SOME TESTS FOR CATEGORICAL DATA

By V. P. Buarkar!

University of North Carolina and University of Poona

1. Introduction and summary. We shall be concerned with experimental data
given in the form of frequencies in cells determined by a multiway cross-classifi-
cation, with predefined categories along each way of classification. Roy and
Bhapkar [10] have posed hypotheses, which might be considered generalizations
appropriate to this set up of the usual hypotheses in classical “normal” uni-
variate “fixed effects’” analysis of variance, ‘“normal” multivariate ‘“‘fixed effects”’
analysis of variance and analysis of various kinds of ‘“normal” independence.
Large sample tests for such hypotheses are offered here.

The large sample tests suggested are based on the x*-test of Karl Pearson [8].
The general probability model is that of a product of several multinomial dis-
tributions. According as the marginal frequencies along any dimension are held
fixed or left free, that dimension is said to be associated with a “factor’ or a
“response” (or variable). The probability model is

!
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where Zi Di; = Poj = 1 and Z.- Ni; = N,; is held fixed. Thus 7 refers to cate-
gories of the response while j refers to categories of the factor. n,; denotes the
preassigned sample-size for the jth factor-category, out of which n;; happen to
lie in the 7th response-category. It should be noticed that 7 may be a multiple
subscript, say ¢, %2, *--, % ; J also may be a multiple subscript, say ji, jo

-, ji- We then speak of a k-response (or k-variate) and [-factor problem
According as a set of real numbers is or is not associated with the categories
along any way of classification (factor or response), that way of classification
will be said to be structured or unstructured.

It is well-known (for example, Neyman [6]) that if a hypothesis H, is given
in the form of certain constraints on the p;;’s, then a large sample test statistic
of H, under (1) for the model is a x* statistic given by

2ot (Mi; — noipis)*/ (Moipis),
or a x] statistic given by D :; (nij — Mopi;)’/ni;, Where the p;’s form any set
of BAN estimates [6]. In the particular case when the constraints are linear in
p’s, the method of minimum x} permits a reduction of the problem to the solu-

tion of a system of linear equations and hence is more convenient.
Reiersgl [9] considers binomial experiments and makes use of results of Ney-

Received August 24, 1959; revised April 1, 1960.

1 This research was supported partly by the Office of Naval Research under Contract No.
Nonr-855(06) and partly by the Air Force Office of Scientific Research under Contract No.
AF 49(638)-213.

72

[Z8 (€
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

=

The Annals of Mathematical Statistics. RIKGIS ®

www.jstor.org



TESTS FOR CATEGORICAL DATA 73

man [6] to determine tests for hypotheses appropriate to factorial experiments.
Mitra [5] not only generalizes Reiersgl’s theorems to multinomial experiments,
but also avoids his restriction that the parameter-sets in the different linear
forms occurring in the hypothesis be nonoverlapping. We shall prove theorems
to cover the cases that cannot be treated by these theorems.

In Section 2, the x} statistic based on the minimum x} estimates is obtained
to test linear hypotheses. It is further shown that, when H, specifies linear func-
tions of the p’s as known linear functions of some unknown parameters, the x1
statistic, based on the minimum x} estimates, is exactly the same as the minimum
sum of squares of residuals obtained by a certain general least squares technique
to estimate the unknown parameters. This is then applied to derive test criteria
appropriate to various hypotheses proposed in [3] and [10].

2. On testing linear hypotheses. In the notation of (1), let p:; be nonzero for
all (7, 7). Since the event {n;; > 0, all 7, j} has probability approaching one under
this hypothesis, we may for asymptotic purposes assume that all the n,;’s are
nonzero. Consider a hypothesis H, defined by m linearly independent constraints
on the p;;’s (independent of D i_; pi;; = 1), say,

r

(2) HoFu(p) = 2 2 fupis +he=0,  t=1--,m,
i=1 j=
where f;;; and h, are known constants such that the above equations, together
with D i1 p:; = 1, have at least one set of solutions {p,;} for which the p;,’s
are positive.

Let

Qi = MiifMej, by = Difustis,  be = 2bu,

ce="bi+h, ew;= 2 (fui — bes)(frs; — bei)gs,

Gy = 2o ewi/Moj, ¢ =(c,c, ", Cm)

and G = (gu’).
We notice that b;; is in the nature of a “sample mean” of “F,” for the jth sample,
while e;,; is in the nature of a sample covariance of “F,”” and “F,’ for the jth
sample. Since the F,’s are linearly independent, it follows that G is positive-

definite.
THEOREM 1.

