SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF
THE KOLMOGOROV-SMIRNOV TYPE!
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0. Summary. I consider the calculation of the probability P, that the graph
of a sample distribution function lie wholly to one side of a given arbitrary
contour. A generating function approach is described in Section 2, and P, cal-
culated exactly for some simple types of contour. Upper and lower bounds of
the correct asymptotic form (relations (14), (15)) are obtained for P, in the
case of a straight line contour.

1. Introduction. Assume, as usual, that the observations are distributed
rectangularly in (0, 1), and so have distribution function

F(z) =z 0=z=1).
Let the sample consist of n ordered observations
OsmEx=s--=2z =1,

and let F,(z) denote the sample distribution function
1
F. n(x) = Z -

zi<z n )

My aim is to use the methods developed by Wald and Wolfowitz [7] and
Daniels [3], and previously applied by Birnbaum and Tingey [1], to obtain an
exact calculation of the probability P, = Pr[F.(z) = G(z); 0 < z £ 1] for
certain functions G(x).

2. General formulae. Suppose that the function G(x) is monotone non-de-
creasing. Then we can uniquely define a non-decreasing sequence of constants
a; by
1) a; = G7(j/n), G=12 )
and we can rewrite Pr{F,(z) = G(x)] as

P,=Pr(ziZ2Z o, 22200 " ,%n = an).

Following Wald and Wolfowitz [7], let us introduce the polynomials,
P O(x) = 17

Pio) = [ do [ dayeoe [ am, (Gz1)

aj aj_q
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500 P. WHITTLE

which are related to one another and to the probability P, by the equations,

(2) Pi(a) = [ Pia(u) du,
(3) P, = n! P,(1).
Since P;(x) is a polynomial in z of order j exactly, and
P;(x) = Pi—l(x)) (.7 =12- ")

the P;(x)’s constitute an Appell set of polynomials ([4] p. 235) and their formal
generating function,

@ 1(6) = 3 Py(2)¢,
is of the form
(5) T(6) = A(6)e”,

where A (0) is the formal generating function of the constant terms in the poly-
nomials. (“Formal” in the sense that we are concerned only with relations
between the first few terms in the expansions of A(6), 7'(8), and not in the
convergence of these expansions.)

A(0) (or at least its first n + 1 terms) can be regarded as being determined
(for a given G(z)) by the conditions that Py = 1 and that «; be the greatest
real zero of P;(z), (j = 1, 2 --- n). (Equation (2) shows that «; is a zero of
P;(z), and it must be the greatest zero, since P;(z) is intrinsically positive for
z> aj.)

It follows from equations (1), (2) and (3) that

(6) 1%‘ = coefficient of 6" in A(6)é’.

Rather than regarding A(68) as being determined by G(z), it may be simpler
to prescribe A (6), calculate the a;’s from the relation

Py(a;) =0, G=1,2n)

and so effectively determine G(z). This we proceed to do for some simple cases
in the next section.

3. Some special cases. If A(6) is of the form
A(8) = 20 A,
0
then «; will be the greatest root of the equation
min(j,m) Ak aj—k
(7 Pj(a) =

As a special case, consider

& G-

A(6) =1 — B6™ (m integral, B > 0).
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for which it follows from (6) and (7) that we shall have

(8  a=I[BG—-1G—-2) - G—m+ D" (G=12-mn),
9) P.=1-—an.

B and m are, of course, so chosen that o, = 1. In the figure we have taken co-

ordinates x, y = G(z), and the upper heavy contour is a curve drawn through
the points

r = aj,
Yy = G(ai) = J/ny

where «; is given by formula (8). The contour initially rises vertically (to the
point corresponding to j — 1) after which it rises convexly to the z-axis and is
quickly asymptotic to the straight line o; = BY™(j — 3(m — 1)). Seeing that
one expects the greatest deviations midway in the range « = [0, 1], it is reasonable

10

O |
o0 o5 o Re}

F1a. 1. The upper and lower curves are those described by equations {(8) and (10) respec-
tively, with the following numerical values of the parameters: n = 10; m = 4, B = 0.0%0651;
B8 = 0.3767, v = 3.723. It will be seen that both curves are quickly convergent to a com-
mon straight line, and that for both curves s = 1 — a0 = 0.1649. The probabilities, P , that
an empirical distribution curve should lie completely below the upper or the lower curve
are 0.5136 and 0.4192 respectively, by equations (9) and (11). The Kolmogorov proba-
bility for the region bounded by the straight line asymptote is 1 — e’ = 0.4195.
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to choose a function which is concave, and it is unfortunate that the present
calculations have led to a G(z) which is convex. However, we shall find a use for
formulae (8), (9) in the next section.

The scale constant B can be chosen according to several criteria. For instance,
we should obtain a fairly symmetric contour if we so chose B that

a, =1—m/(n+1).

Varying m, we should then obtain a nested sequence of contours, beginning at
m = 1 with a; = j/(n + 1) = E(z;). Note that formula (9) for the special
case m = 1 is to be found in the article by Daniels [3] and is also a special case
of Lemma 1 in a recent paper by Pyke [6].

