ON THE THEORY OF BAN ESTIMATES!

By RoBERT A. WijsMAN?
Unaversity of California, Berkeley

1. Introduction and summary. The notion of best asymptotically normal
estimates—BAN estimates for short>—was introduced by Neyman [8] in the
multinomial case. Applications have been made in biological problems, notably
in bio-assay [2], [4], [5]. Generalizations of Neyman’s work have been made by
Barankin and Gurland [1], Chiang [3] and Ferguson [5]. The usual theory of
BAN estimates requires differentiability of the estimates, and imposes rather
strong conditions on certain functions given in advance (the functions { and =
of Section 3). In this note a different definition of BAN estimates is made which
does not require differentiability, at the same time relaxing the conditions on
¢ and Z, whereas in essence all important theorems in the theory of BAN esti-
mates are retained.

2. Notation. Convergence in probability is denoted by £. X, ~ Y, means

X, -7, Lif 0. X, £ 91(0, ) means that the law of X, tends to a multivariate
normal law with mean 0 and covariance matrix . A’ is the transpose of a matrix
A, I, the m X m identity matrix. We shall write regular (1), regular (2), BAN (1),
BAN (2), depending on whether Definition 1 or Definition 2 of Section 3 is used.
For notation and terminology not explained here see Chiang’s paper [3], with
which the notation in this note is in fair agreement.

3. The usual definition and a new definition of BAN estimates. Let Z, be a
sequence of random vectors, taking values in a space Z which is a subspace of
a k-dimensional Euclidean space R*. The distribution of the Z, depends on a
parameter 6 which takes values in an open subset @ of an m-dimensional
Euclidean space, where m < k. The true value of 8 will be denoted by 6, . It is
assumed that

) Vi (Z. = £(6)) —=— 900, Z(80)

in which ¢ and 2 are functions on @, ¢ into Z and T into the space of k X k
positive semi-definite matrices. Let the set {(?) be denoted by U. In the simplest
theory of BAN estimates, an admissible estimate is a function 8 from Z to Q,
and if Z, is observed then 6 is estimated by 8(Z,). We shall occasionally write
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6, instead of 6(Z,). In the usual theory of BAN estimates the following assump-
tions and definitions are made (our Definition 1 differs slightly from the one
given in [3] but leads to the same definition of BAN (1)):

Assumption 1. (i) ¢ is 1-1 and bicontinuous; (ii) =(6) is nonsingular for every
8; (iii) ¢ and = have continuous second derivatives; (iv) the matrix d¢/d6 is of
rank m for every 6.

DEerFINITION 1. 8 is called regular (1) if (i) 6(Z,) P 6o whatever 6, , that is, 8
is consistent; (ii) 38/9z exists and is continuous in a neighborhood of U.

We shall denote {(6)) = o, Z(6) = Zo. The k X m matrix derivative 9¢/d6
will be denoted by V(6), the m X k matrix derivative 88/9z by A(z). V(6o) and
A(to) will be written Vo, Ao respectively. An immediate consequence of As-
sumption 1, Definition 1 and (1) is that

©) 8(¢(8)) = 6 identically in 6.

This enables us to show that 8, is asymptotically normal, with asymptotic co-
variance matrix Ao Zo A¢ . From (2) one obtains by differentiation

3) A(£(6))V(8) = I, identically in 6,

which is a very important relation since it has as a consequence that among all
matrices of the form 4040 there is a minimal one. A regular (1) estimate with
minimal covariance matrix is called BAN (1).

A prior: there is no reason why an estimate should have a derivative, apart
from the convenience with which one can show the existence of a minimum co-
variance matrix among the covariance matrices of regular (1) estimates. The
differentiability conditions in Assumption 1(iii) also seem stronger than they
need be. The reason for assuming so much differentiability is to ensure the dif-
ferentiability of @ if the latter is generated by minimizing a quadratic form [3]
or by the root of a linear form [5]. Chiang [3] in his theorem 5 makes the full
Assumption 1(iii). In his theorem 6 he only assumes that ¢ has continuous second
derivatives, and makes no assumptions on Z. However, the type of estimates
allowed there goes out beyond the simplest theory of BAN estimates as treated
in the present paper, since § is allowed to be a function of both Z, and S, , where
S, is a consistent estimate of Z. If S, is taken as a function of Z,, which is
usually the case in applications, it has to be a differentiable function in order