(3) Min x] =c¢'Gc.
subject to Ho
Proor: To minimize x} subject to the constraints we introduce Lagrangian
multipliers, A; and g, , and write

f=;nof2(—u’i—2;»(Zpﬁ—1>—2;um(p>.

T Qi T
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Differentiating with respect to p.; and equating this to zero, we get the mini-
mizing equations

[y

(pij — gis) p=Loeen
nO,T A mem‘—o’ j=1,--,s

Multiplying by ¢.; and summing over 7, we get
- Zt pibe; = 0.
Eliminating the \’s we get
i = s [1 + Zt Ft(ftij - btj):l’

Mo

where the u’s are to be determined from (2). Hence,
1
20 20 fuii i [1 + ;{-; po(foi — b,:j)] +h=0t=1--,m
% J 05
These may be written as Gu + ¢ = 0, where ' = (u1, u2, - -+, um). Hence

= -G
Then

. 1 :
min X% = ZJ: Noj Z Qij {n— ; Mt(fuj - btj)} ,

=Z ZZ#:IH' €'y s
Noj

= v'Gy,
= c¢'Glc.
ReMARK: By Neyman’s theorem, (Lemma 12, page 268 in [6)) if H, is true,
(3) is distributed in the limit as x* with m d.f.
The form of (3) suggests that it may be the same as the statistic we would
obtain if we test the hypothesis (2) by considering the b,’s, the natural unbiased
estimates of D_: D ;fuipij, and using asymptotic normality. We have b, =

202 i fuigii, 50 that 8(be) = 205 22 fups; = —hi if H, is true, and
(1 — pi i D
COV(bt, bt’) = Z thu fl’u a J( n P’ J) Z Z fm foerj p_——;zp 4

05 7 i 0j
- ; ZJ%J_P: - 2 = (Z Fuis p,,> (Z fris pif),
7 0] 0] T [

= ¢y , Say.

Hence, in the limit, when H, is true, ¢ is asymptotically N (0, ®), so that ¢’® 'c
is asymptotically distributed as x* with md.f. If we replace p;; in ® by g¢.; we
get G. Hence G may be considered as an estimate of ®. Thus we have proved
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TaEOREM 2: The minimum xi method to test the linear hypothesis (2) is exactly
equivalent to the “large sample test”’ based on the asymptotic normality of the un-
biased esttmates of F.(p), whose variance-covariance matrixz is estimated by the
“sample variance-covariance matrix’.

Invariance. We then expect the xi statistic to be invariant under the choice of
linearly independent constraints (on the p;;’s) defining the same hypothesis
(2). This can be easily proved.

2.1 Structured response. Sometimes a linear hypothesis is defined by linear
functions of unknown parameters. Theoretically, of course, this can be reduced
to the case, already considered, when the hypothesis is defined by linear con-
straints on the p’s. But, in many cases, this equivalent expression in terms of
linearly independent constraints on the p’s may be tedious to work out. We prove
a theorem, which might be considered as another version of Theorems 1 and 2,
which reduces the problem to that of least squares.

TueOREM 3. Let a linear hypothests be defined by

(4) H,: Zf a;pi; = dj101 + d,~202 + -+ d:itot, j =1--,s

where the d’s are known constants and the 6’s are unknown parameters. Then
the minimum x3 to test H, is the same as the minimum sum of squares of re-
siduals obtained by the general least squares technique on Ei a.q;; , with the
variances estimated by “sample-variances”. Moreover, the min xj is asymptoti-
cally x* with s — w d.f., where w = Rank (dj).

INDICATION OF THE PROOF. It can be easily shown that H, is equivalent to

Eiz;’lug‘aipi;":o, v=12 ---,s—u

where LD = Oand Lis of rank (s — u); D = (dy) and L = (1,;).
Let

aj= 20, B = 2@ — )i, N = Bi/nes,
A = diagonal (\r, -+-,A) and & = (a1, - -, a).
Then by Theorem 1,
(5) Min xi = ¢’L’(LAL')'Le.
On the other hand, the «;’s are independent with variances
[22: alpis — { 2 aipfi}2]/ Noj
so that the “sample variances” are \;,j = 1, 2, ---, s. If we use the least

squares technique on the a;’s (using the A\;’s for “variance’), then the sum of
squares to be minimized with respect to the parameters is

S = Z:i (aj — djby — -+ — djtet)2/)\j.

