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0. Summary. As has been noted by several authors, when a multivariate
normal distribution with correlation matrix {p;;} has a correlation structure of
the form p;; = a;a; (2 # 7), where —1 < a; < +1, its c.d.f. can be expressed as
a single integral having a product of univariate normal c.d.f.’s in the integrand.
The advantage of such a single integral representation is that it is easy to evalu-
ate numerically. In this paper it is noted that the n-variate normal c.d.f. with
correlation matrix {p;;} can always be written as a single integral in two ways,
with an n-variate normal c.d.f. in the integrand and the integration extending
over a doubly-infinite range, and with an (n — 1)-variate normal c.d.f. in the
integrand and the integration extending over a singly-infinite range. We shall
show that, for certain correlation structures, the multivariate normal c.d.f. in
the integrand factorizes into a product of lower-order normal c¢.d.f.’s. The results
may be useful in instances where these lower-order integrals are tabulated or
can be evaluated. One important special case is p;; = a; a;, previously men-
tioned. Another is p;; = vi/v; (¢ < j),where Jv;| < |y;| for7 < j. Some applica-
tions of these two special cases are given.

1. Introduction. Let Z,, Z,, --- , Z, be n standardized normal variates with
correlation coefficients p;;, and denote their joint frequency function by
flxi, 2, -+, x,). The c.d.f. (cumulative distribution function) is defined as

Fn(h,' N {pij}) = Prob {Z. < hi ,allz}
(1.1) B pha b
=[ f ...f f(xl’x2,...,xn)dxldx2...dxn.

00

Here and in the sequel, unless.otherwise stated, it is to be understood that the
suffixes ¢ and j range from 1 ton. We assume that the matrix {p,;} is non-singular
and, without any loss in generality, that no one group of variates is independent
of all the others. (If such a group existed, then the n-fold integral in (1.1) would
split into a product of lower order integrals and the dimension of the problem
could be reduced.)

The values of integrals of the form (1.1) are required in many applications.
Unfortunately, it has been tabulated only for n = 1 and 2, with the exception of
some very special cases, such as the tables computed by the National Bureau of
Standards (see Teichroew [19]) and by Gupta [7] for the case k; = h and pi;; = 1.
In fact, with in(n + 1) parameters involved in (1.1), a comprehensive tabulation
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572 R. N. CURNOW AND C. W. DUNNETT

hardly seems feasible for n > 2, although Steck [17] has provided some tables
which simplify its computation for n = 3. Hence the development of methods
for evaluating the multivariate normal integral in (1.1) would be highly desir-
able. (For one such method, see Plackett [14] and for a recent review of methods
for evaluating multivariate normal integrals, see Gupta [8].)

In certain special cases, the integral (1.1) can be reduced to a single integra-
tion. For example, suppose the correlation matrix {p;;} has the structure p;; =
a; a; (1 # ), where —1 < a; < +1. Then the variates Z; can be generated from

n + 1 independent standard normal variates X;, Xz, -+, Xa; Y as follows.
Let
(12) Zi= (1 — a)'Xi + ai¥.

Then the Z; are normally distributed with zero means, unit variances and corre-
lation coefficients p;; = a; a; . Since the X’s are-mutually independent,

Fulhss (o)) = [ Prob (X < (e — asy)/(1 = o)¥5all i} £(0) dy
(1.3) - L
= /__: [1I=11 F((hi — aiy)/(1 — af)*)]f(y) dy,

where f(t) = exp (—3t")/(2x)! and F(f) = [L.f(t)dt. This expression was
derived, in either this form or some special case of it, by Dunnett and Sobel [6],
Kendall [10], Ruben [15], Moran [11] and Stuart [18]. It has also been considered
by Thm [9]. Das [2] obtained a more general result by generating the n variates

Ziby Zi = (1 — e Bh)'X: + 20 BaY,, where Xi, Xa, -+, X
Y:,Y., -+, Y,aren + k independent standard normal variates. In this case,
pi; = D em1BisBjs (¢ # j) and therefore, for a correlation matrix having this
structure,
k
hi - Z Bia Ys

+o oo +o | =
" Fahss o) = [ [ [ TLF m

8=1

FCy)f(y2) - - - f(ye) dyrdys - - - Ay

Stuart [18] derived this result when B; is non-zero for only one s for each ¢ and
therefore F,(h: ; {pij}) is equal to the product of integrals of the form given on
the right-hand side of (1.3). Of course (1.3) is a special case of (1.4) in which
E=1.

