ] dS(a)K, | B'B| " 2" 1 dS8(8,)-¢(r: | s = 0),

showing that A, B and the r; are independently distributed.
Substituting (3.3) and (3.8) in (3.2), we may write the distribution of the
r; as

P
f f 11 (@ — DHV4Fi(n/2, n/2; 1/2; pf 8D}k, | A’A | P2
i i=1
B9 7 ,. q
. g dS(ai)kg| B'B |01 ;[=Ix dS(B;)¢(rilpi = 0),

together with the relation

(3.10) 8i = Ti0i = anfun + aiasi + 0 + apiBoits -

The normalising constants k, and k, for the distribution of A and B are given
by

kv=ﬁG(n—i+1)r

(3.11) i1 W ’ vV =D0,9
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In view of equation (3.10) we may now identify our distribution (3.9) with
Bartlett’s distribution, [1], equations (8) and (10).

If the hypergeometric functions are expanded as power series and multiplied
together, the function multiplying ¢(r; | p; = 0) is seen to be a multiple power
series in the p; whose coefficients depend on the expectations of monomials in
the s; with respect to the distribution

(3.12) kp | A’A | P2 d8(ay) - - - dS(arp)

of A and a similar distribution of B.

So far we have ignored the odd function of s; appearing in the integral (3.3).
However, any odd function f(s;) of s; will have zero expectation. In fact, putting
—a; instead of a; does not alter the distribution (3.12) of 4, but changes s; to
—s, in view of (3.10). Therefore,

E[f(s:)] = Elf(—s)] = E[—f(s)] = —E[f(s3)]

and so E[f(s;)] = 0. It is sufficient, therefore, to compute only moments of the
form u(h, t2, -+, t,) = E{(s)"(s3)" --- (s3)'?} where the expectations are
taken with respect to the distributions of A and B and the r; are held fixed.
Furthermore, if we substitute in (3.9) for s; using (3.10), the calculations are
reduced to finding the moments of the a;; and B;;, two independent sets of
variates.

Theoretically these moments could be found directly from the distributions
of A and B. However, as Bartlett pointed out, this method is too difficult
algebraically to be of much use, except in the case of only one non-zero p; . Bart-
lett indicated a method whereby moments of the form wu(f, %) could be
calculated, and also calculated u(1, 1, 1) by employing various relations connect-
ing the a-moments (see section 10). Again, both of these methods led to awk-
ward algebra and had to be abandoned for moments of higher order, though
Bartlett was able to compute u(1, 1) u(2, 1), u(2, 2) and u(3, 1). In part B of
this paper we shall present a method enabling moments of any order to be
computed, and shall complete the tabulation of moments up to the fourth

order with x(2, 1, 1) and u(1, 1, 1, 1).

4. The non-central means case. Let p be the random plane spanned by the
vectors &, -+, £ and q the fixed plane spanned by 71, 72, -, 7,. As We
saw in section 2, we may assume that the &, --- , £, are independently dis-
tributed and their components £,; have the distribution

D ' n
4.1) 11 @m™" exp [ — (& & — 2t ns + ni99/2) I dés.
Furthermore, the n; (f = 1, ---, ¢) may be taken as vectors lying along the

first ¢ co-ordinate axes in the sample space and thus having only one non-zero
component each, say u; in the jth position.



CANONICAL CORRELATION 1151
Putting ¢ = rav; as before, (4.1) becomes

)
1 n—1
LII Wm exp [ — ( — 2p; 8 ws Ih)/zlw dw;

(4.2)
x TT5/2 as(r,

n/2

where s; = 7. The integral with respect to w; of the ¢th factor in the first
product of (4.2) is Fy(n/2; 1/2; uisi/2)e™¥* + an odd function of s, . This odd
function will again vanish in subsequent 1ntegratlons and may be ignored from

now on.
Let X be the n X p matrix whose columns are the orthonormal vectors z; ,

X2, -+, Zp spanning p and which make the critical angles with q. The 7; may
be expressed as linear combinations of the z; by putting
(4.3) T =XA.