that 8 is differentiable. Then, since Z, P to, we must have S,(fo) = Zo, what-
ever be 0 ; that is, S.(¢(6)) = Z(8), so that = has continuous first derivatives.
If a regular (1) estimate is to be obtained as a root of a linear form (equation (5)
in the present paper) then the matrix B in this linear form has to have continuous
first partial derivatives with respect to z and . If, in addition, this regular (1)
estimate is to have minimum covariance matrix, then the matrix B has to
satisfy B(¢(0), ) = V’(6)=7'(6) for all 8 (the more general condition given in
[5] reduces to the one given here if Z is non-singular). It follows then
that V’(8)Z7"(6) has to have continuous first derivatives with respect to 6, and
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the most natural way to achieve this is to have both V and = continuously
differentiable. Thus, we see that in order to generate BAN (1) estimates it is
practically necessary to require that Z is continuously differentiable and ¢ con-
tinuously twice differentiable.

It should be said at once that Ferguson in [5] does not require the estimates
to be regular (1), which allows at the same time for relaxation of the conditions
on Z and ¢{. The class of estimates considered in [5] consists of all those esti-
mates which can be obtained as a suitably chosen root of a linear form (our
equation (5)), for the various choices of the matrix B. The restrictions on B—
continuity in 2z and differentiability in 6—ensure the continuity of  in a neigh-
borhood of U. The corresponding class of covariance matrices contains the
minimum member (V23" Vo)™, which can be attained if = and V are continuous
in @ (our Assumption 2(iii)). This minimal covariance matrix has the same form
as in the case of regular (1) estimates, so that Ferguson’s BAN estimates have
the same asymptotic properties as BAN (1) estimates whenever they exist.

It may be argued that from a theoretical point of view it is slightly unsatis-
factory to define a class of estimates by the manner in which they are generated,
rather than by their common properties. The approach in this paper is different
from Ferguson’s in that a class of estimates will be defined by the properties
they are to have, in the same way as this is done in the case of regular (1) esti-
mates, but with a weaker definition of regular. The new definition of regular
(Definition 2, below) will henceforth be referred to as regular (2). In spite of
this weakening, all important theorems remain valid, in particular the existence
of the minimum covariance matrix (Vo= Vo)~". The Assumptions 1(iii) on =
and ¢ will also be relaxed. The only differentiability condition retained is that
V = 98¢/d6 exists and is continuous. This condition is certainly a very natural
one, since the matrix V plays an important role in the theory of BAN estimates.
Thus, compared to the theory of BAN (1) estimates, the field of applicability
is enlarged, and at the same time the theory becomes somewhat neater since
the conditions are better tuned to the essentials in the theory. The class of
regular (2) estimates contains both the regular (1) and Ferguson’s estimates.
Furthermore, the asymptotic properties of BAN (2) estimates are the same as’
those of BAN (1) estimates whenever the latter exist. Thus, the class of esti-
mates to be considered is enlarged, and if a BAN (1) estimate exists, it still
belongs to the best estimates in this class.

AssumptioN 2. (i), (ii) and (iv) are the same as assumptions 1(i), 1(ii) and
1(iv); (iii) = is continuous and ¢ has a continuous first derivative V.

DEerinITION 2. § Will be called regular (2) if (i) 6 is continuous in each point
of U; (ii) for each 6 there exists an m X k matrix A(8), continuous in 8, such
that

4) V1(b(Z,) — ) ~ A(6)N/1(Zn — o) Whatever 6, .

Definition 2 is weaker than Definition 1, in that the former is implied by the
latter, but not vice versa. In fact, Definition 2 does not even guarantee the
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continuity of 6 in a neighborhood of U. This causes a little trouble, since 6 is
then not necessarily measurable. For the reinterpretation of various proba-
bility statements the reader is referred to a remark by LeCam ([6], p. 132).
With Definition 2 it is easy to show the validity of (2). The following theorem,
however, is not immediate, and will be proved in section 4.

TaeoreM 1. A(0)V(6) = I, identically in 0.

Theorem 1 takes the place of (3), and A(6) takes the place of what was pre-
viously called A,. Thus, it is seen that the classes of covariance matrices of
regular (1) and regular (2) estimates coincide. A regular (2) estimate with mini-
mal covariance matrix-will be called BAN (2), and, with a few modifications,
the whole theory of BAN estimates is unchanged.

