STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE
COMPLEX GAUSSIAN DISTRIBUTION (AN INTRODUCTION)!
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Space Technology Laboratories, Inc.

0. Summary. A complex Gaussian random variable is a complex random varia-
ble whose real and imaginary parts are bivariate Gaussian distributed. A
p-variate complex Gaussian random variable is a p-tuple of complex Gaussian
random variables such that the vector of real and imaginary parts is 2p-variate
Gaussian distributed. The present paper is an introduction to statistical analysis
based on a certain multivariate complex Gaussian distribution which is the
distribution of a p-tuple of complex Gaussian random variables whose real and
imaginary parts are 2p-variate Gaussian distributed with a 2p X 2p real co-
variance matrix of special form. The special form of the 2p X 2p real covariance
matrix permits the distribution of the p-tuple of complex Gaussian random
variables to be expressed in complex form, and to be (in the zero mean case)
specified by a p X p Hermitian covariance matrix. (Certain simplifying condi-
tions, e.g. zero mean random variables, non-singularity of matrices, etc. are
retained throughout the paper. Such conditions may be removed at the expense
of added complexity of exposition or results.) Statistical analysis based on the
particular multivariate complex Gaussian distribution mentioned above possesses
certain desirable properties:

(1) A theory that is a counterpart of (i.e. ‘“parallels”) classical multivariate
real Gaussian statistical analysis may be developed.

(2) From the methods of proof and the distributional results stated in the
paper there are indications that for every distributional result of classical multi-
variate real Gaussian statistical analysis obtainable in closed (explicit) form, the
counterpart result in the multivariate complex Gaussian statistical analysis is
also obtainable in closed (explicit) form. A comparison between certain counter-
part distributional results of multivariate complex and real Gaussian statistical
analysis indicates that the multivariate complex Gaussian distributional results
often appear formally simpler and at times are simpler. Furthermore, not all
distributional results of the multivariate complex Gaussian statistical analysis
are counterpart results of multivariate real Gaussian statistical analysis so that,
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in some sense, the multivariate complex Gaussian statistical analysis is the
richer of the two.

(38) The distributional results of the multivariate complex Gaussian statistical
analysis are applicable in describing the statistical variability of estimators for
the spectral density matrix of a multiple stationary Gaussian time series, and in
describing the statistical variability of estimators for functions of the elements
of a spectral density matrix of a multiple stationary Gaussian time series.
Moreover, heuristic arguments suggest that the results of statistical analysis
based on the multivariate complex Gaussian distribution may also be, under
appropriate conditions, applicable in describing the sampling variability of em-
pirical spectral analysis results for many non-Gaussian multiple stationary time
series.

1. Introduction and technical summary. The paper constitutes an introduction
to statistical analysis based on a certain multivariate complex Gaussian distri-
bution. Preliminary algebraic results and the (zero mean) p-variate complex
Gaussian distribution are initially derived. A complex Gaussian random variable
Z = X + 7Y is a complex random variable whose real and imaginary parts are
bivariate Gaussian distributed. A p-variate complex Gaussian random variable
£ =(Z,,Z,, -, Z,) is a p-tuple of complex Gaussian random variables such
that the vector of real and imaginary parts n' = (X;, Yy, -+, X,, Y,) is
2p-variate Gaussian distributed. The 2p-variate Gaussian random variables n’
considered in the paper have zero mean and 2p X 2p positive definite covariance
matrices

(1) s — B lExjxk EX; Y,
L. = nm =
’ EY;X, EY,Y,

of the special form where -

EY; X, EY;Y oy —B;
iAg iXg %[ﬂc Jk:|a'ja'k i ]#k

Bix oy

{rof,
§ o if J =k,
EX;X, EX;Y, 01
(1.2)

(In (1.1) and(1.2) E denotes. the expectation operator.) The corresponding
(zero mean) p-variate complex Gaussian random variables ¥ then have their
distributions specified by p X p Hermitian positive definite complex covariance
matrices

(1.3) 3 = B¢ = |EZ;Zi|| = ||oal

where

2 . .
(14) I {(ajk+z'ﬁjk)a,-vk i gk
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In the present paper the phrase “multivariate complex Gaussian distribution”
is restricted to that special case. The following results are established. The
probability density function of the (zero mean) p-variate complex Gaussian
distribution is given by

(1.5) p(§) = (1/7" |Z¢]) exp (—E=¢'%).

If&, &, -+, & is a sample of n complex valued vectors from such a distribu-
tion, then the sample Hermitian covariance matrix

£ = (l/n)jZ_:_IEE;'

is the maximum likelihood estimator for Z;. The estimator £; is a sufficient
statistic for the Hermitian covariance matrix Z; . Consider A = ||Ajxz + ‘Az =
nE; . The joint distribution of the distinct elements of the matrix A is called a
complex Wishart distribution. The probability density function of the joint dis-

tribution Of A11 y T, App 5 A12R y A121 y 'y Ap_l,pp, 5 Ap—l,pI iS
(1.6) pw(4) = [[A["?/I(Z¢)] exp [—tr (2F'4)],
where

I(Zg) = a"T(n) -+ T(n — p 4+ 1) |Z"

The density pw(A) is defined over the domain D4 where A is Hermitian positive
semi-definite. The characteristic function of the random variables Ay, -- -,
Am, 5 2A12R 5 2A121 y Tty 2Ap_1,p1 iS

(1.7) Cw(0®) = [Z™" |2¢' — 0",

where @ = ”0]1;” and Or; = 9,% with Oir = Ojkr + 'l:ajkl ;j, k= 1, 2, e, D If
T = ||[Tw| = |Tir + Tl denotes an upper triangular matrix of complex
elements with the diagonal elements 7';;,7 = 1, - -, p, real and positive, then
there is a unique such T satisfying T'T = A. The probability density function
of the distribution of the matrix T is

(1.8) p(T) = 2°[1/I(Z)1TH T3 ~° - - T2 %D exp [—tr (27 T'T)].

The density p(T') is defined over the domain Dy given by Ty > 0, -+ -, Tpp > 0,
—0 < Typp < 0, —0 < Tjpy < w035 <k j, k=12 ---,p. The distri-
bution of the matrix T is useful in deriving the distributions of functions of the
elements of a complex Wishart distributed matrix. Two examples of such func-
tions are now given. Let A = ||A%|| . Consider the function

(1.9) R} pipsn = 1 — (A ,A)
In terms of the elements of the matrix T one has

(1.10) R,y = (2: |T,-,,12) (z;; lT,-,,[2>—1.

