ON QUEUES IN TANDEM*

By GrREGORY E. MASTERSON? AND SEYMOUR SHERMANS3

University of Pennsylvania

1. Introduction and summary. It was in 1952 that D. V. Lindley [1] obtained
the steady-state distribution function of the waiting-time in a single-server
queue for the case when the interarrival times are independent random variables
with identical probability distributions having a finite mean. He applied the
same restrictions to the service times. The resulting waiting time distribution
was shown to be the solution of an equation of the Wiener-Hopf type.

Queues in tandem have only recently been studied. In 1957, E. Reich [2]
found that in “equilibrium’ whereas a non-saturating exponential distribution
of interarrival times together with an exponential distribution of service times
yields a stationary exponential distribution of interdeparture times, “no such
simple behaviour can be expected when the service time distributions are even
slightly more general.” More recently, J. Sacks [3] has found criteria similar to
Lindley’s for the existence of steady-state distributions of waiting-times in a
finite number of single-server queues in tandem.

The motivation for the work reported in this paper originated in a talk given
on April 15, 1958, before the Operations Research Seminar of the University of
Michigan by G. D, Camp, who made the following intuitive assertion. “Suppose
that we imagine an infinite number of identical servers connected in series, and
inject any non-saturating input into the first one. Then we expect the statistics
of the outputs to change progressively from server to server and since we are
dealing with a diffusion process, it seems intuitively obvious that some equi-
librium statistics will be approached (the proof is here left to professional
mathematicians).” Also, in a talk given on October 16, 1958, before the Institute
of Management Science in Philadelphia, he asserted that in this same queueing
system, the probability that the time between the 7th and the 7 4 1st customers
from the nth service point is less than x approaches, as n — o, a probability
distribution function F(z), i.e. F(x) is monotone increasing, F(+4») = 1 and
F(—w») = 0.

It is shown below that these assertions are not true, at least as far as the
interdeparture time of the first and second customers is concerned. However,
in the unique case of constant service time, the assertions are true and statistical
equilibrium is achieved by the output from the first server.

2. Glossary of terms and symbols. Customer—An object, animate or in-
animate, which enters a queueing system requiring service. Service—An operation
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performed on a customer. Server—An object, animate or inanimate, which
services a customer. Queue—Backlog of customers waiting for service. A cus-
tomer enters a queue when he requests service and leaves when the service is
complete. Queue Discipline—The procedure by which customers are chosen for
service from a queue. Waiting Ttme—The interval between the time a customer
requests service and the time service commences. Steady State—The property
that the probabilities are independent of time. Non-Saturating Input—An input
such that the expected value of the service time is less than the expected value
of the interarrival time. #" is the time at which customer 7 arrives at the nth
service point. gi” = {7 — ™. T{™ is the time at which customer i leaves the
nth service point. S{™. = T — T, T = ™. R{™ is the service time
for the sth customer at the nth service point. wi™ is the time of completion of
service for the (¢ — 1)th customer at the nth service point minus the time of
arrival of the 7th customer at the nth service point. z \/ 0 is the maximum of
z and 0. z A 0 is the minimum of z and 0. w{™ \/ 0 is the waiting-time for the

7th customer at the nth service point.

3. Defining equations of the process. The various possibilities which exist at
the nth service point for the ¢th and 7 + 1st customer are illustrated in the
figure together with the defining equations.

From inspection of the figure we may immediately write the following equa-
tions:

(1) wiil = —gi” + 82 + wi”,
(2) 88 = RI® — (wi® N 0),
(3) gi” = 8"

In addition, the system is empty before the arrival of the first customer. Hence,
(4) wi® = 0.

The queueing system to be considered consists of an infinite number of identi-
cal servers in tandem. The service times for all customers and all servers are
independent random variables with identical probability distributions. The
distribution is arbitrary except that it has a finite mean. The interarrival times
of customers at the input to the system, i.e., at the first server, are also inde-
pendent random variables with identical probability distributions. Again, the
distribution is arbitrary except that it has a finite mean. When a customer has
been served, he immediately proceeds to the next server, where he may have to
join a queue if that server has not yet finished serving the previous customers.
Customers may, of course have to queue at the input to the system. The service
discipline is “first come, first served.”
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From (1), (2) and (3) we have
(5) wifl = =8 + R + (wf” V 0),
and (2) and (5) give
(6) = REL 4 180" — R — (w{” V 0)] V0.
4. Limiting distribution for S{”. Equations (4) and (6) give
(7) S = R{” + (S = R{") V0.
The shortest way to obtain the desired result is as follows. Consider
(8) Si™ = (R + 8™ — R™) v/ 0 = 8
as R{™ = 0. Therefore
(9) Si™ > (81D 4L R — R{™) \/ 0,

where E(RS® — R{™) = Oforn = 1,2, etc., and S{” = ¢g{’ = 0. Now Lindley
([1], page 278) has shown that for the process

(10) u(n) = (u(n—l) + v(n)) v 0,

where E(»') = 0 and «® = 0, that the probability that »™ is not more than
z tends to zero as n tends to infinity, for any z. Remembering that (10) is
identifiable with a random walk we have, a fortiori, from (8) and (9) that
limyo P(S{™ < z) = 0 for all «.

Lindley’s result does not apply to the unique case when the variables »
equal zero certainly. In our context, this only occurs with constant service
time. We treat this case by examining the original equations.

Let R{® = R (a constant), for all ¢ and n. Then (2) gives S{” = R and
(7) may be written

(n)

S{n) =R _|_ (S](,"—I) _ R)
_ s,

Thus, in this unique case, a limiting distribution does exist. It is interesting
to note that the result following from (9) does not depend on the distribution
of interarrival times at the first service point and hence we may remove the
restrictions on this random variable, i.e., on g{".

