ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Eastern Regional Meeting, Cambridge, Massachuseits,
May 6-7, 1963. Additional abstracts appeared in the March, 1963 issue.)

6. Asymptotic Joint Distribution of Quantiles From a Bivariate Distribution.
J. B. Barroo, W. L. Harkness and O. P. Srivastava, Pennsylvania
State University.

Let (Xi, Y;:),7=1,2, .-+, n be a random sample of size n from an absolutely continuous
d.f. F(z, y), with joint p.d.f. f(z,y).Let ZW = 25" =< - = ZP and WP = W§” < -+ =
W™ be the ordered valuesof X; , -+, X,and Y, , - - -, Y, respectively. Further, let £. , ns be
the unique real numbers satisfying F1(£,) = «, F2(ns) = B, where F1(z) and F.(y) are the
marginal distribution functions of X and Y (with marginal p.d.f.’s fi(z) and f:(y)) and
fi(ga) > 0, f2(ng) > 0. Also let r, and s, be two sequences of positive integers such that
liMpw /7 = o, liMp.n 8a/n =B8,0 <a<1,0<B<1,s0 that Zi:) and W are sample
quantiles of order « and 8.

If

E_(a(l—~a) aﬂ—ql)
ag— q sa—p)/’
where ¢1 = F (£, , 1) is non-singular, then the limiting joint distribution of the r.v.’s n
(Zi:) — ta) f1 (£a), n(WiZ) — ng)f2(ng) is a bivariate normal distribution with mean vector

0 and variance covariance matrix =. We note that Zﬁ:), Wiz) are asymptotically independent
if and only if F (¢, , 18) = 1 = aB = F1(¢,) Fa(mg). This result has obvious generalizations.

7. On the Pessimum Interference With Random Signals (Preliminary report).
NeLson M. Bracuman, Sylvania Electronic Defense Laboratories,
Mountain View, California. :

For a communication channel accepting as input one real number per unit time of vari-
ance <P, adding to it independent normal noise of variance N and interference of variance
=J which may depend on the signal (sequence of n — « numbers representing one of
M — « messages) being sent and the M — 1 alternative signals, the channel capacity can
be approached by selecting the M signals randomly from among the vectors of length (nP)?
for sufficiently large N (Trans. Information Theory IT-8 (1962), 48-55 and S53-S57).
The proof depends on establishing that the worst interference with such random signals is
either (1) half the difference between the transmitted signal and a nearest alternative signal
or (2) that negative fraction of the transmitted signal plus additional noise which mini-
mizes the effective signal-to-noise ratio. To show no other sort of interference can do worse,
we suppose J too small for (1), and (2) unlikely to cause errors. Consequently, the caps
which the faces of the Dirichlet region of the transmitted signal cut from the ‘‘noise sphere’’
of radius (nN)% surrounding the sum of the transmitted signal plus interference have radii
<% m — ¢, and no more than a bounded number of them cover any point of the noise sphere
(Ann. Math. Statist. 32 (1961) 916). Hence (N. M. Blachman and L. Few, ‘Multiple Packing
of Caps on a Sphere’’, Mathematika 10 (1963)), only a vanishing fraction of the surface of
the noise sphere lies outside the Dirichlet region, and the error probability — 0.

678

4

4

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @f‘%%
The Annals of Mathematical Statistics. MINGI

! ®
www.jstor.org



ABSTRACTS 679

8. An Analysis for Modified Triangle Tests in Sensory Difference Experi-
mentation. Rarpe A. BrapLEY and Tom J. Harmon, Florida State Uni-
versity.

In a triangle sensory difference test two like samples and an odd sample are presented for
sensory selection of the odd sample. It may be assumed that stimulus responses z: , ; and
y exist on a subjective continuum and are normal, independent, have common variance
o2 and means, 0, 0, x respectively. In this way Bradley (Biometrics 14 (1958) 566, 19 (1963)
in press) and Ura (Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. T (1960) 107-119) obtained
Pa , the probability of correct selection, in terms of /o and certain relationships with other
sensory tests. The determination of correct selection was based on the configurations and
spacings of 2, , z2 , ¥.

