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1. Introduction. Given n distinct points, m selections of pairs of points are

made independently and at random, each of the (g) possible pairs having the

same chance 1/ (g) of selection at each trial. Once selected, a pair is connected

by a line joining its two points, labeled by the order number of its selection; thus,
after m selections, a linear graph with #» distinet (labeled) points and m distinet
(labeled) lines connecting pairs of points is formed. (Note that the rule of forma-
tion implies the graph contains no slings but may contain lines in parallel.) In
many investigations it is valuable to have the distribution of the number of con-
nected components (each isolated point being counted as a component) in such
a random linear graph.

In the following this distribution is found. In addition, simple closed expres-
sions are given for a few special cases of interest, and finally, an approximation
for the average number of components.

2. Summary of results. Let N = (g), and let T'nn, be the number of graphs

(as described above) with n points, m lines and p parts; then, of course, the prob-
ability that a graph has p parts is Trhmp/N™. Let Cum = Tnm be the number of
the corresponding connected graphs (single component) with # points, m lines,
and introduce the following enumerating functions:

T(x)yyz) = Z ZE Tnmpz—':é:%zp = EZ Tnm(Z)%;;l/n———ﬂ;
(1) 2me ' m!

=2Tn(y,z)%1-;, nm=01,---,p=1,2---,m
and
(2) Clz,y) = ZZC‘W%’;%= EC’n(y):—:.
Then
(3) T(z, y, 2z) = explz C(z, y)]

is the most concise expression of the relations between enumerators. Since
Twn(1) is N”, T(z, y, 1) is known; hence so is C(x, ¥), and T'(z, y, 2) is com-
pletely determined by (3).
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Indeed, using the abbreviation

w[m )+ )+ -+ Q)]

(4) ae(m) = 3. kol oo kp 110120k2 o plen

with summation over all k-part partitions of =, that is over all non-negative
integral solutions of

by + 2k + -+« +nkn=n
kit ke -+ k= K,

it turns out that

n

(5) Tomp = k_zp me(m)s(k, p),

(6) Com = kz; (=1 (k — 1)! 7ae(m).

In (5), s(k, p) is a Stirling number of the first kind defined by
(7) (D =2z—1) -+ (z—k+1) = 2 sk p)e"

It is also interesting to notice that

n

(8) Tun(z) = ;o (#)k Tar(m).

The special cases of (5) of most interest are

(9) Tn,n—l,l = (n - 1) ! ,h;n-z,

nn-—-3 nq—2 ]

(10) Tana = 3nl(n — 1)'![1 +”+%+ B ey Rl e Y

Equation (10) depends on the following auxiliary result which is probably of
more interest in graph theory: the number of connected linear graphs with n
distinct points and exactly one cyele of length k, for k > 2,is (n) n" /2,
while for k = 2 it is (n)2 »"°. This is a natural extension of the result of Cayley’s
used in (9) that the number of (free) trees with n distinet points is n"*, and
it is an instance of a more general result appearing in G. W. Ford and G. E.

Uhlenbeck [1].

3. Derivation. Consider first the enumerator

(11) Tam(2) = 2 Tnmp?’-
As already noticed, Twm(1) = 2 Twmp = N™, since the m lines are chosen inde-
n

pendently from the same population of N = 2

\
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For orientation, the first few evaluations of (11), obtained by easy enumera-
tions, are as follows:

Tuo(z) = 2"

Notice that
Tno(2) = 2Tn1,(2)
Tu(z) = 2(Tna1(2) + (0 — 1)Tu20(2))
Tne(2) = 2(Tna,2(2) + 2(n — 1)Th21(2) + (n — 1) Trs0(2)

+ 6(” Y 1) T,,_g,o(z)).

The general form of the recurrence suggested by these may be derived by a
slight modification of an argument given by E. N. Gilbert [2]. Thus in the graphs
with n 4+ 1 labeled vertices, m labeled lines and p parts enumerated by Tyi1,m,» ,
the vertex labeled n + 1 belongs in a connected part with 7 other points and j
lines, while the remaining » — 7 points and m — j lines belong to a graph with

p — 1 parts. Since the labels for the ¢ points and j lines may be chosen in :b

(Zn) ways, it follows at once that

(12) Tn—l—lmnp = Z (n) (ZL) Ci+1,i Tn-—i,m—i.p—l .

7.7 \?