Since X'X = I, we have T'T = A’A. From section 5, (5.4), it follows that
(4.4) II dS(r;) = |A’A |77 H dS () dy,
the differential form *(dX) dp vanishing since X and p are functions of each

other.
To express p in terms of the r; , we partition X as follows:

: Y
(4.5) X = [ . ]
) Z

J

' Yi
where Y isa ¢ X p matrix and Z is an (n — ¢) X p matrix. The vector [ . :I in

q makes the 7th critical angle with z; in ». Let 8; and v:¢Z = 1, --- , p). l())e the
unit vectors along y; and 2; , then according to [6], equation (7.10),
(4.6) yi = B, #= VT =7
and
1

S | YR )

(4.7 1

- dv () Hf:;l Gn — q—i+ 1) dV(’Y)d’(rilPt' = 0)

where K, and G(¢) are defined in section 3, and dV'(8) and dV (y) are the invari-
ant measures on the Stiefel manifolds of p-frames (8, --- , 8p) in ¢g-space and
p-frames (v1, -+, vp) in (n — ¢)-space. The constant has been split up to nor-
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malise these invariant measures. If we choose ¢ — p orthonormal vectors By41 ,
-+, B, orthogonal to 81, - -+ , B, We may express dV(8) as

yd q P
(4.8) av(e) = I<I gidg: 11 1I6;de:.

J=p+1 i=l

5

Also,
yd »
8 =Ty = Z mijagi = 2 BiTsa
J=1 j=1
If we please, we may replace 8;; by 8;; since they have the same distribution.
Integrating (4.7) with respect to v, substituting in (4.4) and then in (4.2), we
obtain the distribution of the r; as

yd yd
L L I]; Fi(n/2; 1/2; 3ut sDe™ 7%k, | A’A |7 I]; dS(a;)

(4.9) 1 q 4 .

T 6 =i D % 1L 1165 dstril e = OC
where
(4.10) 8 = aubur + -+ + apiBpitp .

We notice that the distribution of A4 is identical with its distribution in the
previous case, but now the distribution of B is the invariant distribution on a
Stiefel manifold and is independent of n. However, A and B are still inde-
pendent.

5. Distribution of the co-ordinates of random vectors in a random plane.
In relation to the rest of the paper, the purpose of this section is to derive equa-
tion (3.5) and a result at the end of section 7. However, the results will be more
interesting and intelligible if discussed in terms of probabilities.

T1,+++, Tp are invariantly distributed unit vectors in n-space, which we
write as the columns of an » X p matrix 7. p is the plane spanned by the 7.
We define in p a reference set of orthonormal vectors, which we write as the
columns of an n X p matrix X. Thus X is a function of p and

(5.1)” _ X'X = I,.

Let the column'e; of the p X p matrix A be the co-ordinates of 7; relative to
the reference set X :

(5.2) T = XA.

We shall show thdt p is invariantly distributed and that A is independently
distributed with density proportional to

P
(5.3) [A’A | P2 T dS(as).
i=1
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These results are implicit in Bartlett [1]. They follow from the lemma which
we shall now state and prove. For the application in section 3 we shall have to
generalise the situation slightly to include the case when the reference set X is
not necessarily a function of p alone.

LemMa. If T 7s an n X p matricz whose columns r; are unit vectors, and X and
A are n X p and p X p matrices satisfying (5.1) and (5.2), then
D p
(54) I1dSGr) = |4'4|"7" ] dS(es) dp + *(dX) do
i= i=1
where *(dX) is a differential form in X and A, every term of which is of at least
first degree in dX. If X s a function of p alone, then *(dX) dyp = 0.

Proor. Selecting a single column from the matrix equation (5.2) we have

(5.5) i = Xoay.
Differentiating:
(56) dT,; = ani + X dai .

As the differential form for dS(a;) will be required, we introduce p — 1 ortho-
normal column vectors in p-space orthogonal to «;. Let C; be the p X p — 1
matrix with them as columns. Then dS(«;) is the alternating product of the
elements in the vector C; da; .

The differential form for dS(7;) requires n — 1 orthonormal vectors orthog-
onal to 7;. The columns of the matrix XC; provide p — 1 of them, since
CiX'r; = C:X'Xa; = Cia; = 0. Choose the remaining n — p orthonormal
vectors orthogonal to the plane p and let them be columns of an n X (n — p)
matrix B, which is to be a function merely of ».

Premultiply (5.6) by the transpose of the partitioned matrix [XC; : B]:

- Ci X drs C: X' dXa; + C; dos
' Bdr | B’ dXa '

Then, the alternating product of the differentials of the vector on the left is
dS(r;) and hence the product of all of these for ¢ = 1, -+, p is the density
on the left-hand side of (5.4). N

The alternating product of all the differentials in the right-hand side of (5.7)
for< = 1, --- , p will give the density in the new co-ordinates. Let us deal with
the vector differentials B’ dXea; first. These p vector differentials, corresponding
toZ =1, ---, p, comprise the columns of the matrix B’ dX4, of whose elements
we therefore want the alternating product. The alternating product of the
elements of a row of this matrix is| A | times the product of the row of the
elements of B’ dX. There beingn — p rows in B’ dX 4, the alternating product
of all its elements is then | 4 |"?]1; II; bj dw:. The differential form

11, 11 b7 das
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is the invariant measure, dp, on the Grassmann manifold, i.e. the uniform dis-
tribution of a p-plane in n-space (see [6]).