In a modified triangle test, the respondent also scores the intensity of the supposed
difference. If the selection is correct, he approximates to W = |y — §(z1 4 2»)| and if
incorrect to Q = |21 — 4 (y + z2)| or |z» — 3 (¥ + 21)|. The conditional probability density
function for W is f(W | A) = 4(3w¢?)~t - I (2!W /3s) cosh (2uW/30?) [exp{ — (W? + u?)/
302}]/pa where I (4) is the integral of the standard normal p.d.f. from 0 to A. Similarly,
F@Q] A" = 4@Bme?)MI{(20Q/36) — (u/2b0)} + I{(2}Q/30) + (u/2%)}] cosh (uQ/30?) -
[exp{ — (Q2+ 3u?)/30%}]/par where pa- = 1 — pa and A’ indicates incorrect selection. The
likelihood function for N triangle tests is developed, estimates of x and ¢ from observed
values of W and Q are obtained by iterative means, and the large-sample, likelihood-ratio
test criteria is applied. Applications to experimental data have been made with apparent
success.

9. On the Estimation of Mixing Distributions. D. C. Bogs, Bell Telephone
Laboratories, Inc., Holmdel, New Jersey.

Let 5C = (Ho(z):Ho(z) = Diti 6F; (z), 6: > 0,5 =1, -+, k+1, > ;= 1} be
the family of finite mixtures of any fixed set of k¥ 4 1 (distinct) distribution functions
(c. d. £’8) Fy, -+ , Fry1 . Estimation of the parameter 8 = (61, -+, 6) (6o =1 —

S~k 1 6;) for identifiable (Teicher, “Identifiability of Mixtures,” Ann. Math. Statist. 32
(1961) 244-248) families JC is considered. Estimation of the mixing ratio (k = 1 in JC) is
discussed at length. Identifiability is then evident. Necessary and sufficient conditions
(NSC) for the uniform attainment of the Cramér-Rao lower bound are derived. The class
of 6-efficient estimators is found; also, the minimax unbiased estimator is a member of this
class and it is characterized. NSC for the identifiability of finite mixtures (JC) are given.
It is proved that under mild regularity conditions a NSC for the existence of an estimator
uniformly attaining the minimal ellipsoid of concentration is that the density be
of Darmois-Koopman form. This result is utilized to give NSC for the existence of an esti-
mator which uniformly attains the minimal ellipsoid of concentration when the density is
a finite mixture. The §-efficient family of estimators is derived; also, those estimators with-
in the 6-efficient family which are CANE (consistent asymptotically normal efficient) are
characterized.

10. On Certain Bounds Useful in the Theory of Factorial Experiments and
Error-Correcting Codes. R. C. Bosk and J. N. Srivastava, University
of North Carolina.

Let the function m, (r, s) denote the maximum number of points that one could choose in
an (r — 1)-dimensional projective space PG (r — 1, s) so that no ¢ of the points are depend-
ent. This function is of great interest in the theory of factorial experiments and also of
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error-correcting codes. In this paper the following bound has been obtained for this function

for the case t = 3: N, = m + (7;) (s — 1)2/f(m), where f(m) = (s — 1) + i(m — 2) (s — 2)

where N, is the total number of points in PG(r — 1, s). This bound is better than the
previous known ones for s even (s > 2) and also for some odd values of s, including s =
3, 5.

11. The Present Value of a Renewal Process (Preliminary report). Giorgio
Davr’Acrio, University of North Carolina. (Introduced by G. E. Nichol-
son, Jr.)