Starting from (1.8) the probability density function of the distribution of
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D 2
Ry p—1,p-2,...,1 can be shown to be

. T'(n)
(B =
(1.11) b I'(p— DI(n — p + 1)

(1 = R (B (1L — B)"*F(n, n; p — 1; R°RY).
In (1.11) B* = 1 — (0,,0™") " where ;' = ||o”|| , &? denotes R:.pi...1,and
F(, ; ;) denotes the hypergeometric function. Similarly, consider the function

(1.12) Ry ptips,..q = |APTVPP (APTIPTIAPP) L
In terms of the elements of the matrix T one has
(1.13) R7 ptip—2,n = [Tomr* (|Tporol” + Thp) ™

Starting from (1.8) the probability density function of the distribution of
?,,p_up_g,...,l can be shown to be

p(R) =(n —p+ 1)1 — B)" 771 — )™
F(n —p+2,n — p-+2;1; R°RY.

In (1.14) now R’ = [¢*?(e" 7 '6**) ™" and R* denotes R% , 1/ps....... The
functions R}, 1,...1 and Ry ,i1ps,...,1 are respectively the sample multiple co-
herence between Z, and (Z,, - - - , Z;) and the sample conditional coherence be-
tween Z, and Z, ; with respect to (Z,_z, ---, Z;). The characteristic function
of the complex Wishart distribution given essentially by (1.7) is also useful in
deriving the distributions of functions of the elements of a complex Wishart
distributed matrix. Consider for example the function tr(A). From (1.7) one
obtains the characteristic function of tr(A)

AN A
O = 40" (" — #8)" -+ (N5 — )"
In (1.15) Ay, - -+, N, denote the eigenvalues of Z¢ . Since yira) () is a rational
function of 6, the probability density function of the distribution of tr(A) may
readily be obtained by Fourier inversion.

The distributions summarized above and other distributions of the multivari-
ate complex Gaussian statistical analysis are applicable in describing the sta-
tistical variability of empirical spectral analysis results for multiple stationary
time series. In that regard, for example, the complex Wishart distribution given by
(1.6) describes the joint statistical variability of estimators for the elements of
a spectral density matrix, and the sample coherence distributions given by (1.11)
and (1.14) describe respectively the statistical variability of estimators for
multiple coherence and conditional coherence between components of a multiple
stationary time series. For a discussion of applications to empirical spectral
analysis of time series the reader is referred to the “Applications” section of the
present paper and to Goodman [7].

(1.14)

(1.15) Y (0) =

2. Algebraic preliminaries.
Notation. For a complex number z, Z denotes the conjugate, |2| the absolute



156 N. R. GOODMAN

value. A matrix M of elements m; is denoted by ||mj , the determinant of a
square matrix by |M| or det(M), the transpose by M ' the trace of a square
matrix by tr(M). The p X p identity matrix is denoted by I, , a diagonal matrix
by D, .

Levmma 2.1. Multiplication of matrices of the form @ —b 18 1somorphic to
b a

multiplication of complex numbers ¢ = a + 1b.
Proor. The lemma is a special case of Theorem 21, p. 240 of Birkhoff and
MacLane [3].
aje —bi

Notation. Let rj; = [b “
ik ik

Let R = |jri]| and C = |lcal -

TueoreM 2.1. Multiplication of the 2p X 2p matrices R = ||r;|| is isomorphic
to multiplication of the p X p matrices C = ||cl .

Proor. The theorem is an immediate consequence of Lemma 2.1 and the rule
for multiplying compatibly partitioned matrices.

Notation. Isomorphic matrices R and C will be written B = C.

TuroreM 2.2. If R is symmetric, then C zs Hermitian, and conversely.

Proor. If R is symmetric, R = R’ where ' denotes transpose. Thus, r;; = Thi
1.e., Tje = Oej and by, = —by; ) consequently c¢jx = @ + thp = ar; + h4; =
Cj, i.e., ¢ = C'. The converse is clear.

Z}fotatw'rltc If ¢ and R are nonsingular, let ¢ = ||c®|| = |la® + ™| and
B =" .

TaEOREM 2.3. If C is non singular then R is non singular and the inverse of R is

a® —p*
[bilc aik:l
and conversely.

Proor. By Theorem 2.1, [|ra-[Ir*| & [lexll- "] = I, . Thus, [rall-[lr*ll =

:Iand cix = aj, + by, forg, k= 1,2, -, p.

R = |Ir"| =

)

I,, since [(1) (1) = 1. The converse is clear.

TurorEM 2.4. If R is orthogonal, then C is umtary, and conversely.

PROOF If B is orthogonal, R~ ' = R' = |Ira||" = |lrsll - Thus, by Theorem 2.3,
Ct = |Gl = lleal = €, ie., Cis unltary The converse is clear.

TuroreM 2.5. The det(R) = Idet(C)l

Proor. Two matrices C and C* are unitarily equivalent if there exists a unitary
matrix U = |Juz|| such that ¢ = U'C*U. By Theorem 41.3, p. 75 of Mac Duffee
[10] the matrix C is unitarily equivalent to a triangular matrix C* where

M | Pn—— O'T
*
. ¢a1 Az
C =1 oS

1 .

i ~

i N

e N

| Cp1 ===Ap
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and M, Nz, * -+, \, are the characteristic roots of C. Thus, by Theorems 2.1 and
24 R =M R M Where M denotes the orthogonal matrix isomorphic to U and
R* denotes the matrix isomorphic to C*. The matrix R* is

[Me —Mir ;0 0 0 0 ]
Mr_ M 10 0F 4§0 o
B = Cikr —C?kr \L\-:\.: ----- _5-6-“6 -------
I:C,kr C;kR:I \\\ E_Q__Q ________
Mor  —Apr
i i?\p’r Apr
where \; = Az + @\;rand ¢fi = che + ichr, k S5 = 1,2, , p. By taking

determinants in R = M'R*M, det(R) = det(M) det(R*) det(M) = det(R").
Upon evaluating det(R*) by Laplacian expansion (see p. 78 of Aitken [1])
dot (B*) =TT 3%~V = TT O + M) = TT Il
=1 N Ne =1

Thus, det(R) = det(R*) = H]_l AN = (Ean) TN =
det(C*) det(C¥) = det(C) det(C) = |det(C) |

CororLARY 2.1. If R is symmetric, then det(R) = det’(C).

Proor. By Theorem 2.2, if R is symmetric, C is Hermitian. The characteristic

roots of an Hermitian matrix are real so that \; = Nz, j = 1,2, - - p. Thus,
det(C) = J]2x )\]R is real, consequently det(R) = ldet(C)l = det ().
Notatwn Let'ﬂ _(x17y1,x27y27“"x137yp) andE ‘—(21,32,“‘ Zp)

where z; = x; + 3y;,7=1,---, p. _
TrEOREM 2.6. If R is symmetric, the quadratic form o' Ry = ECt.
Proor. The quadratic form

’ S < i —bs | | 2k
n Ry = Z lej, yilrin Z lxs, yil b .
jik=1 k=1 . it Qjk Yk

D

= -21 lam(zize + yiye) — bin(zsye — yian)).