The advantage of having a single integral representation like (1.3) is that it is
very easy to evaluate numerically by replacing the integral by a sum, such as
that given by Simpson’s Rule, or, when applicable, by a series employing the
roots of Hermite polynomials as described by Salzer et al [16]. In fact, (1.3) was
used in computing the tables for p;; = % previously referred to [19] and it was
also used by Dunnett and Lamm [5] in computing some tables for p;; = 3. The
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accuracy of such approximations has been studied by Moran [11], [12] and by
Das [2]. The usefulness of the more general result in (1.4) is likely to be limited
to small values of k.

In this paper, it will be shown that (1.3) can be generalized in another direc-
tion. The n-variate normal integral can always be written as a single integral with
the integrand containing another n-variate normal integral (see (2.3) below), or
an (n — 1)-variate normal integral (see (2.4) below). We shall show that, for
certain correlation structures {p;;}, the multivariate normal integral factorizes
into a product of lower-order normal integrals. The results may be useful in in-
stances where these lower-order integrals are tabulated or can be evaluated.
An important application, which falls out as a special case of our results, is the
structure p;; = v:/v; (¢ < j), where |yi| < |v,| for ¢ < j. In this case, the inte-
grand of the single-integral expression for (1.1) contains the product of a uni-
variate and an (n — 2)-variate normal integral. Since in this case it turns out
that the correlation structure of the (n — 2)-variate normal integral in the
integrand is of the same form as that of the original integral, this result can be
applied repeatedly until, finally, the n-dimensional integral is reduced to either
a in-dimensional integral (for » even) or a i(n — 1)-dimensional integral
(for » odd) involving only univariate normal integrals in the integrand. This
result should be useful in practice for small values of n. Some applications of the
two cases p;; = a;a; and p;; = ./, are given in the final section of the paper.

2. Generating the variates Z;, Z;, ---, Z.. To obtain our more general
results, we shall generate the variates Z; as in (1.2) but without restricting the
variates X; , - - - , X, to be uncorrelated. We consider

(2.1) X = (Z: — 8Y)/(1 — ),

where the Z; are as defined in (1.1) and where Y is a standard normal variate
with cov (Z;, Y) = 8;(—1 < 6; £ 1). Then X;, .-+, X, are normally dis-
tributed, independently of Y, with zero means, unit variances and

pi; — 8 §;
(1 — )i — &)’

We shall distinguish between two sets of results. In the first, §; = 1 for any 7 and,

in the second, 8; = 1 for some 7 = k and hence Y = Z; . These lead, respectively,

to a doubly-infinite and to a singly-infinite integral representation of (1.1).
Consider first §; 5% 1 for any 7. From (2.1) we can write

Fu(hi ; {pij}) = Prob {X; < (ki — &Y)/(1 — &3)*; allg}

and, since the X; are distributed independently of Y, we have

(2.2) cov (X;,X;) = = pij, say, (7).

(23)  Falhes foa) = [ FulChi = 5:)/(1 = 8% ouS(0) dy

where p;; is as defined in (2.2).
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Now suppose & = 1 for some k. Without any loss in generality, we shall take
8, = 1,s0 that ¥ = Z;, and §; = p.; . Then we obtain from (2.3) the well-known
result

hy
(24)  Fu(hi; {pi}) = f_w Faca((hi — pir 9)/(1 — pi)¥; {piza}) f(y) dy,
where p;jq = (pij — paps) /(1 — pi)t(1 — p?l)’ (4,7 # 1). Thisis equivalent to
removing a single variate out of the frequency function f(z; , 2, - -+ , Z»).

Any multivariate normal c¢.d.f. can be expressed in either of the forms (2.3)
and (2.4). As a special case of (2.4), we have the bivariate normal integral
h

1
@5)  Blhhse) = [ P — /(1= D) dy.
This expression was used by Dr. Evelyn Fix to extend K. Pearson’s tables of the
bivariate normal distribution (see [13]) ; it was also used by Dunnett [3] to com-
pute tables for the case p = 1/ 4/2. An alternative expression for this bivariate’
normal integral is given in (3.4) below.

In the following sections, we consider conditions for the multivariate normal
c.d.f. in the integrand of (2.3) or (2.4) to factorize into a product of lower-order

integrals.

3. The doubly-infinite integral representation. In this section, we consider
the doubly-infinite integral representation (2.3). If p;; = a; a; (¢ 5% j), then by
substituting 8; = a; we obtain p;; = 0 (¢  7) and the result (1.3) follows. More
generally, suppose we have the following correlation structure,

O M, - .
. . . + a’a,

{(3.1) {pis} = < | .
l. . os
o - -0 M

where M, 7 = 1,2, ---, k, is a covariance matrix of rank r; (Diare = n),

‘O denotes a null matrix and @ = (oy,00, * - * , ). Then by taking 8; = a;in (2.3),

the integrand- will factor into a product of k¥ multivariate normal c.df.’s of

order r,, 72, -+, i respectively. IThm [9] has also considered the correlation

matrix (3.1). The case p;; = a; a; (¢ # j) correspondstok = nandr = =
=7, =1.