Min S? then, can be shown to be (5). The last statement in the theorem follows
immediately from the remark on Theorem 1.
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2.2 Applications of Theorem 3 to univariate linear hypotheses. In what follows,

“4” denotes a structured response. We discuss some simple cases chosen from
those considered in [3, 10].

(1) One dimensional design (*5” — “Treatment”) Hypothesis of no treatment
effects.

H,: Y a.p:; is independent of j.

i ,Z; (Mojei/B;) — [;nojaf/ﬂj]z/<;noj/ﬂj),

df. =s — 1,

=
9
Il

where
a; = D2iaiqi; and B = D (ai — a;)’qi;.
(ii) Two-dimensional design (‘5> — “Treatment’)
(“k” — “Block”).

(a) Hypothests of no treatment effects on the basic model.
H,: Zz‘ apije = b,

Note that the design may be incomplete, i.e., all combinations (7, k) may not
oceur,

t 2
xi=2_ 2 g b — ZI[Z hi ajk} /Z_ i, df.=M — ¢
J J J

k=

where
air = D @ik Bir = i (ai — i) qin
and
hix = moin/Bix

the summation is over allowable (7, k) combinations and M is the number of
(J, k) combinations. When the design is complete, M = st, so that d.f. = (s — 1)t.
(b) Hypothesis of no interaction (in the additive set up).

H,: D>, @GP = b + b .
8 t
(6) xi= 2 ;aikhjk - Zletj - kZlBi/hok, df. =M — (s + 1t — 1),
J = =

where the ¢’s satisfy

() Q; = ;ij’tj' y j=1,--- s,
j=
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and
Be= 2 auhi, Ti= 2kamhp,
hoe = 2oihi,  hjo= 2iha,
Qi =T, — 2uBha/ha, i =hjo — 2 hi/hok
and

ciit = — Dok highyn/hok .

Here M is, as before, the number of (j, k) combinations and the summations
are over allowable combinations only.

It may be noted that (6) and (7) are similar to the “error sum of squares”
and the “normal equations”, respectively, in analysis of variance, T; and By
playing the roles of a “treatment total” and a ‘“block total”’, respectively. The
fundamental difference, however, is that the c;;’s here depend not only on the
design but also on the observed proportions. In normal ANOVA, the designs
can be chosen suitably so that the normal equations have neat closed solutions.
This approach fails here for the corresponding equations (7). For example,
even for a complete design (which may be called a ‘“randomized block design”,
there is no essential simplification in the equations (7). (The degrees of freedom
for xi in that case are = (s — 1)(t — 1).)

(¢) Hypothests of no treatment effects on the no interaction model.

Xf = zl:QitJ') df. = s — 1)
=

where the @’s and the #’s are defined as before.
(d) Hypothesis of linearity of regression on treatment levels (independent of
blocks).

H,: Zi apiz = N+ wb;.
X3 = 2 Dok adhiy — [G1 — 2Gym +v*hl/ (W — m?), df. = M — 2,

where

=22 hix, m= 2 bihj,

J k =1

8 3 12
1= 2 bihjo, G=2Ti= 2 B

J=1 j=1 k=1

and
vy = 2 bT;.
Jj=1

(Other quantities are defined as before.)
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(e) Hypothesis of linearity of regression on treatment levels (the regression co-

efficient being independent of blocks).
H, :Zaipijk = N + pb;.

xi=;;aﬁkhfk—i<%>—[v—i%mk]Z/[Z—

k=1

(

where m; = ;b shix . (Other quantities are defined as before.)

(f) Hypothesis of linearity of regression on treatment levels.