The same problem may be formulated in a different way, which while being
more cumbersome does lend itself better to the generalization to the case of
S, Let M{™ = R{™ — R{™; then equation (7) may be written

S{") = Rén) V (S{n—l) + M{")).
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Iterating, we have that
8" = R{" V ([R"™ V (81" + Mi"™)] + Mi”)

= BV (R + MP) V(S 4 MY 4 MET)

= R\ (RS + MYV (RS2 V(S0 + M)
+ M0 + M)

= R{” V (R + Mi") V (RSP + M + Mi™)
V(S0 4+ M+ M 4 M)

= ete.

The iteration is continued until the last term is reached, namely,

(87 +2 M7) = [(¢” — R") + (Bs” — R{")

+ (B — R®) + -+ + (R"™ — R{”) + B:").
Hence,
(11) 8{” — R{” = maxogga (417 ~ A7),
where A =39 1 pi?, 4 = 0,p{” = R — R{”, 0 > 1,p{" = g — R{".

Clearly, equation (11) may also be written

7
(n) (
S{n) - R2" = MaXo<jgn L plc)
-+

g=7-

(12) =0Va"Vp”+p")V - V(P + -+ )

=YY"V (" + pi" + -+ ")

Now Y{™ does not contain p{® and hence it is the maximum of partial sums

of independent identically distributed random variables of mean zero. As such,
it is well known (see for instance [1], page 281), that in the limit as n tends to
infinity, ¥i™ tends to infinity in probability.

5. Limiting distribution for S{™, 5 > 1. Writing M{” = R{} — R{™ —
(w§™ \/ 0), (6) becomes S{” = R \V/ (8" + M{™). Iterating exactly as
before, we obtain

(13) SM — R = maxogjga [AS7 — AP,
j (1) —1
where AP =0 [pf2 — (wi” V 0)], A° = 0,9 = R5® — R, 6 > 1,
W _ 0 _ p®
P = g i

Now it has been shown by J. Sacks [3] that
(14) (W V 0) = maxoggi-1 B2 — B + DI’ — DY,
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where B = —> i p” and

D = maxogj girs.--giesr (=B — Biy — -+ — B{71.
Eaquation (14) reduces to
(15) (wi” \/ 0) = B{% — D{I® + D{2; .

Summing we obtain

(16) Z (Wi V 0) = f’-)rl-z B .

Now remembering that p{” = B{Z — B{”, we have

(17) AP =§1 B, —:ZI B — Z (Wi V 0).
Equations (16) and (17) give

(18) A9 — —DpY) — ;B(V)

which with (13) yield

(19) S — R = maxosign [p,@l -3 BY- Dm] .

Equation (19) is explicit, but unfortunately unmanageable. However, it may
be rewritten as

[~ n
S — R = masogssa [ D — 3 B — D3]

= IaXogj<n Dz( + Z B(’):l + A

o=1

. i
= masogign | DA + 2 B | + 3 B — 3B

(20) Zl (w(a‘) V O)
= MaXo<j<n [Dii’l - Z B + Zl B'E-”—)l:l Zl (0 \/ 0)
o=j+ o= o=

= MaXo<j<n I: Z p(v) (J) 4+ E va_)l] Z (,w(v) \/ 0)

o=j+1

= maxogi<n Z pi” — Z(’w(”) V 0),

o=j4

because D = i 1B .
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Now the first term on the right hand side of (20) goes to infinity in prob-
ability as n goes to infinity for the same reasons as before. We would have the
same result as in Section 9.1 if we knew that limue 2 e (wi” V 0) < w.
This is not known, although it remains a distinct possibility.

Tt is logical to examine S{™ for the case of constant service times. From (4)
and (5) we have wi® = —8{"™ 4+ R < 0 from (2). Using (5) repeatedly, we
find that w{™ < 0 for all ¢ and n.

Hence from (6),

8" =R+ (8 —=R) V0

— Sé n—1)

from (2).

It is interesting to note that in the case of constant service times, not only
does a limiting distribution exist which is identical with the distribution of
interdepartures from the first service point, but also that the interdeparture
distribution is a bona fide probability distribution whether the first queue
saturates or not.

In conclusion, the following is significant. The technique adopted in the
above analysis was to set ¢ = 1, and then to examine lim,_., S{”. It was then
found that this random variable went to infinity in probability. Unfortunately,
this method was not found to be extensible to ¢ > 1. Another approach is pos-
sible.

Sacks [3] has shown that

(Wi vV 0) =0V [(w Vv 0) — p{”
n—1

+ 2 (i V 0) — (wi Vv 0) — pi7}l.

But, from (3) and (5), we have
(W V 0) =0V [(wi” V 0) + R™ — 8],

Hence,

n—1

8P = RETY — 2 [(wi” v 0) — (wifx V 0) — pi”)
Now in the interesting case of an ergodic system, i.e., when

E(g") > maxi<, BE(R{),

we have that a limiting probability distribution function F” exists, as 1 — o
for all .
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If we further assume that, for all o,
(a) [z dF“(z) < o,
(b) lims,, E[(w” \V/ 0)] = [z dF“ (z), then we have

n—1

limiw B(S{™Y) = E(RELY) + §E<p£“’)

n—1
+ ; limisw E[(wy V 0) — (wi® \/ 0)]

n—1

> B(RIG") — 2 B(R)
o= o=1

for all n.

Now the quantities R{”, ¢ = 1 are independent identically distributed random
variables, as are the quantities R{® = ¢{°. Hence,

limise B(S{™) = E(g) for all n.
i.e.,
littes limisw B(S{™) = E(gi®) < w
while
limpe E(S{V) = oo,
Thus renewed interest exists in the behaviour of mg,e lim, .., E(S{™).
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