3=

(2.3)

The quadratic form

Fote = Z_I Zicien = gl (x; — 1y;5) (@ + b) (v + tys)

v

Zl lam (@ + yiyr) + bu(— zyk + yir)]

Jik=

(2.4)
+ 12 lan(ziye — yien) + bi(ae + yige)]

Jik=1
Y4
= lase(@iee + yiue) + ba(—zy6 + yar)] = 7' Ra.

Jik=1



158 N. R. GOODMAN

The imaginary part of the summation in (2.4) vanishes since a;; = a;; and
bjx = —by; if R is symmetric.

CoROLLARY 2.2. If R is symmetric positive definite then C 1s Hermitian positive
definite, and conversely.

Proor. If R is symmetric positive definite the quadratic form 7' Ry assumes,
for n # 0, exclusively positive values. Since n'Rn = ECt, ECt assumes, for
£ # 0, exclusively positive values. By Theorem 2.2, the matrix C' is Hermitian.
Thus, C is Hermitian positive definite. The converse is clear.

3. Complex Gaussian random variables and the multivariate complex Gaussian
distribution.

DerinrrIonN 3.1. A univariate complex Gaussian random variable Z = X + 7Y
is a complex random variable whose real and imaginary parts are bivariate
Gaussian distributed.

DeriNiTION 3.2, A p-variate complex Gaussian random variable £ =
(Zy, Zy, ---, Z,) is a p-tuple of complex Gaussian random variables such
that the vector of real and imaginary parts n’ = (X;, Yy, -+, X,, Y,) is 2p
variate Gaussian distributed.

CommeNnT. The Gaussian random variables X;, Y; considered in the paper
are taken to have zero mean. The distribution of n is therefore specified by the
covariance matrix

' EX; X, EX;Y,
Zy = B = “[Eyj X, EY, Y,,]
where E denotes the expectation operator. Consider the special case where
2, is such that the 2 X 2 submatrices
L O]ai it j =k

)

1
[EXj X, EX; Yk] _ 5[0 1
EY; X EY; Ys %[aﬂ“ —Bﬂ“] agior, if j#k

(3.1)

I

Bix  aj

The paper is restricted to that case and henceforth, all covariance matrices

Z, are taken to be of that form. B
DeriniTioN 3.3. The complex covariance between Z; and Zj is EZ;Z, .
DerINTTION 3.4. The variance of Z is E|Z|.
CommEenT. From (3.1) one readily verifies that

: if 7=k

A + ’iﬁjk)aj O lf ] = k

Thus the complex covariance matrix of the p-variate complex random variable

£is

(3.3) E& = |EZZi| = |loall = =

where the Hermitian matrix 2; =2 23, under the isomorphism =2 established
in §2.
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THEOREM 3.1. For the special type of convariance matrices =, given by (3.1) the
probability density function (p.d.L.)p(n) of the 2p-variate Gaussian random vari-
able v’ is given by

(3.4) p(n) = p(§) = (1/7%Z:)) exp (—E¥'27%).
Proor. The p.d.f. of n is
(3.5) p(n) = [1/(2m) "2, exp (—$1'27"n).

The matrix Z; = 23, . Since Z, is positive definite, Z; is positive definite by
Corollary 2.2 and in particular 2 is non singular. Furthermore, by Theorem
2.5, 122, = |=: so that 2°7|2,| = |2;)* and hence |,/ = 277|2;|. By Theorem
2.3, = = 137" so that by Theorem 2.6 7' (32;")n = E=;'¢. The p.df. p(n)
is therefore given by (3.4).

CommenT. Henceforth the phrase “multivariate complex Gaussian distribu-
tion” is restricted to apply to a distribution with probability density function
p(§) given by (3.4).

ExampLe 3.1. The univariate complex Gaussian distribution.(p = 1). Here
f =27, =X, +iYiand & =2 = 2, + 1y1 . The covariance matrix =; = o,
|Z¢ = o1, and =" = 1/6} . Thus,

! af + o) _ 1 (__ |21|2>
(3.6) p(n) = F‘%GXP ( 5 = 5 OXp )

01 1 1

ExampLe 3.2. The bivariate complex Gaussian distribution.(p = 2). Here
£ =(2;,2,) = (X1 + Y1, X +4Ys) and £ = (21, 2) = (w1 + 1, 22 + 1),

2 .

. _ o1 (o2 + Zﬁm)awz]

(3.7) Ze = I:(otlz — 1B12) 0102 s )
From (3.7), |2 = (1 — ofy — Bl)dles, and

-1 _ 1 o3 — (o2 + iﬁm)ﬂdzil
(38) =% = (1 — aly — Bh)oios [—(am — 1B12) o102 o1 )
Thus,
1
o) PO) = =, = B

. ex _ o‘% l21|2 -l— o‘% IzZlZ —_ 20’10'2 R P. (a12 -I— ’iﬁm)éﬁz)
P 1 = of — )i} '
Notation. When functional dependence on the Hermitian covariance matrix

3: is to be emphasized the p.d.f. p(&) given by(3.4) will be written p(&; Z¢)
and expectation with respect to p(£; Z;) will be written Ep¢;zy -

4, The maximum likelihood estimator for the Hermitian covariance matrix
of the multivariate complex Gaussian distribution.
Lemma 4.1. If H denotes an Hermaitian positive definite matriz, then the charac-
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teristic function with respect to the density p(&; Z¢) of the Hermitian form Qn =
¥Ht is
(4.0) @5, m(8) = det™ (I — (0Z¢H).
Proor. From (3.4) one obtains the integral identity
(4.1) /;r_p exp (—EZ7'%) di = det (2s).

From (4.1) one has formally

QZE,H(o) = Ep(E;Es) exp (WEIHE)
(42) =Lfmwﬂmnmp%@y—wma@

= det™ (Z¢) det ([ZF' — 0H]™") = det™ (I — 462 H).
Comment. Lemma, 4.1 is also a consequence of a result of Turin [12].
COROLLARY 4.1. If H denotes an Hermitian positive definite matrix then
(4.3) EpqzpT HE = tr (Z:H).
Proor. From (4.2) one has
EpzpE HE = —i(d/d8) Pz, u(0)lo—o

(44) L ) )

= —i(—) det ™ (I — 102:H) (d/d0) det (I — 26Z:H)]o— .
Now,
(4.5) (d/de) det (I — 10Z:H)lo—o = —tr (Z:H).

Equation (4.3) follows from (4.4) and (4.5).