H[) :Zaipijk = N\ —l—,ukbj.
t B2 k B 2
Xi= 2.2 aihy— 2 (—k) -2 [(w - mk) /(lk
7% =1 \Jok =1 Pok

where

Ye = Z:ajkhjkbj and [, = Zb?h]k
J J

(Other quantities are defined as before.)
(iii) Two-dimensional design (“j”’ — factor)

(“k” — another factor).
Hypothesis of linearity of regression on the factor-levels.
Ho: 22 apie = N+ ub; + ve.
Xi = Z ;a?khjk — NG — fy — 5,
J
where \, 2 and 7 satisfy the equations
G =\ + im + Sw
vy = hm 4 gl + bz
8 = \w + fz + by,

where

12 t
6= Z Cchk ) w = Z ckhok )
k=1 k=1

¢
xr = Z Z bickhir  and Yy = Z Cl2chok .
i k=1

J k

(Other quantities are defined as before.)

)

df.

hok

df.

2
my
hok

)

df. =M —t —1,

M — 2,

M — 3,
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2.3. Application of 2.1 to multivariate linear hypotheses. Let us consider, as a
further illustration, a bivariate randomized block experiment. If the two re-
sponses are structured, a;, and bs, being the weights associated with the respec-
tive categories, the hypothesis of no treatment effects takes the form

H,: Z a:Piy0in 18 independent of k

ll—

Z bi,Doiy & 1 independent of k,
19=1
where j and k denote the block and treatment respectively; o in the place of a
subscript denotes a summation over that subscript.
It can be easily seen that this hypothesis, or, more generally such hypotheses
for p structured variables can be expressed in the form

Z thn** *iPijo---05 + h(l) =

’Ll—

(8) H,:
Z th** *zpjpo c0ip] {" h<p) = t = 1, 2’ s, m,

ip=1 J
where the linear functions are linearly independent. We can write these as

”C=1)27'”;p

Z,‘ ijt**'n*ik**v--*jpij + hik) = 0, it

= 1; 2) T, m,

so that, (8) is a particular case of (2). Hence

2 -—

xi =c'G¢, df. = pm,
where

[¢)] (1) (2) (2) (p)

cl)(mp_(c : C;n,C1,"‘,Cm, *Cm ),
rellc...aqlr
G = LG ¢ -G B ()
pmXpm — 5 - 1] mxm
plep2 pp
G"G™...G" |,
(kk ) (’c’c )
gier = = Z €t /no y
Tk
o (k") (k) (k")
€ie’j L Z ft" SHgpxe *]ft *ookig*en %5 oo 0ipoe0ig 000, b b, i
tp=1 ipr=1
(k)
Z Jereorir s Qorvviyorrioj
=1

and

= h + 2258

2.4 Unstructured Response‘ In Theorem 1, we considered the test criterion
appropriate to a linear hypothesis. Its equivalence to a certain least squares tech-
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nique for linear hypotheses in structured cases was established in Theorem 3.
We shall prove a similar equivalence for linear hypotheses in unstructured cases
in Theorem 4.

TaEOREM 4. Let a linear hypothesis be defined by

(9) Hypij = dpnba + djgbs + - - - +djebie, 1=1,2--- 7
j= 1;2: s, S,

where the d’s are known constants and the 6’s are unknown parameters. Then

the minimum x} to test H, is the same as the minimum “generalized sum of

squares” of residuals obtained by a ‘“‘generalized least squares technique” on

g¢:i , with the covariance matrix estimated by the ‘“sample covariance matrix”’.

Moreover, the min xi is asymptotically x* with (r — 1) (s — u) d.f., where

u = Rank (djk).

INpIcATION OF THE PrOOF. It can be easily shown that H, is equivalent to
ilvjpij= 0, i=12 ---,r—1=7 (say)

=1 v=12 .--,8 — u,

where LD = 0 and L is of rank (s — u); D = (di) and L = (1,;).

Let

q’ = (911;!121, ey s Qs "':qr’s):

L*=LX1=<ZIIIT”"llaIr’ >
Lewi L o luo I/,
Yo = 8iir @i — Qi @i 8ij = 0if 3 7 j
=1if7i =,
YJ'=(?/1"1")
and
na ¥y 0 -+ 0
Y=| 0 n3gY- 0
0 0 ---n3Y,|

Then, from (3),
(10) xi = ¢'L¥[L*YL* 'L,

This has already been obtained by Mitra [5] in a slightly different form.
On the other hand, if we consider the asymptotically normal variables g;;’s,
then

cov (q;) = Y;/n.;,
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where
G = (@i, 5 gros)-
Let
§ = 2inei(@; — dab — - — did)'YVi(q; — dnby — -0 — d;dy),
where

0 = (O, Oy + oy Orok).