The next theorem is essentially due to Ferguson [5)], except for the weaker
conditions, and shows how to generate a BAN (2) estimate as a root of a linear
form.

TueoreM 2. Let B(z, 6) be an m X k matriz, continuous in 0 for each z and
continuous in (z, ) at each point (£(6),0), such that ByV, 18 nonsingular whatever
6o , where By = B(to, 6o). Then there exists a netghborhood N of U and a function
6 on N to Q such that on N, 6(2) satisfies the equation

()] B(z, 0)(z — ¢(8)) = 0
for 0-and such that 6 is a regular (2) estimate. Furthermore, we have
(6) V1B — 60) ~ (BoVo)"BoV/n(Zn — £0).

Lastly, if By = V25" then 0 is BAN.

The proof of Theorem 2 proceeds along conventional lines and will not be re-
produced here. It relies on Brouwer’s fixed point theorem [7], in which the trans-
formation is assumed to be continuous but not necessarily differentiable, and,
as a consequence, uniqueness of the fixed point cannot be concluded. As a result,
the estimate # is not necessarily unique. The matrix B may be chosen to be
V'(0)2f1(0) and will then satisfy the conditions of Theorem 2, by assumption
2(iii). Moreover, this choice for B will generate a BAN (2) estimate, by the last
part of Theorem 2. The same conclusions hold if V() is replaced by a matrix
V*(z), depending only on z, such that V* is continuous in each point of U, and
V*(¢(8)) = V(6) for all 9. £(6) may be replaced similarly.

4. Proof of Theorem 1. We shall need the following lemma, whose proof is
due to Dr. Lucien M. LeCam.

LemMa 1. Let (a, b) be a one-dimensional interval in R*, and suppose that for
each x € (a, b) there is a sphere S(x) about x with radius r(x). Then there are two
distinct points, x, and z:, in (a, b) such that x; € S(xz) and xz, € S(z,).

Proor. Let zo ¢ (a, b) be a point such that there is no z ¢ (a, b) N S(xo) for
which z, ¢ S(z). Then r(z) — 0 as x — z,. On the other hand, r(z;) > 0. It
follows that r has a discontinuity of the first kind at x, . The conclusion follows
from the fact that the discontinuities of the first kind are denumerable.

We proceed to prove Theorem 1. Suppose that for some 6; £ 2, A(6:)V(8,) 7~ L.
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Without loss of generality we may assume that {(6:) is the origin 0 of the co-
ordinate system in Z. Let T be the tangent plane to U in 0, and consider in the
following T fixed, i.e. not subject to transformations. There is a transformation
z — z* = g(z) which in a Z-neighborhood of 0 is continuously differentiable in
both directions, with dg(0)/dz = I, and which maps U into T. More precisely,
there is a U-neighborhood N, of 0, a T-neighborhood N of 0, and a Z-neighbor-
hood N, of N, , such that on N, the transformation g has the differentiability
properties mentioned in the preceding sentence, and such that g(N,) = N,.
Let No = {'(N.). In (4) we shall only consider values of 6, which are in N, .
The estimate 8 is now to be considered as a function of z*. If we write (4) down
for the transformed variables, i.e. replacing Z, by Z», to by ¢o , we have to
replace A(6) by A*(6)) = (3g(¢0)/d2) A (6o). A*(6), like A(6), is continuous in
6. Since 3¢g(¢(6,))/0z = I, we have A*(6;) = A(6,). Furthermore, for the trans-
formed variables we have V*(0) = d¢*/06, where ¢*(8) = g¢(¢(6)), so that
V* = (dg/92)V (the arguments have been suppressed). At 6, we have
V*(6,) = V(6:). Thus, if A(6,)V(61) ¥ I, then also A*(6;)V*(6,) ¢ I.. . Drop-
ping the asterisks, we consider a new problem, in which the new @ is the old
Ny, the new U is the old N, . Hence U is a subset of an m-dimensional subspace
of R*. For some 6, £ Q, A(6,)V(6;) # I.. We may further simplify the problem
by making a suitable transformation 6 — 6%, continuously differentiable in both
directions. This transforms V — V* = V(30/96*) and A — A* = (36*/36)A
(the arguments have been suppressed). Thus, if AV # I,, , then also A*V* 5 [, .
We choose the transformation § — 6* = {(6). Dropping the asterisks, in the
new problem @ and U are identical, { is the identity function on U, and 4 is a
function on Z to U which is the identity function on U, by (2). For eachu ¢ U,
A(u) is a linear transformation of Z into the m-dimensional subspace in which
U is embedded. If Theorem 1 is true, then, for each u, 4 (u) is the identity trans-
formation on U. We have assumed that A(0) is not the identity transformation
on U, and will show that this leads to a contradiction.