TuEOREM 4.1. Consider n independent identically distributed p-variate complex
Gaussian random variables &5, = 1,2, - -+, n as a sample of size n from a pop-
ulation with p.d.f. p(£) given by (3.4). Let Dy be the set of p X p Hermitian pos-
itive definite matrices. Over the domain Dy the maximum likelihood estimator po
of the Hermitian covariance matriz Zg vs

(4.6) $o= (/) L ek

Proor. From (3.4) the p.df. p(&, &, -+, &) of &, &, -+, & is
(D) L= pla, b, &) = 77 del™ (30 exp (- 2 B3,
Thus
(4.8) InL = —pnlnz — nindet (Z) — ,Z; B3t

Now,
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n

BT = Lt (B3 = 2t (3TLE)

(49 §
= tr (z?(z &Eé)) = ntr (3¢'B)

=1

where
1< =7
(4.10) B = ﬁz; g E.
=

Thus,
(4.11) InL = —pnlnz — nlndet (Z;) — ntr (ZF'B).

Now, from (3.4) and (4.3) the integral

J = /s p(& 27 In (& B™)/p(& 26Y)] d

- fs p(& =) In p(&; B™) — p(&; =7) In p(g; 25)] de

(412)  _ f {un det (B) — ¥Bep(s; 35')

I det (20) — E'%: dp(c; zzl)} gt

= In det (B) — tr (Z'B) — In det (Z:) + tr (I).

On comparing the final result of (4.12) with (4.11) one observes that any
Hermitian positive definite matrix Z; that maximizes In L maximizes J and
conversely. Now, In u < u — 1 with equality holding if and only if v = 1.

Thus,
1 ; B7)
(4.13) ' /p(g; o <p(é lz:: ))dE -1
fp(é, =) I:p(é ggl; 1] dt = 0.

Equa,llty,wﬂl hold in (4.13) if and only if p(¢; B™Y) = p(&; =), ie., if and
only if ;' = B!, ie. , if and only if 3; = B. Thus £; = B.

THEOREM 4.2. The mazimum likelthood estimator S is a sufficient statistic for
the Hermitian covariance matriz s .

Proor. The p.df. p(&, &, -+, &) of &, &, -+ -, &, is from (4.7)

2?&)
tr (Ezléa EJ >

=7 " det™ (Z¢) exp (—n tr (Z7'Se)).

p(El, £2y ttty En) = 7"_?” det*n (25) exp ( ;
%

(4.14) =7 " det™" (Z¢) exp <
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Since p(%1, &, -+, &) can be expressed as a function of 3. it follows from
the Neyman criterion for a sufficient statistic that £; is a sufficient statistic
for Z;. (See Halmos and Savage [9].)

5. The complex Wishart distribution and related distributions.
TaEOREM 5.1. Consider A = ||Ay|l = ||[Ane + Azl = nEg. The probability

density function of the joint distribution of An, -+, App, Awr, Apr, -+,
Ap—l,pR ’ Ap—l,pl 8
(5.0) pw(4) = (JA]"*/1(Zy)) exp (—tr (ZF'4)),

where I(Ze) = " T(n) --- T(n — p + 1)|Z4|". The density is defined over
the domain D4 where A is Hermitian positive semi-definite.

Proor. (The method of proof is as follows. The characteristic function of
Ay, -+, App, Ave, Awr, Ar, Aisr, -+, Apipr, Appr is computed. The
(multidimensional) Fourier transform of pw(A) is computed.The two are
seen to be equal. The matrix methods employed in the details of proof introduce
a triangular representation patterned after the Bartlett decomposition. (See
Bartlett [2].))

The matrix A is (apart from a factor of 1/n) the sample Hermitian covariance
matrix. Let

(51) E;= (le,Z2s,, Z3s,"’,Zps), s = 17 zyn
so that

(5.2) A = [[A;]l = Z_;stzks ;

and

(53) Zl st ks — Z—:l [(stxks + Ystks) + i(—stYks + Yjsxks)]
where
Zjy=ZXjs+1Y%, J=12,---p;s=12---n.

The joint distribution of Ay ,j = k = 1,2, -+ pis called the complex Wishart
distribution. The characteristic function of the complex Wishart distribution
is now derived.

Let

(5.4) O = (|0l
where Or; = éjk and 05k = Ojr + wjkz ;j, k, =1, 2, e D Then,

y4 » vy
tr (AB) = D Aufy = D A;0;+ 2 (Aubn + Kjx )
Jk=1 i=1 i<k

Jik=1

(5.5)

? ?
EAjjejj + 2 ;C (Aijoij + Ajklgjkl)-
j= J

Jk=1
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By virtue of (5.5), the characteristic function of the joint distribution of
Ay y Tty App , 2A1r , 2A121, 2A13z , 2A13; y 2Ap—1,pR , 2Ap—l,pI is

Eexp (i tr (A®)) = E exp (z tr <sZ::1 &%, @))
(5.6) = E exp (z tr <Zn3 F @zs))

s=1
= F exp <7, > E @Es).
s=1
Since the & ,s = 1, -+, » are independent and identically distributed
(5.7) E exp <z > & @g) = [E exp (¥ OF)]".
s=1

For ® Hermitian positive definite there exists a non singular matrix M such
that

(5.8) M'Z'M =1 and M'OM = D,

where D is a real diagonal matrix with d;; > 0,7 =1, .-+, p.
Let

(5.9) =M, (= (U, G, 0);
so that
Eexp ((£0f) = Eexp (M OML) = Eexp (1{DY)

y4 D
(5.10) =;=11Eexp (4 difl il =g<1 —4dd;)" = |I — D™

= |M'Zp'M — M'eM|™ = M7z — e M| N

From (5.8)

(5.11) M| |z (M| = 1.

Thus, from (5.6), (5.7), and (5.10)

(5.12) Eexp (itr (A®)) = |Z7"|=F" — 0™

Let = denote an Hermitian positive definite matrix (constant) and consider
the problem of evaluating the following integral

(5.13) () = fD |H* exp (—tr (37°H)) dH,

where the domain Dg of integration is the space of Hermitian positive definite
matrices H = ||H iz + 7H | and the differential element dH is

b4
(5.14) dH = (dHy - -+ dH,,) 1<Ik AH sz dH jur .
J

Jik=1
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Let
- ~y
Phgoevennenannnns T,
0 Tmooeee s Ty
= : S . _ s
T : S : ’ Tiw = Tir + iTh1,
: N : i
o
N
\\ .
[0 0-ovrv Top

and consider the equation
(5.16) T'T = H.