As the differential forms represent probability densities and must therefore
be positive, we replace | A | by its modulus | 4’4 |"*.

The product of the elements of the vector C; da; is dS(a;). All the products
involving an element of C:X’ dXa; we lump together in the symbol * dX. Col-
lecting all factors we obtain (5.4). Q.E.D.

We conclude with a result that we shall need in section 7. From (5.1) and
(5.2) we have T'T = A’A. Hence, if A has the distribution (5.3) then the mo-
ments of A’A are the same as the moments of 7”7 where T has the distribution

1 48(x.).
Parr B

6. Introduction. In this part of the paper we shall be concerned with the
problem of calculating the conditional moments

(i, ey ooy t) = El(s))™(s2) -+ (83)"]

required for the expansion of the distribution of the canonical correlations r; .

Recalling the results of sections 3 and 4, we saw that the expectations of
monomials in the s? could be replaced by the expectations of monomials m(4, B)
in a;;B;; in view of the relation

(6.1) 8i = P + -0+ apBpitp .

Furthermore, since A = (as;) is distributed independently of B = (8;;),
E[m(4, B)] = E[m(4)] E[m(B)]

where m(4) and m(B) are monomials in the elements of A and B respectively.

Considering case (a) for the moment, we saw that the distributions of 4 and
B were

(6.2) ko | A’A |77 dS(en) - - - dS(ap),
and
ko | B'B |2 dS(8y) - - - dS(By)

respectively. Consequently, E[m(B)] may be obtained from E[m(A)] by simply
replacing p with g.

In case (b), though the distribution of 4 is still given by (6.2), the distribu-
tion of B is given by (4.8), the invariant distribution on the Stiefel manifold
of p-frames in g-space. We notice, however, that if we let  — o in case (a),
then the set of random vectors (81, - -- , B,) becomes a rigid p-frame, and this,
of course, is exactly the situation in case (b). Hence the f-moments may be
obtained from those in case (a) by letting n — . To summarise, then, it is
sufficient to compute only the moments of the distribution (6.2).

To compute these moments by direct integration is obviously going to lead
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to involved algebra. However, by first averaging the monomials m(A4) over the
orthogonal group we can considerably simplify the problem. Before proceeding
further we shall briefly discuss this important process.

7. Average over the orthogonal group. The process M of averaging over a
group is a linear process whereby a function, defined on a space on which a
group of transformations acts, is changed into a function invariant under the
group. In particular, we consider the group § of all orthogonal matrices H, and
a matrix A = (a;;) which is transformed by the elements of :

(7.1) A= HA
If f(A) is a function of the elements of A, then

Mi(4) = L FHA) dV ()

is a function invariant under the transformations (7.1). V(H) is the invariant
measure on the orthogonal group, normalised so that V(9) = 1. Mf is called
the average or mean value of the function over the group. (This definition of
“mean value” should not be confused with the usual statistical definition.)
Since M is invariant under the orthogonal group, it must be expressible as a
function of the basic invariants aia; (see Weyl [9], pp. 52-6).

We wish to calculate the expectations of monomials m(A4) in the elements of
A. Since the distribution (6.2) is invariant under the transformations (7.1),
E[m(A)] = E[m(H"A)], and hence it follows that

Elm(4)] = [ Bim()) av(#) = [ Blm(E>r*4)] 4V (H)

.y f m(H*4) dV(H) = E[Dm(A)].

In section 8 we shall show how to calculate tm(4).

However, assuming for the moment that this has been done, we see that the
problem has been reduced to the evaluation of the expectations of certain in-
variant functions ¢(A’A), say. At this point it should be noted that the prob-
lem of the B-moments in case (b) has been completely solved. For, if we let
n —> o, then B'B = I with probability 1, and hence E[m(B)] = ¢(I). E[m(B)]
can be then evaluated by the method given in James [7], pp. 374-5. However,
since we require the S-moments for case (a), we may as well compute those
for case (b) by letting n — o in the former moments, as indicated in section 6.