Given a renewal process with inter-arrivals times X; equally and independently
distributed with d.f. F(z), the “present value’’ of the renewal process is defined by C =
1 exp(—pT:), where Ty = 0, T; = X, + Xo + .-+ + X, , and p is the force of interest.
Thus C is the sum of the costs of renewals (supposed all equal to 1), considered at time
T, . An explicit expression for the characteristic function of C is found when X, is negatively
exponentially distributed. From this expression, it is easily seen that the distribution of C
tends to the normal distribution as p tends to zero. The asymptotic normality of C' can be
investigated also for other classes of distributions. We have thus: Theorem 1. If all the
moments of X exist, then C is asymptotically normally distributed as p tends to zero. The
existence of all the moments of X; does not appear to be necessary for the asymptotic normal
distribution of C. However, the following can be established: Theorem 2. If EX?"*? < «,
EX?+¥ = o for some positive integer r, and 8, 8’ with0 < 6§ < 8’ < 1, then EC* tends to
infinity as p tends to zero.

12. Optimum Allocation of Measurements (Preliminary report). M. H. Ds-
Groor, Carnegie Institute of Technology. (Invited)

The following example, initially suggested by J. Marschak, is a prototype of the problems
studied. Consider a population of coins. Associated with each coin is a probability Z of
heads and it is desired to make some inference about the distribution of Z in the population.
One can select a random sample of k£ coins from the population and toss the ith coin n;
times (¢ = 1, --- , k). Given that the total number n of tosses is fixed, the problem is to
find an optimum choice of k and n;, - -+ , nx . An optimum allocation will in general depend
on the family of possible distributions of Z being considered as well as on the type of in-
ference to be made. However, for some families of distributions it can be shown that one
allocation, say D*, is optimum regardless of the type of inference to be made. This occurs
when the allocation D* is sufficient, in the sense of Blackwell (Ann. Math. Statist. 24 (1953)
265-272), for any other allocation. In the general allocation problem, Z is an
arbitrary random variable with an unknown distribution and the (known) conditional
distribution of the observations given Z = z need not be binomial.

13. Asymptotic Efficiencies of the Moment Estimators for the Parameters of
the Weibull Laws (Preliminary report). Satya D. Dusgy, Procter &
Gamble Company, Cincinnati, Ohio. (By title)

Let the probability density function of a random variable X be represented by f5(z) =
mef! (x — @)™ lexp [—071 (x — G)™], x> G, 0 > 0and my (> 0) known, and fx(z) =0
otherwise. The asymptotic properties of the moment estimators for G and 6 are investi-
gated. The expression for the covariance matrix of these estimators, valid for large samples,
is derived. In a previous paper entitled, ‘‘On Some Statistical Inferences for Weibull Laws”
this author has considered the maximum likelihood estimators for the parameters of Weibull
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laws and derived the large sample covariance matrix of such estimators. It is valid when the
shape parameter is larger than two (Ann. Math. Statist. 33 (1962) 1504-1505). Taking the
determinant of a covariance matrix as a measure of the generalized variance, the joint
asymptotic efficiency of the moment estimators for G and 6 with respect to their maximum
likelihood estimators is obtained. Some special cases are discussed. The asymptotic effi-
ciencies of moment estimators depend only on the shape parameter, m, . For some values of
mo , the moment estimators seem to be very highly efficient. The asymptotic properties of
the moment estimators allow us to consider testing of hypotheses and construction of con-
fidence regions for meaningful parametric functions.

14. Bayes Solutions Involving a Dummy Parameter. FRIEDRICH GEBHARDT,
University of Connecticut.

Let (y, z) be a point of the sample space (R!, Z) with non-atomic measure u and let
fi(y — a, 2) be the probability density under hypothesis H; ,¢ = 1, -+ , n, where a is an
unknown parameter. For any terminal decision d, the loss function L; under hypothesis H;
may depend on the outcome (y, z) of the experiment and on the unknown parameter a in
the form L; = L;(y — a, z; d). A decision function dy(2) (not depending on y) is called a
(generalized) Bayes solution to the a priori probability (¢1, :-- , ¢n), if

> ¢'1‘/ Li(y, z; ds(2))f:(y, 2) dp

. . 1 +t

< lim inf Y > b [f Li(y — a,2;d(y,2)-fi(y — a, 2) d,u:l da
t=1,2,+¢. —t

for any decision function d (y, z) which fulfills certain measurability conditions. Under some

assumptions regarding the compactness of the decision space and the integrability of L;

and y - L; , it can be shown that Bayes solutions exist.