It is now stated that, with the additional restriction that the 7';, be real and
positive(j = 1, -+, p), there exists a unique 7 of the form given in (5.15)
satisfying (5.16). To prove that consider the Hermitian positive definite form
inz, -, 2, given by

P

(517) H(Zl y ", Zp) = ‘kzl ijz"jzk .
k=
Now,
» D
H(z1, -+, 2p) = Hule|” + Z (Hyiz2; + Hyaz) + ,;2 Hv 22
j=2 Jrk=
(5.18) = Hy <21 + Z T 2.7) <21 + Z e -> + kz (HuH "I'J—IHIJ Hlk) 3
Jik=2 1
Hy [
= Hu & +ZHH% + Hpa(z2, oo, 2p).
The element Hy is real, >0. Let
Hl, <
(5.19) 121 + Z = Z leZj .
= H 11 i=1

Since H = H, is Hermitian positive definite, H,—; is Hermitian positive definite,
so that by continuing the above procedure (completing the square)

D 2
2 Tuiz
=

H:n(zl; “',Zp) =

(5.20)

%+ 121):— Tp1.52 + lTp:ol |Zpl
In (5.20) T;real, >0,7 = 1,2, -- -, p, and it is clear that this condition makes
the representation of H,(z, ++, 2p) in the triangular form (5.20) unique. It

is also clear that the equation in matrices (5.16) is an equivalent way of ex-
pressing (5.20). Furthermore, from the equivalence of (5.20) and (5.16), any
matrix of the form 77T with 7',; real, >0, = 1, --- , p is Hermitian positive
definite. Thus, there is a one-to-one correspondence between triangular matrices
of the form (5.15) with diagonal elements real and positive and Hermitian
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positive definite matrices. Consider now the real variables (p* in number)

Hu, -+, Hppy Hury, Hury o+, Hyp1,pr, Hpo1,pr satisfying the inequalities
(leading minor determinants positive) that make H Hermitian positive definite
and the variables T, -+, Tpy, Tur, Twr, * ) Tptpr, Tpipr satisfying
the inequalities
(5.21) Tu>0,---,Tp, >0

Dr:—o < Tjr < —o < Tpr <o, j<kijk=1--,p.
From (5.16)

min(s,k)
(522) ij:ijR+'iij1= Z_:l Tszsk;j<k;j, k = 1’...’p.
Let J denote the Jacobian
(5‘23) J = a(HH’Hl?R;Hl?I’ t ';HlpR7H1pI7H22’ e H2pR ) H2p17 . '7pr)-
(T, Thor, Thory »+ y Tipr , Trpr, T2y -+ Tapr s Tapry -+, Tp)

The order of the variables in (5.23) is important. With the order indicated the
Jacobian matrix is triangular since the summation in (5.22) extends only to
min(j, k). Thus, to evaluate J it is only necessary to compute the diagonal
elements of the Jacobian matrix. From (5.22) the diagonal elements are

0H jir/0T oz = Tij, 0Hjp1/0T s = T,
(5.24) . . .
aHJ’f/aTJ'J' = 2Tjj;.7 < k’Jy k = 1,2 P
Thus,
P p
J = JI(8H;5/8T ;) I [(0H jur/0T se) (OH jur/0T 1))
(5.25) =t i
J = 2T T - Ty,
Consider now the special case when = = D, , where
A 0

(526) Dy = A y NS>0 =1,p

From (5.13)
1(Dy) = fD \H|* exp (—tr (Dy—1 H)) dH

(527) = fD |T|* exp (—tr (Dy-1 T'T))2PT3 7 ... T%, dT
T

=97 [ TIPS L T exp (—tr (Dy— T'T)) dT,

Dr
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where the domain Dr of integration is given by (5.21) and the differential ele-
ment dT is

P
(5.28) dT = dTy -+ dTpp H AT jkr AT jr .
=
From (5.15)

tr (Dx-1T'T)
(5:29) L e 1 2 2
=xTu 4+ N (llel + T22) + o+ >\p (|T1p| + -+ Tpp)’

Thus, I(D,) can be expressed as a product of integrals. In particular,
P
(5.30) I(Dy) = 2T -+ Ipy I s,
1<J
%,j=1

where
I;; = fo T57=@ ™ exp (—A7'T5;) dTy;

(5.31) _ % Nauas f W exp (—u) du
o

= WP (p+ E—5 4+ 1), for j=1,2, - p;
and
Li= [ [ exp (=0 (Th + T dn dTes
(532) o .
= f fo exp (—\;'R*)R dR do = 27rf exp (—\;'R*)R dR
_— 0
=g\, fore <j,4,7=1,2,--- p.
Thus, from (5.30), (5.31) and (5.32)

I(Dy) = 2° [Il%x;’*’“‘“lr(p +k—j+ 1):| I<I (m\;)
1,j=1
(5:35) =TT + & —j + N

=1
= APEOP(p k) - T(L + B Dy

Any Hermitian positive definite 2 can be written in the form

(5.34) 2 = U'DW,

where U'U = I. Thus,
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1(3) = fD \H[* exp (—tr (0'Dys UH)) d

(5.35)

= fD |H|* exp (—tr (Dy- UHU")) dH.
Let !
(5.36) K = UHU'.

The K corresponding to any Hermitian positive definite H is Hermitian positive
definite, and conversely. Thus, (5.36) can be thought of as a one-to-one trans-
formation of the space of Hermitian positive definite matrices onto itself. From
(5.36) it is noted that any element of K is a linear function of the elements of
H with coefficients quadratic functions of the elements of U. Thus, the Jacobian

Ky, -, Kpp, Kuor, -+, Kp1,p,0)
a(Hn; T pr, Hior y T Hp—l,p,l)
i.e. the Jacobian in(5.37) is a function of U alone. Explicitly, J(U) is the

p* X p’ determinant of the linear equations expressing the K in terms of the
Hj, . Thus, from (5.34), (5.35), (5.36) and (5.37) one has

(5.37) = J(U),

I(2) = f |H|* exp (—tr (Dy-1K))dH
(5.38) i
—JNT) fD K[ exp (—tr (Dy=1K)) dK.

In (5.38), let D, = I,. Thus,
(5.39) I(I,) = JHU)I(I,).

The value of I(I,) is given by (5.33) and, in particular, I(I,) # 0. Thus, from
(5.39) J(U) = 1 for every unitary matrix U. From (5.38) and (5.33) one has

(5.40) I(2) = a7 T(p + k) -+ T(L + k)|2["**
From (5.13) and (5.40)
(5.41) p(H) = I''(2)|H|" exp (—tr (Z7'H))

is a probability density on the space Dy of Hermitian positive definite matrices
H. One has

(542) fD p(H) dH = 1.
From (5.13), (5.40) and (5.41) one obtains
j; exp (¢ tr (H®))p(H) dH

(543) = f I(Z)|H|* exp [—tr (Z7'H — i®H)] dH

- - . l(z_l _ Z-@)—1|p+k B |2—1|p+k
=7 (Z)I((Z - l@) ) = lzlp+k - [2—-1 _ Z‘@Ipﬂc.
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Now, in(5.41) and(5.43) let £ = Z; and k

Il

n — p. Thus,

(5.44) fD exp (i tr (HO))p(H) dH = |Z["|5" — 0™
H

Upon comparing the final result in (5.44) with (5.12) one concludes (a charac-
teristic function uniquely determines a distribution function) that the prob-
ability density function of the joint distribution of the random variables
Au » T App ’ App ’ Awy » T Ap—l,pR’ Ap—l,pl is given by (50)

ExampLe 5.1. The univariate complex Wishart distribution. (p = 1). Here
3 = o1 and A = Ay . Thus,

(5.45) pw(4) = (AITY/T(n)ei") exp (—Au/d%).
ExampLE 5.2. The bivariate complex Wishart distribution. (p = 2). Here
5, = I: s (02 + 2B12) 0y Uzil,
(546) (a2 — 9B12)o1 02 oy

A= I: An Apr + ’L'Am}
Apr — 145 Ase .