For the a-moments (and the 8-moments for case (a)), we still have to eval-
uate the expectatlons of the invariant functions. In sectlon 5 we have shown
that the aja; have the same distribution as quantltles TiT; where 71, --+, p
are independently uniformly distributed unit vectors m n-space. Finally, then,
there remains the calculation of the moments of the rir; . This will be accom-

plished in section 9.
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8. Calculation of Mm(A4). In section 7 it was shown tﬁat
Elm(4)] = E[MMm(4)] = Elp(4'4)].

In this section we shall show how to evaluate Jm(4).
Let
(8.1) m(4) = aiijeils -
denote a monomial in the «;; . Then if C is an arbitrary p X p matrix, the ex-
pansion of the function exp (tr C’A) contains every monomial (8.1) multiplied
by the same monomial m(C) in the corresponding elements of C, and divided
byki!ks!----.James [7] has shown that I exp (tr C"4) can be expanded as a
multiple power series in the elementary symmetric functions 2z, 22, --- , 2, of
the latent roots of C’CA’A. Thus, if \;, --- , A, are the latent roots of C'CA’A,
then
21 = E A = tr C'CA’A,
=D A A\; = sum of principal 2nd order minors of C’'CA’A, etc.,
i<i

and
2

+ l
; 8p(p + 2)  2p(p+2)(p—1)
21 Q122
I 20 FD BT D0+ He =D
23 Z‘i
p(p +2)p+ D@ — D —2) 2“4!20(10 +2)(p + 4)(» + 6)
212,'2
lﬁp(p +2)(p +4)( + 6)(p — 1)
22
8p(p + 2)(p + 4H)(@ + 6)p — 1)(p + 1)
(p + 2)21Z3
2p(p +2)+H@+6)p— 1+ D —2)
(5p + 6)z4
2p(p +2)p+H+6)@—DEe+ D - 2@ - 3)
Hence, Mm(A) can be found by equating the coefficients of m(C) on both sides

of (8.2).
If we write A’A in the form

M exp (br C'4) = 1+ = l +

+

(82)

_l_

’ ? ’
1 ailoy aiaz ccc aidy
’ ’
2342 7] 1 Q203
’ ’
(83) ajoy Q3 1

; ; :
laia, azay . 1
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we see that IMm(A) will be a linear combination of monomials in the invariants
aiaj. The expansion (8.2) is sufficient to compute all conditional moments up
to order 4. If higher moments are required, further terms can be added to (8.2)
by the use of recurrence relations derived from the differential equations given
in James [7].

9. Calculation of the moments of the invariants. We are given that 71, 7;,
-, 7p are independently uniformly distributed column vectors in n-space,
. and we require the expectations of monomials in 7¢r;. If a monomial in rir;
were expanded as a sum of monomials in the 7;;, the expectations of each of
these could be calculated and summed. However, the expansions would become
very complicated. They can be avoided by the following method, which is an
extension of an idea due to Bartlett, [1] p. 13.

Let e, €2, -+ -, €, be the unit vectors along the first p coordinate axes. Then
the joint distribution of 71, ---, 7, is the same as that of A,e;, Az, - -,
Ae,, where the A; are random orthogonal matrices independently and in-
variantly distributed (see James [6]). Furthermore, the invariant functions
will not be altered if they are calculated from the vectors e;, A1dses, - -,

A1d,e, . These vectors have the same distribution as e, Ases, - - - , A e, since
Aidy, -, ALA, are still independently invariantly distributed. Again, if

A, = (a;;), say, the invariant functions will not be altered if we replace the
vectors by

1, Bsdses, - -+ , BsA e,

where
1 0 0 -+ 0]
0 an/be * ---
10 ass/bs
B, =] - - ,
_0 a,.z/ bzz _
by = 1 — aly = aj + --- + a2, and the remaining elements are chosen so
that B, is orthogonal. Clearly,
Q12
bas
Bidser =| 0
0
Since the matrices BsA;, - -+, BsA, are still independently invariantly dis-

tributed we may replace the vectors by

e, B;A232 ’ A3e8; e '7 APeP .
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Proceeding in this way we see that we obtain the same values for the expec-

tations of the invariants if we replace 71, 72, -+, 7p by
1] a1, | ~a131
0 beo Qg3
0 0 bss
(9.1) -1, . , 0 , e
| 0| | 0 ] | 0 ]

(To avoid introducing further notation, we have denoted the third column of
A; by the elements a3, azx, -+, an, those of the fourth column of 44 by
Qu, G, -+, Gns €tc. Then by = 1 — als — a3s, bis = 1 — aly — a3 — G5,
ete.)

