OPTIMUM INVARIANT TESTS!

By E. L. LEaMANN

Unaversity of California, Berkeley

Summary. The standard (likelihood ratio) test of the general linear hypothesis
has been shown to possess numerous different optimum properties. A brief
survey of these was included in a recent paper by Kiefer [2]. In the present
note it is shown that all of these, and in fact a wide class of optimum properties
of which the above are special cases, are consequences of the fact that the test
is uniformly most powerful invariant.

1. Order relations among tests. Let X be a random variable with possible
distributions ® = {Ps, 6 ¢ @} and consider the hypothesis H: 6 ¢ w where w is a
subset of Q. Suppose thdt the problem of testing H against the alternatives
K: 0 ¢ Q — wremains invariant under a group G of transformations of the sample
space. Let 3 be a class of tests ¢ of H, for example the class of all level « tests or
of all unbiased level « tests, which is invariant under G in the sense that ¢ €3
implies ¢g ¢ 3 for all g £ G. Here ¢g denotes the critical function defined by

eg(z) = o(gz).

Suppose that a relation < has been defined among the tests of 3 such that
every pair ¢, ¢’ ¢ 3 satisfies either ¢ < ¢’ or ¢’ < ¢. When both of these relations
hold, we write ¢ = ¢’. Let the (weak) ordering < satisfy the following conditions:

(i) If ¢ is uniformly at least as powerful as ¢, then ¢ < ¢'.

(ii) If ¢y, v € T is any family of tests belonging to 3 and » any probability
measure over the label space T, then ¢ < ¢, for ally & T implies ¢ X [o, dv(y).

(iii) If oo X ¢n for n = 1,2, --- and if ¢ is a critical function such that
the power-functions 8,,(0) — 8,(8) for all § £ @ as n — «, then ¢y X ¢.

(iv) If ¢ X ¢’ then og <X ¢'g forall g £ G.

A test @o £ 3 will be called optimum within 3 according to this ordering if ¢ < ¢o
for all ¢ € 3.

The following are some examples of such orderings, which have been con-
sidered in the literature. Throughout, 8, denotes the power function of ¢.

Ezxample 1. Let a(8) = 0 and b(8) be functions which are invariant under the
transformations G induced by G in the parameter space, and let ¢ < ¢’ if

inf [a(0)8,(6) + ()] < inf [a(6)8(6) + B(6)L.

Then conditions (i) to (iv) are clearly satisfied. A particular case is obtained
by putting 5(8) = 0;a(8) = 1if § ¢ o and a(6) = 0 otherwise, where ' is
Received September 15, 1958.
1 This paper was prepared with the partial support of the Office of Naval Research
(Nonr-222-43). This paper in whole or in part may be reproduced for any purpose of the
United States Government. ‘

881

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. IMKOJN ®

WWW.jstor.org



882 E. L. LEHMANN

an invariant subset of @ — w. Then ¢ < ¢’ if

inlf Be(8) = in,f B (0).

A test is optimum according to this ordering if it maximizes the minimum power
over '

Example 2. Let the tests be ordered according to —s(¢) where s(¢) is the
stringency of ¢ defined by

s(p) = sup [8*(8) — B.(6)]

with 8* denoting the envelope power function. Then ¢ < ¢’ if s(¢) = s(¢’) and
the four conditions are again easily verified.

fJxample 3. Let ' be an invariant subset of @ — « and suppose that there
exists a probability distribution X over ' which is invariant under the group G
induced by @ in the parameters face. Then the relation ¢ < ¢’ if

fw, Bo(0)dN(6) = f B, (6) AN(0)

also satisfies conditions (i) to (iv).

FExample 4. Suppose that § = (6, ---, 6,) and that w consists of the single
point 6° = (67, ---, 67). We shall assume that the power function B,(8) of
any test ¢ possesses continuous second derivatives 9°8/96.6; for all ¢ and j at
6°. Let 3 be the class of all level « tests that are strictly unbiased in the neighbor-
hood of 6° and let A(¢) denote the Gaussian curvature of the nower surface
at 6°, which is given by the determinant of the positive definite matrix
(8°8/36,00;) | . The relation ¢ < ¢ if A(p) < A(¢') clearly satisfies (i) and
(iii). It follows from a remark of Isaacson [1] that the relation is invariant pro-
vided the transformations § of the parameter space possess continuous second
partial derivatives at 6°, which (under this restriction) verifies (iv). Condition
(i1), finally, is easily verified. Optimum tests according to the present ordering
correspond to the type D tests of Isaacson.