Thus, using the expression for ;' given by (3.8)
(Andspm — Alr — Al)™?
7T ()T (n — 1)(1 — ala— Bia) o) 0"
o3 An — 2020102 Agop — 28120102 Ay + oF Az
eXp \ — 2 2N 2 2 .
(1 — aly — Bi2)oios
Comment. Consider the matrix A of Theorem 5.1 and the matrix T defined

by (5.15) with the diagonal elements T;;,j = 1, --- , p real and positive. As
proved earlier there is a unique such T satisfying

pw(4) =
(5.47)

(5.48) T'T = A.
From (5.25) the Jacobian
(5.49) J =9(4)/o(T) = 2°T'T38~% ... T, .

In (5.49) 9(4)/9(T) denotes as in (5.23) the Jacobian of the distinct elements
of A with respect to the elements of 7. From (5.15) and (5.48)

(5.50) |A] = ThT% - T5p.
From (5.0) and (5.40) the probability density function of the matrix T is
(5.51)  p(T) = 2°[1/I(Z)ITH T3 ~" - -+ T3 ® PV exp (—tr (Z7'T'T))

where I(Z;) = #*®"I(n) --- T'(n — p + 1)|Z". The distribution of the
matrix T is useful in deriving the distributions of functions of the elements of
a complex Wishart distributed matrix. Two examples of such functions are now
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given. Let A™ = ||A”||. Consider the function
(5.52) Ry pip.s =1 — (A,A)

In terms of the elements of the matrix T one has

(5.53) ? in = (g [T,~,,|2> <; 117].,,12)_1.

Startmg from (5.51) the probability density function of the distribution of
 pLpt,e .1 can be shown to be

p(RY) = [T(n)/T(p — DI(n — p + 1)]
(1= BY'(BY(1 = B 7F(n, ny p — 1; R'RY).

In (5.54) B* = 1 — (0,0™)"" where 33" = |lo™,
R? denotes R%.,;.....1, and F( , ; ;) denotes the hypergeometric function.
Similarly, consider the function

(5.55) B pdlpz,eq = |APTHPP(APTIPTIAPRY T
In terms of the elements of the matrix T one has
(5.56) R ptipoen = [Toap (| Tospf” + Thp) ™

Startmg from (5.51) the probability density function of the distribution of
».p—1]p—2,---,1 can be shown to be

p(B") = (n —p + 1)(1 — R)""™(1 — RH"
F(n —p+2,n—p+ 2;1; R°RY.

In (5.57) now R® = |¢* " ”| (a”_l Ea m’)—1 and R’ denotes B ,_11p-2....1. The
functions R}., ;... and R} ,_i,-s...1 are respectively the sample multiple
coherence between Z,and (Z,,, - Zl) and the sample conditional coherence
between Z, and Z,,_l with respect to (Z,,_z , *++, Zy). The distributions given
by (5.54) and (5.57) are important in the theory of measuring coherence between
the components of a multiple stationary Gaussian time series.

The characteristic function of the complex Wishart distribution given es-
sentially by (5.12) is also useful in deriving the distributions of functions of
the elements of a complex Wishart distributed matrix. Consider for example
the function tr (A). The characteristic function of tr (A) is obtained from
(5.12) by setting 65 = 0if j £ k, 7, k = 1, ---, p and setting 6;; = 6, =
1, ---, p. Thus, from (5.12) the characteristic function of tr (A) is

(5.54)

(5.57)

(5.58) TVuw (0) = [Ze7"|ZF — iDo| ™"

where Dy is the p X p diagonal matrix consisting of all §’s on the diagonal.
Since Z; is Hermitian positive definite, there exists a unitary matrix U such that

(5.59) U'z'U = Dy-1.
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In (5.59) Dy-1 denotes the p X p diagonal matrix consisting of (AT", -+, A3")
down the diagonal and A;, - -+, A, denote the eigenvalues of Z;. From (5.58)
and (5.59) one obtains
Vo (0) =[O =" (U [T 25" — Do ™ [U™

(5.60) D e P

— D | D . .D -n _ 1 2 D .

| N ll I A1 1. GI ()\Tl — ’Le)"()\.z_l — 7:0)” .. ()\;l — 7;0)"

Since ¥ray(0) is a rational function of 6, the probability density function of
the distribution of tr (A) may readily be obtained by Fourier inversion.

6. Applications. A continuous parameter real (zero mean) multiple stationary
Gaussian time series [Xi(t), Xa(t), - -+, X;(¢), - -+, X,(¢)] has the (real) spec-
tral representation

(6.1) X;(t) = /0-“’ [cos wt dU;(w) + sin ot dVi(w)],7 =1, -+, p.

The integrals in (6.1) are stochastic integrals. Heuristically, one may regard
the “differentials’” dU;(w), dV;(w) as infinitesimal Gaussian random variables.
The means are

(6.2) EdUjw) =0 = EdVi(w),j=1,---,p.
The covariances are (in the case of absolutely continuous spectral distribution
functions)

/ = . . / — 0 if w # w,
E dUj(w) dUj(w) = E dVi(w) dVi(w) = {Sji(w) do if =0,
E dU;(e) dVi(e) = 0,7 =1, -+, p.
0 if w3z w,
cip(w)do If w=uw,
0 if ws (_o,
ij(w) dw if w = w,’

j¢k;j$k=17"'7p'

(63) B 4U,(0) dUL(W) = B dVy(w) dVi(e) = {

E dU;(w) dVi(o') = —E dV;(w) dUk(e') = {

In (6.3) sj(w) is the spectral dentity of the X;(t) component of the multiple
time series, cjz(w) the cospectral density between the X;(t) and Xi(t) com-
ponents, and ¢;(w) the quadrature spectral density between the X;(t) and
Xi(t) components. Let

dS;(w)
dS;(—w)
One may then write

(6.5) () = [ e asw)i=1,,p

1dU(0) — i dV;(w)] for o = 0,
dSi(w);j =1, -+, p.

(6.4)
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Furthermore, by virtue of (6.2) and (6.3)
(66) EdSJ(w) =0,j=1--,p
and

0if o 5 o
1sii(w) doif 0 = o,

E dSj(w) dS;(v) = {

I

(67) j=17""p;

0if w 5% o
3si(w) dwif o,

E dSj(w) dSi(w) = {

I

J#k;j;k= 1;"';p‘

In (6.7) sjp(w) = ca(w) + igu(w). The spectral density matriz S(w) of the
multiple stationary Gaussian time series [Xi(2), - - - , X,(t)] is given by

(6.8) S(w) = [lsp(w)] .