ExampLE 1. As an example let us evaluate
E[(a102) (ases) (ass) (@ia)] = E[(r170)(ra75)(r374) (r174)].
Substituting from (9.1), this expectation is equal to
9.2) Elaw(a1015 + D2202s) (015014 + G2324 + b33034) 1]
Now any monomial in the a;; , bs; containing an odd power has zero expectation
since the distribution is unaltered if we replace a;; by —ai; or by by —bi:.
Hence, (9.2) reduces to E(al:alais). as, a; and a, are independently uniformly

distributed unit vectors, and hence E(a}:) = E(als) = E(al) = 1/n. Therefore,

El(a10s) (asas) (asos) (ara)] = 1/n.

ExampLE 2. E(A) where A = | A’A |.

Put
1 a1 an
_ 0 bn as
¢= 0 0 bss

Then A = | C'C| = |C|? and

E(A) = E(1-bh-b%- - -b%,)

=1

_n—l_n—-2_._n——p+l
n n n ’

since E(by) = 1 — E(ak) = 1 — 1/a, ete.
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10. Example of the calculation of the conditional moments. Following Bart-
lett, we introduce the notation?

E(ai1a1)E(B1161) = (g),
(10.1) 9 .
BhatdBGhst) = (7 ), e

From equation (6.1) it is seen that the conditional moments can be expressed
as linear combinations of “arrays” similar to those in (10.1). As we saw in sec-
tion 6, it is sufficient to calculate the a-moments only.

To illustrate the method let us calculate the a-moment or ‘half-factor”

corresponding to
| ()
-1 1},
1 -1
i.e. E(anaiomonamass).

The first step is to calculate Mm(4). Now,

* . emca+t . cucs+ .-
C'CA'A = Ca1Ca + . .- 032033;!‘ .

cucis + . cxcn + -
’ ’
1 araz Qo
’ ’
] oz 1 Lo DY 2]
’ ’
aja; Qzas 1

All remaining terms in'C’C may be neglected as they will not contribute to m(C)
in the expansion (8.2).

= 48(a{a2)(a;a3)(a;a3)m(0) + -,
4{3(a;a2)(a;a3)(a;a3) — (01;012)2 - (C!;C'!:a)2 - (a;%)z}m(c) + -

!’ ’
. 1 a1l Q103
7 ’
oy o 1 az a3
’ ’
aja; Qs 1

2122

= Zm(C) + ..

Hence, after calculating the expectations of the invariant functions by the
method of section 9, we have

E(zi’) = ——M(C) + -

E(z12) = 12(n ) m(C) + -

2(n — 1)(n -
n2

E(z) = 2 m(C) + ---.

2 Actually our notation differs slightly from Barlett’s. Whereas Bartlett worked in terms
of rows vectors, we have worked in terms of column vectors, and hence Bartlett’s a;; cor-
responds to our a;,; .
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Substituting in (8.2) and equating the coefficients of m(C), we obtain after
simplification

_ (n — p)@n — p)
E(anosananapan) = o+ 2+ - D =2’

which agrees with the value tabulated by Bartlett.

Any other o-moment can be calculated in a similar fashion. In particular,
the moments tabulated by Bartlett were checked and the various terms con-
tained in u(2, 1, 1) and u(l, 1, 1, 1) have been calculated and included in the
appendix. Actually, only the a-moments have been tabulated. The complete
value for case (a) may be obtained by multiplying the a-moment by a similar
value with ¢ replacing p. The complete value for case (b) is obtained by taking
the previous value and letting n — o in the second half.

Incidentally, the a-moments may be checked by an independent method.
For example, consider the monomial afief; . If we multiply it by asas , which
is identically unity, then E[afiots(asas)] = Elanials]. But expanding the term
on the left-hand side, we get

E[aflale = E[ailafzafsl + E[“:I“fﬁ:a] + E[ailaf%xgiil + .-,

and therefore
4 4 -
4
=(2]+(@—-D[2 ).
(2) <2> ( 2>

Similarly, by expanding (a1es)*(a103)’, whose expectation = 1/n’, we have

4 2. 2 3 1 2 2
pl2)+pe—-D|2 -|+4pp—-D|1 1)]+2p(p—-1|1 1
2 -2 2 11

211 2 11
+20p—D@—-2){- 1 1]+ 4pp—-Dlp-2){1 1 -

2 1 -1

1111
+p(p—1)(p—2)(p—3)<1 1 1 ) =17
.o 1
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