With three exceptions to be mentioned later, (3.1) implies relationships
among the correlation coefficients of the type psp:e = pupss . If relationships of
this form exist, it may be possible to reduce the dimension of the distribution
function in the integrand of (2.3) by an appropriate choice of the ¢’s. This may
be particularly useful for small values of n. For example, take n = 4 and suppose
that pispes = pupss . Then values ay , e , s and as can be found such that py; =
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a0, prs = ouas, p23 = onas and py = apoy , and the structure of the correlation

matrix is
1 P12 ooz oy
p12 1 opo3 ooy

oo ool 1 P34
ajoy ooy pas 1

{pij} =

Then by taking §; = o; (¢ = 1, 2, 3, 4) in (2.3), the integrand will contain a
product of two bivariate distribution functions with correlation coefficients
P{2 and P;4

The three exceptions to the need for relationships among the correlation co-
efficients are as follows,

(a) k = 1, r = n. In this case, p;; = mi; + a;a; and by taking §; = o; in
(2.3) the n-variate normal c.d.f. with correlation matrix {p;;} is expressed as
an integral involving one with correlation matrix {m.;/(1 — a,) 1 - ,)*}

This is of little interest in general unless the latter distribution is one that has
already been studied. We mention, however, two special cases. When n = 1,
we have

400
(32) Fy = [ (= a)/(1 = ) f(y) dy
for any 6: —1 < 6 < 1. When n = 2, we have ‘

Fz(hi ;P)
— 7 B — 5 9/ — )% (o — 8.8)/(1 — )1 — )Hf(y) dy

—00

(3.3)

for any 8;: —1 < §; =< 1. The obvious choice for §; and 8, in (3.3) would satisfy
8.0 = p and we obtain the following representation for the bivariate normal

c.df,,

+0 2
(4) RO = [ [ILFG =50/ =) |10 do

This is (1.3) for the case n = 2.

(b) k= 2,7 =mn — 1,7, = 1. In this case, the n-variate c.d.f. in the integrand
of (2.3) factorizes into a product of an (n — 1)-variate and a univariate c.d.f.
This is always possible, since we can choose 8, &, - -+, 8, so that, for some
k, max; pi; < 6 < 1 andd; = p;/0x (j # k). The results with 8 = 1 are the
most interesting ones and will be discussed in the next section.

(¢) k =n =3, rn =1 = r; = 1. This is a particular case of (1.3) and it
requires pi; = iz, pi3 = aaa; and py; = ey . Suitable values for oy, a and
a3 can be found if and only if ppispes > 0 and the product of any two of the
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correlation coefficients is less than the third. The integral is

Puhes tosh) = [ [ TLECOx = acu/ L = o)) | 00) a
If the correlation coefficients do not satisfy this condition and hence suitable

a’s cannot be found we can still fall back on (b) above and write in the integrand
a product of a univariate and a bivariate normal distribution function.

00
00

4. The singly-infinite integral representation. Now consider the integral
representation (2.4). The result (2.4) could be applied to the (n — 1)-variate
normal distribution function in the integrand and hence may provide a useful
reduction formula for determining F,(k; ; {p:;}). In general, this would require
n successive integrations. However, it is easy to see that for certain correlation
structures this number may be reduced. Suppose

O R, - .

(4.1) i} =< T3,
z. . os
O - 0 R

where R;(z = 1,2, - -- , k) is a correlation matrix of rank r; (ZLI ri=mn—1)
and O denotes a null matrix. Then the (n — 1)-variate normal distribution
function in the integrand factors into a product of £ normal distribution func-
tions of order ry , 73, + -+ , 7% .

If p;j.. = Oforall 7 # 7 = 1, (2.4) simplifies to

hy n

(@2)  Fuhes tooh) = [ [ TLPC = pan/ = o)) | 100) as
This is (1.3) with &4 = 1 and therefore a; = pi . It corresponds to the case
rn=--- =1 = 1lin (4.1).