By virtue of (6.3) the infinitesimal Gaussian random variables dU;(w), dV;(w)’
j=1,--+, pat a given frequency w possess the special covariance structure
described by (3.1). Furthermore, by virtue of (6.3) the infinitesimal Gaussian
random variables dUj(w), dVi(w), j =1, --+, p and dU('), dVi(e'), j =
1, - -+, pat two distinet frequencies w, o (@ # ') are uncorrelated and therefore
independent. Therefore, from (6.6) and (6.7) the complex “differentials”
[dSi(w), - - -, dSy(w)] at a given frequency « have a (zero mean) p-variate com-
plex Gaussian distribution with Hermitian covariance matrix given essentially
by (6.8). Furthermore, at two distinet frequencies w, o’ (0 ¥ «') the complex
“differentials” [dS;(w), - -+, dSp(w)] and [dSi(«’), --+, dS,(«')] are inde-
pendently distributed.

Consider now a finite —7 = ¢ < T realization (sample) of the (zero mean)
multiple stationary Gaussian time series [Xi(%), - -+, X,(¢)]. Let wx = 0 denote
a fixed frequency, and

AU () = [ LK O + X(~01 4
(6.9) r
AVi(a) = [ 5 K Ki() = X(—0)] i=1p.

It is intended that K., (1), K, (t) be chdsen so that AU;(wy), AV;(ws) approxi-
mate dU;(wi), dV;(w:) respectively. From (6.1)

l[Xj(t) + X;(—)] = fw cos wt dU;(w),
2 o
(6.10) ]
LX) — Xi(—0) = [ sin ot dV(o), i1
0
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From (6.9) and (6.10) one has

(6.11) AU;(e) = f F o () dU;3(e)
where
T
(6.12) Foy(e) = /0 Ko, (1) cos ot di.
Similarly, one has
(6.13) AV;(w) = [ Fruy(w) dV,(w)
where
T
(6.14) Fu(w) = [ Kuuy(t) sin at di.
0

The functions F..,(w) and F,,, (w) are called filters. Notice that if the filters
Foo (@), Fyu(w) were Dirac delta functions centered at » = w; , one would have
from (6.11) and (613) AU,'(wk) = de(wk), and AV,(wk) = de(wk). The
filters Fou,(w), Fsw(w) approximating Dirac delta functions centered at o = wy
that are attainable with a finite 7' are such that in the frequency range
w 2 0 Fop(w) and Fy,(w) are very nearly equal and the smallest attainable
bandwidth B of each is of the order of 47/T. (Attainable filters are discussed in
Goodman [8].) Let

(6.15) ASj(wx) = 3[AU;(w) — tAVi(wp)] for ey = 0,5 = 1, -+, p;
and
(6.16) Eup = [ASi(wr), <+, ASy(wr)].

If the filters Fo.,(w), Fsu(w) were exactly equal, say Fou(w) = Fop(w) =
F, (o), and F,,(w) vanished outside the frequency band vz — 3B = w = wi +
1B, and the spectral density matrix S(w) were constant over the frequency band
wr — 2B £ w £ o, + 1B, then &,, would be a p-variate (zero mean) complex
Gaussian random variable with Hermitian covariance matrix

(6.17) Z;, = CrS(wr)
where the constant Cr is given by
wpt+iB
(6.18) Co= [ P da
wr—%B

If the spectral density matrix S(w) were constant over the frequency band
wy —(m+ 3B = 0 = wy + (m + %)B then (if the frequencies w4, are equally
spaced a frequency interval B apart) £, ey = —m, -+ ,mwould be (2m + 1)
independent and identically distributed p-variate (zero mean) complex Gaussian
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random variables with Hermitian covariance matrix Z;, . By the preceding

theory of statistical analysis based on the multivariate complex Gaussian distri-
bution one would have

m

(6.19) Su, = W@+ D] Y €y ors,

P=—

(apart from a constant factor) a complex Wishart distributed estimator for the
spectral density matrix S(ws). Functions of the elements of the spectral density
matrix S(wz) are statistically estimated by taking for estimators the correspond-
ing functions of the elements of the random matrix 25% .

Attainable filters Fou, (), Fs, (@) do not possess exactly the ideal properties
described above. Certain conditions on the spectral density matrix S(w) must
therefore be imposed to make the preceding theory practically applicable. These
conditions are: (1) S(w) effectively vanish beyond a suitable cutoff frequency
we 5 (2) S(w) be sensibly constant within the frequency band wy —(m + 3)B =
w = wp + (m + 3)B, and (3) each of the elements of S(w) be such that the
integral of its absolute value over the frequency range exterior to the band
wp— (m=+3)B = w = o+ (m+ %)Bbebounded by a not too large constant.

In various fields such as geophysics and electrical engineering multiple records
of fluctuations considered stationary Gaussian are quite common. For example,
in geophysics such records may be simultaneous measurements at several posi-
tions in the ocean of the height of gravity waves generated by the wind. The
preceding theory is useful in measuring (estimating) the statistical structure of
such fluctuations from finite lengths of record. The theory is also useful in meas-
uring (estimating) deterministic physical constants. For applications in that
direction the reader is referred to Goodman [7].

Comment. Consider a (zero mean) multiple stationary time series
[Xi(t), + - -, X,(t)] that is not Gaussian. Equations (6.1) through (6.8) still hold
except that one now may no longer regard the “differentials” dU;(w), dV;(w)
and dS;(w) as Gaussian random variables. One desires that Sgwk given by (6.19)
be (apart from perhaps a constant factor) a complex Wishart distributed esti-
mator for the spectral density matrix S(ws). Clearly, that will be so if E;Hf )
r = —m, ---, m are independent and identically distributed p-variate (zero
mean) complex Gaussian random variables with Hermitian covariance matrix
Z¢,, given by (6.17). If the filters Foo (), Fy,(w) nearly possess the ideal prop-
erties described above and the spectral density matrix S(w) satisfies the three
conditions enumerated above, &, 4rs? = —m, .-+, m will very nearly have
these properties ¢f AU;(wpir), AVi(wpyr), 7 = —m, --+ ,m;7 = 1, -+ -, p given
by (6.9) are Gaussian. Now, from (6.9), (6.11), and (6.13) one notes that the
AUj(wpsr), AVi(enyr) are obtained by “filtering” the X;(¢). If the filters
Feupyr(0), Fouy,y,(0) “performing” the filtering approximate the ideal filters
described above, they are narrow-band filters. Many stationary non-Gaussian
processes become nearly Gaussian when “passed through’ sufficiently narrow-
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band filters. The band-width B of the filters Fou,,,(®), Fou,,,(«) may be made
small for moderately large sample lengths 7. These heuristic remarks suggest
that the AU;(wp4r), AV ;(wiyr) may be nearly Gaussian for many stationary
non-Gaussian processes X ;(t). Consequently, for many non-Gaussian (zero mean)
multiple stationary time series [Xi(?), - -, X,(8)], 25% given by (6.19) is (apart
from perhaps a constant factor) an estimator for the spectral density matrix
S(wi) that is nearly complex Wishart distributed. More generally, these heu-
ristic remarks suggest that the results of statistical analysis based on the multi-
variate complex Gaussian distribution may be practically applicable to empirical
spectral analysis of many non-Gaussian multiple stationary time series when
sufficiently long finite realizations are available.