S* may be called the “generalized sum of squares” of residuals and it is to be
minimized with respect to 8’s. Min S, then can be shown to be (10).

The last statement in the theorem follows immediately from the remark on
Theorem 1.

A possible application of Theorem 4, is, for example, to test the hypothesis of
no interaction in the additive set up, given by

j=1’2’--.’8
k=1,2,"-,t,

where j and k refer to a “treatment” and a ‘“block’ respectively. We shall not
consider the details of the computation. It is easy to verify that the d.f. will be
(r—=1) (M — s — t + 1), where M is the possible number of combinations
(4, k), and which reduces to (r — 1)(s — 1)(¢ — 1) for a complete design. More-
over, to test the hypothesis of no treatment effects, given by

Hopip = ba + tis,

H.:pijr = ba,

on the above model of no interaction, the test-statistic would be

(nﬁk — M)z
Z Mook 2 d'f. = (7' - 1)(8 - 1)’

— X1,
4k Mojk Miok

Mook

where x} is the statistic appropriate for the hypothesis of no interaction. The
first part of the expression has been given already by Roy and Mitra [12] as the
appropriate statistic to test the hypothesis of no treatment effects on the basic
model.

3. On the test of nonlinear hypotheses. In such cases Neyman’s technique of
linearization [6] may be adopted, so that the problem is reduced to one of the
previous cases. On the other hand, it may happen in some cases that the maxi-
mum likelihood equations are fairly simple so that the 5’ statistic, based on the
maximum likelihood estimates, may be used.

3.1 Minimum xi by “linearization”. If the hypothesis is defined by F,(p) = 0,
t =1,2, .-, m, where the F’s satisfy the regularity conditions (see page 254
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in [6]), the linearization gives

F:(q,p) EFt((l)'I‘ZZ':agt(p ] (pi; — ¢i3) =0, t=1,2,---,m.
i Dij Jdp=q
Let ’
(aFt(P)) = fu;
0Di; /o= N
and

he = Fi(Q) — 205 205 fuidii -
Then, from (3),
xi = f'G7'f, df. = m,
where
f' = [Fi(q), -+, Fu(q)].

3.2 The hypothests of no interaction (multiplicative set-up) in the two-dimen-
stonal design.

t=1,2, .- ,r
Ho:piw = bijta s J=1L2 -5
k=12 --- ¢t

This may be tested by the linearization technique mentioned above. On the
other hand, in the case of a complete design, the maximum likelihood equations
appear to be fairly simple and may admit an iterative solution. It can be easily
shown that H, is equivalent to

i:l,c'-’r
(11) DijkDist = DiskPijt Jj=1--,s—1
k=1, ---,t— 1.

The maximum likelihood equations, subject to (11) and D_:p:x = 1, can be
obtained by differentiating

8 t
f= Zk Nije 108 Pije — 2;k . N[220 pane — 1]
Thjs — 4

i=

r 8—1 t—1

(12) — 2 2. 2 winllog i + log pisr — log puk — log pijil

i=1 ;=1 k=1
with respect to the p’s, where the N’s and u’s are Lagrangian multipliers. The
final equations are
(nije = maje) (Mg — Hico) — (Mg — #ojk)(nosc — Hhooo)
(Miak + piok) (Nije + wijo) (Mosk + Hook) (Tojt =+ tojo)
i=1,2-,1]j=12-,8s—landk =1, ,t—1,
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where
8—1

t—1 L
Mok = El Hijk Mijo = sz Mijk Mojk = Zlmjk ) ete.
i= = =

In particular, when r = s = ¢ = 2, we have just two equations (linear) and
these can be explicitly solved. In this special case, Bartlett [2] has posed another
hypothesis of no interaction, but the solution of the maximum likelihood equa-
tion comes out as a root of a certain cubic equation. Mitra [5] has shown that
it is the numerically smallest real root that gives the consistent solution. The
equations, in the present case, thus seem to be simpler. Roy and Kastenbaum
[11] have extended Bartlett’s hypothesis to more general cases where ¢”, ‘j”
and “k” are variables, and they get equations similar to (12).

4. Acknowledgment. I am indebted to Professor S. N. Roy for suggesting the
problem and for his constant encouragement and criticism. Thanks are also due
to the referee for suggestions that have improved the form of this paper.
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