15. Exact Moments and Percentage Points of Order Statistics From the Logistic
Distribution and Applications to Estimation of Parameters of the Dis-
tribution. SuaNTI S. GUPTA and BaHUPENDRA K. SHAH, Purdue University.

Let X denote the kth order statistic in a random sample of size n from the logistic
distribution L (0, 1) with the ¢. d. f. F(z) = 1/[1 + exp)(@~#rz)]. General expressions are
derived for the moments of X in terms of Bernoulli and Stirling numbers. Exact moments
are given for all order statistics for n = 1(1)10 and numerical values for the first four cumu-
lants are computed. Percentage points of X ) are tabulated for n = 1(1)10 for all ¥ and for
n = 10(1)25, for some order statistics. The use of the percentage points for interval esti-
mators of the location parameter is discussed. Efficiency of estimators based on single order
statistics is studied. Application to life testing problems are discussed. An expression for
the generating function of the product moment is obtained. Unbiased nearly best linear
estimates based on order statistics are obtained. This paper extends some work of Plackett
(Ann. Math. Statist. (1958) 131-142) and Birnbaum (Ann. Math. Statist. (1958) 1285 ab-
stract) and has several new results.

16. Estimation of the Three Weibull Parameters, Using an Overlooked Con-
sequence of a Well-Known Property of the Weibull Distribution. LEoN
H. HerBacH, New York University.

In much routine maintenance in life testing work, actual times of failures and replace-
ment are not known. However, data are often kept indicating the number of failures and
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replacements made in some time interval. It is well known that if the time to failure, T
has a Weibull distribution, i.e., if P(T > ¢t) = exp { — [t — «)/9]f}, then the reduced
variable U = (T — «)f has an exponential distribution with mean, § = »8. It is equally
well known that if times between failures occur independently according to an exponential
distribution, the number of failures in a fixed time interval has a Poisson distribution. These
two facts enable one to estimate the parameters, «, 8 and 5 from the type of data often kept
routinely.

17. On an Unbiased Ratio Estimator in Sampling With Replacement With
Unequal and Varying Selection Probabilities. J. C. Koop, North Carolina
State College.

In sampling with replacement with selection probabilities varying from draw to draw
an unbiased estimator of the population total T = D i #; is given by T’(s,) = [A*0"/
N=P(s,)] - (N/v) Eie% z; , where s, is the sample of v distinet units derived from a sample
of » and P(s,) is the total probability obtaining s, . The optimum value of P(s,), i.e.,
(A*0"/N=) - (N /v) Emv z;/T, leads to the ideal result V[T’ (s,)] = 0. Then if there is a
characteristic y; closely related to z; (¢ =1,2,---, N), and we choose P’(s,) = (A*0"/
N») (N/v) - Ei“v yi/ 211 i , then a simple unbiased estimator, T (s,) = (Ziesv z:/
Diea,¥i) 2ot yi , will be obtained with a variance deviating from zero to the extent of
departure from proportionality of the y’s. A sampling procedure (where P’(s,) is exactly
as expressed in its formula) and the estimate of the variance of T (s,), are both available.