If p;;1 = O for all 7 £ 1, 7 but for only one particular value of j, then the
integrand of (2.4) would contain the product of a univariate and an (n — 2)-
variate normal distribution function. In particular, suppose pi.; = 0 for all
1 %% 1, 2. Then

hy
Fu(hi 5 {pis}) = F — pa 1 — ok 3
(ag) [k lead) j_w ((le = pu)/(1 = pi)")

Fos((hi — piry)/(1 — P%l)é; {pija},© == 1,2)f(y) dy,

since Pij12 = Pije1 (11,] ’7'£_l, 2)

For example, consider the correlation matrix defined by p;; = vi/vy; for < < j,
where |v:| < |y, for # < j. This correlation structure occurs in many applica-
tions as will be described in the next section. The matrix satisfies p;.. =
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0 (2 # 1, 2) since py — puprr = (v1/v:) — (vo/v:) - (v1i/v2) = 0. Therefore, from
(4.3) with the suffixes 1 and 2 interchanged,

12
(44) Fn(hi 5 {Pii}) = feo F(hi)Fn—2 (h: 5 {Pii-2};i #1, 2)f(y) dy,
where h, = (hi — pay)/(1 — pi)’. Now, with ¢ £ j # 1, 2, pije = (pi; —
pipin) /(1 — piz) (1 — p3)® = vi/v;, where vi = v:(1 — v3/7}). Therefore the
correlation matrix of the (n — 2)-variate distribution function in the integrand
is of the same form as the original n-variate correlation matrix. By applying
(4.4) repeatedly, then, the n-dimensional integral can be reduced to either
an in-dimensional integral or an 3(n — 1)-dimensional integral according as
n is even or odd. The results for small n in a form suitable for computing are
given below. The expression for n = 3 has been used by Dunnett (unpublished)
to compute the operating characteristics of 3-stage procedures for drug screening.

wes [ (G r () o
n= s [ r () L (@ ) o o an
nes [P ()

[f F ((?é—_ vv/zf)*) d <<fé: 7713;5;7’;)*) e e | 1) a

where vi = (vi — v3)}and hi = (hi — poiy) /(1 — p3)%, 4 = 3,4, 5.

5. The practical importance of the correlation matrices p;; = a;a; (¢ % J)
and p;; = vi/v; (¢ < 7). In this section, we mention briefly a few applications in
which correlation matrices of the structures p;; = a;a; and p;; = v./v; arise.
Note that the case of all the p;;’s equal to p > 0 may be obtained from p;; = a;a;
by taking a; = ', all 4.

Let Z;, Zy, ---, Z, be independent normally distributed estimates of a
quantity X. We further assume that the quantity X is normally distributed
over a population of such quantities with mean zero and variance ¢f . Then
the correlation matrix of the Z’s is given by

(5.1) pii = oo/ (a5 + o) (ot + oD}, i %7,

where o7 isthe varianceof Z; about X. Clearly, p;; isof theform pi; = asa; (¢ # 7).
If a selection is made of all quantities in the X-population for which
Z: < hi(os + o)}, then the proportion of the X-population selected is Fy(h: ;
{pi;}). Values of F,(hi ; {p:;}) withp;; = a;e; (¢ % j) are therefore of considerable
importance in the evaluation of selection procedures. In plant selection, for
example, X might represent the true yielding ability of a plant variety chosen
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at random from a population of such varieties and Z,, Z,, --- , Z, represent
independent estimates of X based on experimental evidence.

Let Y,, Y., -+, Y, be uncorrelated normally distributed variates with
means zero and variances a3 , a3 SERE s , respectively. Define Z, , Zy, « -+ , Zn
to be the partial sums, Z; = > s Y,,% = 1,2, ---, n. Then the correlation
matrix of the Z’s has

: 3 EH
(52) o= (Tat /S ), i <y
and pi; is of the form p;; = v:/v; where v; = ( .y a2)}. This situation arises
in multi-stage selection procedures, such as acceptance sampling and drug
screening, in which at each stage a decision is made on the basis of the cumula-
tive sum of the observations available to date whether to continue the experi-
mentation or to terminate and either accept or reject the object to which the
observations pertain. The formulae given in the previous section are likely to
be useful when the number of stages is small, as is usually the case in drug screen-
ing (see Dunnett [4]).

The matrix p;; = v:/v; (¢ < j) is important.also infactor analysis. In Anderson
[1] it appears explicitly as the correlation function of a Wiener process. Clearly,
any matrix of the form

( n—1

1 e wma o I w
=1
n—1
a 1 as o JI a
=2
a1 0s (023 1
1 An—1
n—1 n—1
ITa: Tla: -+ awa 1
\ =1 =2 )

is also of the type pi; = vi/v; (¢ < j), and hence an alternative representation
is pij = @iQiy1 -+ @ja, (¢ < J), where |a;] = 1.
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