Multiplying by 2” and summing on p, it is found that
(13) Turan(@) = 2 2 (7) Cons Tactnes2)

For boundary conditions note that T1m(2) = 26m , With ép = 1, dom = 0, m > 0,
and for consistency with equation (13) Tom(2) = 8om, since C1; = &; . Note also
that Cno = 0, % > 1, Cpnj = 0,7 > 1, and to verify the instances of (13)
appearing above, Cy = Cy = 1, (32 = 6. For concreteness, it may also be noted
that
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Tw() =2, Twm(z) =2, m>0
Tw(z) = 2, Tsn(z) = 32° + 2(3™ — 3), m > 0.
Multiplying (13) by y™/m! and summing on m leads to

(14) Tosw,2) = 2 2 () Conw) T )

Multiplying (14) in its turn by z"™/(n + 1)!leads to

9T(z,y,2) _ ,9C(z,y)
ox ox

Integrating with respect to x using the boundary conditions T'(0, y, 2) =
C(0, y) = 0 gives (3), that is

(3) T(.’l), Y, Z) = eXP[z C(x7 y)]~

The further results reported above are obtained directly from (3) as follows:
first

(15) T(x,y,2) .

T(z, y, 2) = [exp C(, y)I
1+ T(zy 1) —1F
exp (2) (T(z, 9, 1) —1), (2)" = (2)s.

Next, a basic equation for the Bell multivariate polynomials (see [3], Section
2.8)

- n!a hn k1 Yn kn
(17) Yalay, -+ ags) = ZE'_’“(F) (2

n!

I

(16)

Il

with summation over all partitions of 7, is
n 2 n
Ty Ty ...
(18) 2 Yulays, -+, ayn) 0 Zn!(xy1+ 5T T ) .

Hence (16) is equivalent to (equating coefficients of z"/n!),
(19) Tn(y; Z) = Yn(a’Tl » " aTﬂ)’ ak = o = (z)k

with T, = Tn(y,1) = exp (yN). Using (17) for the right hand side and equating
coefficients of y™/m! gives (8). Introducing the Stirling numbers of the first
kind in (8) by use of (7) gives (5).

Finally the relation (18) along with the instance z = 1 of (3) namely
T(z, y, 1) = exp C(z, y) shows that

(20) Ta= Tu(y, 1) = Ya(Ci(y), -+, Ca(y))
and the inverse of this (¢f. [3], equation 2.51) is
(21)  Cu(y) = Yu(fT1, =+, fT0), f=fi= (=" (k= 1)L

Equating coefficients of y™/m! again, gives (6).



COMPONENTS IN RANDOM LINEAR GRAPHS 751

4. Special cases. While the results above are formally complete, they may
become almost impossibly difficult to write out for large n since summation is
over all partitions. Special cases obtainable otherwise are a valuable adjunct and
as already noted, those given by equations (9) and (10) are independently inter-
esting in the theory of graphs.

The number T»,n1,1 = Cp a1 is the number of graphs with n labeled points,
n — 1 labeled lines and 1 part, that is the number of free trees with all points
and lines labeled. The lines and points are labeled independently. The number of
free trees with all points (and no lines) labeled is "%, by Cayley’s formula,
and the number of line labelings is (n — 1)!

The number T, .1 = C,,, is obtained in a similar way, the graphs consisting
of a single connected part containing exactly one closed path (cycle) and with
all points and lines labeled. The essential enumeration is of such graphs with
cycle length £k, and with all points (and no lines) labeled.

These graphs may be enumerated by use of a theorem due to Pélya ([3],
Chapter 6) since they may be regarded as formed by placing rooted trees at the
vertices of the k-sided polygon formed by the cycle. Their enumerator by number
of points and number of point labels may be written di(z, y) =
> nm Gum(k)z™y™/m! and by [3], problem 25 of Chapter 6,

(16) dk(x7 Z/) = Dk(f’(.’li, y)) r(xz)’ Tt r(xk))
with 7 (z, y) the enumerator of rooted trees by number of points and number of
‘point labels, 7 (z) = 7 (z,0) and Di(t; , &2, - - - &) the cycle index of the dihedral
group:
2Dk(tl’ t2: o 7tk) = Z (tlytZ: tt 7tk) + tltg’ k= 2j+ 1
=Zi (i, te, oo, ) + Seti ', k=2

and

Z‘n(tlyt?’ M ;tn) = %E‘P(d)tgld

din
Se = 8oty 1) = (6 + 8)/2.

(¢(d) is Euler’s totient function, the number of integers less than d and relatively
prime to d, (1) = 1, and the sum for Z, , the cycle index of the cyclic group,
is over all divisors of %, including 1 and n).

Making the substitution ¥ = z/z in the definition of d(z, y) changes it to the
form di(z, 2) = dw(2) + z du(z) + --- with di;(2) = Y dupin(k) 2*/nl.
Hence the numbers required, d,.(k), are enumerated by dro(2) which is obtained
from (16) as

(17) dn(z) = 3(2)/2,  dw(z) = ri(2)/2k, E> 2
with
To(Z) = 20 Tan Zn/n! = z n”_l zn/n!
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Noting that 7o(2) = z exp ro(z) the Lagrange formula
sd n
) = 10 + 5 5[ £ r @) |

with u = 2p(u), gives dio(2) With u = r0(2), o(u) = ¢* and f(u) = u* as
dko(Z) = Zl[(n)k n”"’-l/2] z"/n!, k>2

dn(z) = 22 (n)an"" 2"/nl

and Tun1 = 1! D iz daa(k) is obtained as in (10).
At the other extreme, it may be noted that