7. A comparison between certain distributions of complex and real multi-
variate Gaussian statistical analysis.

Notation. In order to compare the results of complex and real multivariate
Gaussian statistical analysis the following notation is introduced. A subscript C
on a symbol indicates that the symbol pertains to multivariate complex Gaussian
statistical analysis and a subseript R on a symbol indicates that the symbol per-
tains to multivariate real Gaussian statistical analysis. Thus, a (zero mean)
p-variate complex Gaussian random variable is now denoted by %.. A (zero
mean) p-variate real Gaussian random variable is denoted by £;. The p X p
Hermitian positive definite complex covariance matrix of £¢ is denoted by Z¢:

and Z¢¢ = |locil| - The p X p symmetric positive definite real covariance ma-
trix of £z is denoted by Zr; and Zgz = |lors| . The inverse matrices ot =
low]| and 27; = [lo%] .

Cowmparison 7.1. The probability density functions of the distributions of a
complex and real (zero mean) p-variate Gaussian random variable are respec-
tively

(7.10) p(ke) = (1/7” |Zai|) exp (—EoZGite),
(7.1z) p(tr) = (1/(27)"" |Zae| ) exp (— 3£ Zxitn).

Notation. Let Ay = Z:,lijcg'c where £;¢,7=1, ---,nareindependent identi-
cally distributed p-variate complex Gaussian random variables constituting a
sample of size n from a population with probability density function p(£¢) given
by (7.1¢).Let Ay = Z?,limfgn where £z ,7=1, --- , nareindependent identi-
cally distributed p-variate real Gaussian random variables constituting a sample
of size n from a population with probability density function p(£z) given by
(7.1g).

ComPARISON 7.2. The random p X p Hermitian matrix A¢ is complex Wishart
distributed. The random p X p symmetric matrix Ap is Wishart distributed.
The probability density functions of the distributions of the matrices A¢ and
A are respectively

(7.2¢) pw(de) = [lAcl”_p/Ic(Ecs)] exp (— tr (E-c-éAC))
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where
Io(Ze) = 7 T(n) --- T(n — p + 1) |Zeg|",
and
n—p—1)
(724) p(de) = A2 exp (1 tr (351 4))

Tr(Zry)

where Iz(Zge) = 27 "2*®PT(n/2) - T[(n — p + 1)/2] |Zze|™2. The density
pw(Ac) is defined over the domain D4, where A is Hermitian positive semi-
definite. The density pw(Az) is defined over the domain D, where Az is sym-
metric positive semi-definite.

Notation. Let Ac = ||Acu| and AG' = [|AZ| . Let Ar = ||Arsul| and A7" =
|A%|| . The multiple coherence between the pth component of £¢ and the first
(p — 1) components of £¢is Repp1,.1 =1 — (ccppos’) . The sample multiple
coherence between the pth component of £ and the first (p — 1) components
of £cis REpps s = 1 — (AgpAZY) 7" The square of the multiple correlation
coefficient between the pth component of & and the first (p — 1) components
of £i8 Ripp1,...1 = 1 — (0rppos?) . The square of the sample multiple corre-
lation coefficient between the pth component of £ and the first (p — 1) com-
ponents of £z is Ri . p1.... 1 — (Ag,,AZ)7L

COMPARISON 7.3. The probablhty density function of the distribution of

Cp p—1,--1 18
(7.30) p(Ro) = [T(n)/T(p — 1)T(n — p + 1)]

- (1 — Re)"(Re)"™(1 — Re)" " F(n, n; p — 1; RoR%).
In (7.3¢) for brevity Ripp1,...1 and Re,p....1 are denoted by R% and R% re.
spectively. The probability density function of the distribution of R} p.py,...1 ig

p(Bz) = [(3n)/T(3(p — 1)TG(n — p + 1))]
(1 = RR)M(RR)' (1 — BR 7R (G, g 3(p — 1); BRRR).

In (7.3z) for brevity Rippi,.... and Rypp1...1 are denoted by R: and R%
respectively.

Notation. The conditional coherence between the pth and (p — 1)st compo-
nents of £c with respect to the first (p — 2) components of £¢is Rep p_11p2,---1 =
|27 (e57 " ¢%?) ™", The sample conditional coherence between the pth and
(p — st components of Eg with respect to the first (p — 2) components of &¢
is Rppiipa..a = |AZT?P(AZ?7'AE") ™", The square of the partial correla-
tion coefﬁcient between the pth and(p — 1)st components of & with respect
to the first (p — 2) components of £z is Rip p1.p2,...n = (ob "7)(cd " e2") 7
The square of the sample partial correlation coefficient between the pth and
(p — 1)st components of £ with respect to the first (p — 2) components of £r
is Rippipza = (AET")"(AR"AR) L

COMPARISON 7.4. The probability density function of the distribution of

(7.3z)
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2 .
Cp,p—1lp—2,-+,1 1S

p(Re) = (n—p+1)
(1 =RO"PPA — RO F(n —p+2,n —p+2; 1; RERY).

In (7.4¢) R% and R% now denote R%, p1ips,...1 and Rop p_1p-z.... 1 Tespectively.
The probability density function of the distribution of R, p_1.ps,....1 is

D2y _ I‘(%('n —p+ 2)) _ p2\n—p+2) [ P2 -}
(74g) p(Ex) TETGEMM —p + 1)) (1 — Rg) (Rz)

(1= R OF (G — p + 2), 30— p + 2); 5 BR BR)

(740)

In(7.4z) R% and R: now denote R, p1.ps,..... and Rip p1.p-s,....1 respectively.

Comment. In the present introduction to statistical analysis based on the
multivariate complex Gaussian distribution attention is directed to distributions
that have real counterparts. Not all distributions of multivariate complex
Gaussian statistical analysis are of that type. For example, if one represents in
polar form the complex random variables that occur in multivariate complex
Gaussian statistical analysis, then the marginal distributions of phase angles
have no real counterparts. The reader is referred to Goodman [7] for examples of
noncounterpart distributions.
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John W. Tukey of Princeton University for suggesting the study of the complex
Wishart distribution, to Dr. Stanley Katz of the American Cyanamid Company
for encouraging discussions, and to the referee for suggesting that the distribution
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