Another elementary choice for A(8) is

A(0) = X R,
In this case a; will be the largest root of
2 Ri(a+ )7 = 0.
Thus, the particular case '
A(0) = (" — &) /(" — 1)

yields
(10) a; = B/(e" — 1),
(11) Po=[—(1+B8"/ (e —1).

Again, 8, v must be so chosen that @, < 1. Formula (10) leads to the lower
contour of the figure; which rises rapidly and concavely from zero and is soon
asymptotic to a straight line. By varying the constants 8 and y one can obtain
various families of nested contours whose shape would seem to be an improve-

ment on the straight line contour often adopted.

4. Bounds for the significance points of the Kolmogorov test. Suppose m and
B can be chosen in formula (8), and 8 and v in formula (10), such that in both
cases

(12) an=1—3,
(13) (0a;/05) jmn = 1/n,

where s is prescribed, and the derivative is defined by considering j as a con-
tinuous variable in the expressions given for ;. On account of the respective
convexity and concavity of the two curves, the contours (1) will respectively lie
completely above and completely below the line ¥y = 4 s in the square
0 < z,y < 1. The situation is presented in the figure. That is, the two values of
P, constitute respectively upper and lower bounds for the probability

Pr [max [Fa(x) — F(2)] = s] = 1 — Qa(s).
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We shall press this calculation somewhat further to obtain the following
THEOREM:
Qn(s) = Pr[max [F.(z) — F(x)] > s]

> (1 _ s)2nc+2 > (1 _ 8)26—27333—7133/(1—3) (0 <s< 1)

(15) Qn(s) < e—2na’+3.83n[l/(l—a)]' (0 <s< 0.31)'

(14)

These two inequalities together are obviously sufficient to prove the known
result that, for fixed ¢,
lim Q(¢/n}) = "',

However, our methods are not strong enough to prove the conjecture, made in
[2], that Q.(s) < ¢, For comparison, note should be made of the result,
proved in [5], that there exists a constant ¢, independent of s and n, such that
Qﬂ (8) < —2ns?

To prove (14), we take the «; sequence (8). If we use condition (12) to deter-
mine B, then we find that equations (13) and (9) amount, if m is integral, to

1 m
n—1 “'+n—m+1=n(1—s)’

(17) 1—P,=(1—29)"

(16)

By eliminating m from these two equations, we obtain an expression for 1 — P,
which constitutes a lower bound for the probability @.(s). If s is such that there
is indeed an integral m satisfying (16) then

1—s= m[n ’gl (n — Ic)_‘:l_l
- [Erer ]

J=0

< [i Wm Y k)’]_ —1— (m—1)/(2n),

or
m =< 2ns + 1.

If (16) cannot be satisfied by some integral m, then if we are to err on the con-
servative side we must increase s until such a solution can be found. However,
since this procedure will not increase m by as much as unity we shall have, under
all circumstances,

(18) m < 2ns + 2.
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Substituting (18) into (17) we obtain
1 — Pn > (1 _ S)Zna+2 — (1 _ s)2e2nslog(l—c)

from which (14) follows immediately.
To establish (15), we take the a; sequence (10). Solving for 8 from (12) and
substituting in (13), (11) we obtain

(19) 8= (¢ — (1 - 20))/(2),
(20) 1 — P, = [(1 + (2/9) sink® )" — 1)/(e™ — 1),

where ¢ = v/(2n). Eliminating ¢ from (19), (20) we shall obtain an expression
for 1 — P, which majorises Q,(s).
If two positive quantities ¢, d satisfy ¢/d < 1, then it is certainly true that
¢/d £ (¢ + 1)/(d + 1). We thus deduce from (20) that
1 — P, = (14 (2/¢) sinh’¢)"¢*"*

Let us restrict ourselves to the range

(21) 0<¢=<04.
Now,

sinh¢ =¢ + R
where

2
Ry = 3¢%"".

Thus

1+ (2/¢) sinh’¢ = 1 + 26 + Rs,
where
(22) R: < (2/¢)(2R:¢ + R}) < 0.6811¢°,

in view of (21). It also follows from (21), (22) that
0=2+4+ R, =1,
so that
log (1 + 2¢ + Rz) = (26 + Ro) — 3(2¢ + R)’ + R
=2 —2¢' + R,
where
|Ri| < 3126 + Ral’,
IR < |R(1 — 2¢) — 3R: + Ry
< R: + 3R: + |Ry|
< 3.83¢".
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Thus
(23) 1 — P, < "HH050,

Turning now to the relation between ¢ and s, we note that if the function of ¢
in the right-hand member of (19) is denoted f(¢), then f is monotone and

, o/(1 +¢) < f(4) < ¢
Thus

s ¢ =s/(1 —s).

Relation (15) now follows immediately from (23), (24). It is easily shown that
condition (21) ensures that 0 < s < 0.31.
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