If A(0), restricted to U, is not the identity transformation, then the same is
true on at least one of the coordinate axes in U. We choose one of these coordi-
nate axes, and call it the z-axis in the following. For simplicity, x, with or without
subscripts, will stand both for a point on the z-axis and for its z-coordinate. In
the following, |z| will denote the norm of a vector z, ||A| the norm of a matrix
A, I the identity transformation on U. Using the continuity of A4, there is on
the z-axis an interval N, = (—a, a) and there is an ¢ > 0 such that for all
£ 11, 22 € N, we have

Q) [(A(®) — I)(@2 — x1)| = 6¢ |22 — x4 .
Furthermore, we can choose a so small that for all z,, 2, ¢ N, we have
(®) lA@z) — A(z)]l < e

We now put

9) f&,w) = 0() — u — A(u)(z — u),
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then from (4) it follows that
(10) P{vn|f(Za, w)| 2 ¢} =0,

in which u is the true value of the parameter. Denote by S(u, n) the open

sphere with radius n™"* about u. If v = 0 we write simply S(n). Using (10) we

have

(1) P{Za £ Suo, 1), v/ |f(Zn, w)| Z ¢} —0.

Making the transformation y = n'*(z — w), Yo = 0n'*(Z, — w), gu(y) =
n'*f(z, uo), we can write (11) as

(12) P{Y, € 8(1), |ga(Ya)| 2 €} — 0.

Let u be the Lebesgue measure in R*. Since Y, has a limiting density with respect
to u, we conclude from (12)

(13) sy € 8(1), lgn()| = ¢} — 0.

If we divide the left-hand side of (13) by the constant uS(1) = u{y & S(1)},
and make the transformation back from y to z, we obtain

(14) WS "ulz & S(u, n), |z, w)| Z ™} >0

in which we have dropped the subscript 0 on u.
For any 2, let z = z, + y., where «, is the z-component of 2. We choose a
number & > 0 in such a way that for any z,, 22, n, with

(15) I < gy — 2 <
we have
(16) r{z e S, n) N S(x2, n), 71 < 2, < 12} > auS(n).

The number « can obviously be chosen independently of the particular choice
of 21, z2, m, so long as (15) holds. Restricting now u in (14) to points z in N, ,
we have for each = ¢ N, an integer n, such that

(17) l"{z € 8(z, n), If(z) x)l > m—m} < 3apS(n)

provided n = n,. According to Lemma 1, there are two points z;, 22 ¢ N,,
with z; < z,, such that z; € S(z., n,,) and z, £ S(z:1, n,,). We can now choose
an integer n = max (n,,, n,) such that (15) holds, and therefore also (16). The

two equations (16) and (17) together imply that
18) wiz e S ,n)N S(zz, n), z1 < z, < 2,
Iz, 2| < en™™, |f(z, @)] < e} >0,

so that the set in braces in (18) is not empty. Choosing any peint z in this set,
and using (15), we have the following inequalities:

(19) I <xz <:v2,
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(20) lysl < 2(z2 — z),
(21) If(z, )| < 2e(xe — 1), |f(2, 22)| < 2¢(x2 — T1).
From (9) we compute
(22) Iz, z2) — f(z, 21) = (A(z1) — I)(z: — 1)

+ (A(z2) — I)(z: — 2) + (A(21) — A(22))y: -
By continuity of A and by virtue of (19) there is a point ¢ ¢ (z;, z2) such that
(23) |(A(®) — D(z2: — z1)| = [(A(z1) — Dz — z) + (A(s) — D@2 — z)|.
Using (8), (20), (21), (22) and (23), we have finally
(24) I(A@®) — D@ — )| < 6e(z: — 1),
contradicting (7). Q.E.D.
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