2. Consequences of the Hunt-Stein theorem. Under the assumptions of the
preceding section we shall now show that if G satisfies the conditions of the
Hunt-Stein theorem (cf. [3], p. 336) and if there exists test ¥, which is optimum
according to the ordering <, then there exists an almost invariant test which is
optimum. Here we require of 3 that it be closed under convex combinations and
under weak limits.

The proof is completely analogous to and essentially follows from that of the
Hunt-Stein theorem, and can be indicated very briefly. If », is the sequence of
al'nost invariant probability measures over @ postulated in the theorem, con-
sider the sequence of tests

to = [bog dlg)
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Let ¢ be the weak limit of a subsequence ¢,; . Then it is shown in the proof of
the Hunt-Stein theorem that ¢ is almost invariant, and it remains only to show
that ¢ is optimum. By conditions (iv) and (ii) it follows for any ¢ &3 that
¢ X ¥n for all n. Hence by condition (iii) also ¢ < ¢ for all ¢ £ J as was to be
proved.

Under the above assumptions, whenever there exists a UMP almost invariant
test, this will be optimum with respect to any ordering < satisfying conditions
(i)=(iv). This explains the great varietv of optimum properties possessed by
certain tests and makes it unnecessary to prove each of them separately.

3. Applications. Consider a sequence of n independent trials and let X, = 1
or 0 as the ¢th trial is or is not successful. Let P(X; = 1) = p, and consider
the hypothesis H: p; = --- = p, = } against the alternatives

p.>%(z=l,,n)

The problem is invariant under any permutation of the variables and the sign
test, which rejects when Y X; > C, is uniformly most powerful almost invariant
(ef. [3], p- 219). This test therefore maximizes the minimum power over the
alternatives w’: minp; = 3 + Aorw: maxp; = 3 + A for any A > 0; it is
most stringent and of type D.

As a second application, consider the general univariate linear hypothesis in
the canonical form according to which the variables X;, --- , X, ; Yy, ---, ¥, ;
Zy, -+, Zny are independently normally distributed with common variance o’
and means E(X,;) = &, E(Y;) = n;, E(Z:) = 0. The hypothesis to be tested
isH: & = -+ = & = 0. This problem remains invariant under the three groups

G1: Y; = Yj+6j(—°° <eci < °°),X:=‘X,,Z;=Zk
(,: Orthognnal transformations of X, ---, X, ; Y; =Y, Zc = Zs.
Gs: Xi = aX;;Y; = aY¥;; Zi = aZ, (a % 0).

The standard test has the following two basic optimum properties:

(a) It is uniformly most powerful among level « tests which are almost in
variant with respect to G, G, Gs .

(b) It is uniformly most powerful among all unbiased (or similar) level a
tests which are almost invariant with respect to G- .

The first of these is well known; the second is easily shown by a standard
argument.

Since the groups G, — G satisfy the conditions of the Hunt-Stein theorem, it
follows from (a), for example that the standard test is most stringent and that
it maximizes the minimum power against the class of alternatives

W' /e = A
To apply (b), consider fixed values of #,, ---, 7, and o, so that the power be-

comes a function only of & , -+ - , & . It then follows that for any #;, - -- , 5. and
o the standard test maximizes (among all unbiased level « tests), for example
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the minimum power over the sets '(m1, - ++ , 1s, ¢): 2 £ = A and the average
power over the spheres Y & = A. This was first proved by Wald [4]. It follows
further that the test maximizes the Gaussian curvature of the power surface,
considered for fixed u;, - - - , 95, o as a function of the £’s, and hence is of Isaac-
son’s type E. This has been shown previously by Kiefer [2], who deduced it as a

consequence of the test maximizing the average power over the spheres
2 E=A
REFERENCES

[1] StaniLEY L. IsaacsoN, ““On the theory of unbiased tests of simple statistical hypotheses
specifying the values of two or more parameters,’”’” Ann. Math. Stat., Vol. 22
(1951), pp. 217-234.

[2] Jack KierFER, “On the nonrandomized optimality and randomized nonoptimality of
symmetrical designs,” Ann. Math. Stat., Vol. 29 (1958), pp. 675-699.

[3] E. L. LEaMANN, Testing Statistical Hypotheses, New York, John Wiley and Sons, 1959.

[4] ABrRaAHAM WALD, “On the power function of the analysis of variance test,”” Ann. Math.
Stat., Vol. 13 (1942), pp. 434-439.