Tn myn—1 = (g)

m n m n
Tammn—s = (3" — 3) (3) + 3(2" —2) <4)
Tn,m.n—s = (41" - 4.3m -_ 3.2m + 12) (Z)

+10(6™ — 3™ — 32™ + 5) (g)

+ 15(3™ — 32" + 3) (’;)

5. Average number of components. The average number of components can
be computed directly by (3); let M, be the average with n points and m lines,

and Apm = ManN™ N = (;‘) Then if An(y) = 3 Aum y™/m!, the relation

9 z"
™ T(CII, Y, 2) ll=1 = Z A"(y) nl

follows. Differentiating in (3), leads to (8/02)T(z, ¥, 2) |s=1 = C(z,y) T(z, y, 1),
whence

(22)  A4a(y) = (C(y) + T(y))", C™(y) = Ca(y), T"(y) = Tauly, 1).
Recalling that Ta(y, 1) = T» = exp (yN) and that by (21) C,(y) is expressible

in terms of T; to T, equation (22) leads to an explicit expression for 4,(y),
namely

(23) Aa(y) = Ya(bTy, ---, bT,), b* = b,

withb, = 1, b = (—=1)* (k — 2)!, k > 1 and T, as above.

While complete, this has the disadvantage of increasing elaboration with n.
The following alternative development is more easily adapted to asymptotic
approximation.
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Let 81, Sz, - -+, S. denote respectively the number of components which are
single points, isolated connected pairs, isolated connected trios, etc. Then
Mum = E(81) + E(S;) + --- + E(S,). Now let

Si=x1+ 224 - + 20
S =z + 25+ -+ + Toam

SJ‘ = Z12...5 + MR + Tn—jtl,n—j+2,+ ¢ ,n—1,n

Sn = Z12...n

where z; is 1 or 0 according as point 1 is isolated or not, z;2 is 1 or 0 according
as points 1 and 2 are connected and isolated, or not, etc.; then

E(8)) = nE(xz;) = np:
B(%) = () BGew) = () s

E(S;) = <1;) E(zp...;) = (?) Pr2...i

where pje...; is the probability that points 1, 2, - - - , 7 are connected and isolated.
Then M.n = npy + (g)pm + ... <3)pu...,~ + e 4 <:)p12...,.; to estimate

the quantity M., it is necessary only to estimate the probabilities above. To
illustrate one approximation which seems quite simple, suppose the approxima-
tion is on M, as a function of n; first, the p’s can be estimated as follows:

(n 2 1) " _ [(n - 1)(n — 2)]"

= —@ nin — 1)

= [n ; 2] ~¢? and E(8) ~ ne?,

which is exact, except for the asymptotic approximation in the last step. Next,
P12 can be estimated by the following argument; for points 1 and 2 to be con-
nected and isolated, they must be joined either by a single line (forming a tree
with two labeled points), or by two lines (forming a graph with a single cycle),
or by three or more lines. Thus

pu = [n'.r,,l,l (” 5 2)"‘1 + (g) - (n - 2)»—2
+ (g) Toss (n " 2)"-3 . ] / (g>,,
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Using (9) and (10), and noting that all except the first term result in terms
0(1) and smaller, E(S:) = ne™* 4 0(1). This argument can be continued, and
results, in effect, in neglecting all terms which result from counting connections
of a jtuple by more than j — 1 lines; the typical approximation would be

n n — F\"
. Tj j—1,1 ( )
T 2
sy = (2 )2 |
( .7) J — 1 n n
2

for 7 small in comparison with n this can be further approximated by

21'—1 +j—3

—2j
G-n1"

Fmally, only those E(8S;) need be used that are of significant size; i.e., for n <
40, ne™* < 1; to simplify, it is sufficient to take only those terms Whlch are greater
than 1 and estlmate the total contribution of all other terms by 1 (which, in
effect, says that the average is most heavily contributed to by one large com-
ponent and isolated points 1f n < é, and by one large component plus isolated
points plus isolated pairs if e <n < ¢, etc.) Thus, reasonable approximations

are

E(8;) =

M., = 1+ n/e, n < ¢,
M., = 1+ n/é + n/é', e <n<eé
Mu = 1+ n/é + n/e* + 2n/é’, e <n < ¢, ete.

The following table indicates these approximations may be satisfactory, at least
for n of moderate size (using M,, = 1 + n/é’, values given to 3 places):

M., = Mean Number of Components

n Exact Approx. Diff. Rel. Error

3 1.111 1.406 .295 .265

4 1.282 1.541 .259 .202

5 1.462 1.677 .215 .147

6 1.642 1.812 .170 .103

7 1.819 1.947 .128 .071

8 1.993 2.083 .090 .045

9 2.166 2.218 .052 .024
10 2.336 2.353 .017 .007
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