18. Some Estimators in Sampling With or Without Replacement With Unequal
Probabilities (Preliminary report). J. C. Koop, North Carolina State
College. (By title)

On the basis of a sample s of n drawn one by one from a finite universe U of N elements
without replacement, an unbiased estimator Tfs,,) = Em,, P(sa | 2) xi/P(ss) of the popu-
lation total 7 = Y &, z; , where P (s.) is the total probability of obtaining s, and P (s | ¢)
is the total probability of obtaining s without element ¢, given that it was removed from U
at the first draw, has zero variance, when z; is exactly proportional to p (i) (> 0), the
probability of selecting element ¢ (i = 1, 2, --- N) at the first draw. This is so because
D ies, P(@1)P(sn | 4) = P(sa). In sampling with replacement with unequal probabilities
varying at each draw, the analogue of T’ possesses a similar property, but whereas there
the key condition for zero variance hinges only on the selection probabilities at the first
draw, here, it hinges only on the selection probabilities at the last draw. The practical
implications of these ideal results in sample survey work are obvious. Unbiased estimates
of variance are available. Murthy’s (1957) and Basu’s (1958) estimators (Sankhya, 18 (3
and 4), 382, and 20 (3 and 4), 294, respectively) are special cases of T’ and its analogue.

19. On the Distribution of Sum of Identically Distributed Correlated Gamma
Variables (Preliminary report.) SamuerL Kotz and Joun W. Apams,
University of North Carolina.

A distribution of a sum of identically distributed Gamma-variables correlated according
to an “‘exponential”’ autocorrelation law pi; = pli=il (i,5 =1, --- , n) where p;; is the cor-
relation coefficient between the 7th and jth random variables and 0 < p < 1 is
a given number is derived. This is performed by determining the characteristic roots of the
appropriate variance-covariance matrix using a special method and by applying Robbin’s
and Pitman’s result on mixtures of distributions for the case of Gamma-variables. An
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“approximate’’ distribution of the sum of these variables under the assumption that the
sum itself is a Gamma variable is given. A comparison between the ‘“‘exact’’ and the ‘“ap-
proximate’’ distributions for certain values of the correlation coefficient, the number of
variables in the sum and the values of parameters of the initial distributions are presented.

20. On Multitreatment Rank-Order Tests for Paired-Comparisons. KRISHEN
L. MEHRA, Michigan State University. (By title)

For testing the hypothesis of no-difference among k treatments on the basis of <I2c> inde-

pendent samples of paired observations viz (Xi;, Xj) I = 1, -+ Ng; for the pair (z, 7)s
cons1der the following family of rank-order statistics: Ly (¢w , {) = E._, {3 i (Ve ’)/
NIl = [Jh ¢ @) dulk, where Vi = 2 ¥i oy (RSY/N + 1) - sign Z§5D | R§Y
the rank of |Z{"'"| = |X;; — X ;| in a combined ranking of the N = > . Z,>. i abso-
lute [Z§#?| @ =1, -+ Nij,1 <4 <j =< k) and {¢x(w)} a sequence of step functions: {y(u) =
¢v (/N + 1) for a/N fu<(a@+1)/N,a=0,:--- N — 1 such that limy., fﬁ {en(u) —
¢(u)}? du = 0 (see also Puri, Ann. Math. Statist. 33 (1962) 827). The relative asymptotic
efficiencies of these statistics are obtained for certain ‘‘contiguous’ alternatives by ex-
tending the results of Hajek (Ann. Math. Statist. 33 (1962) 1124-1167). One observes, how-
ever, that the statistic L ({~ , {), constructed similarly but with each V$? now based on
separate rankings for each pair (¢, j), is equally Pitman-efficient as Ly ({» , {). The question
(unresolved under Pitman criterion) of preference between the two procedures—‘‘joint”’
or “separate’’ rankings—is investigated by comparing the local powers of Ly and L* for
large k and finite sample sizes. The results suggest that for testing against shift in location,
the statistic Ly (¢v , ¢) is preferable to its counterpart L} (fn , ¢) except for alternatives for
which Durbin’s statistic is relatively Pitman-efficient than Ly (¢x , ¢). Similar conclusions
also hold for Lehmann’s distribution-free alternatives.

21. Note on a Coin Tossing Game. Skt GoraL MoHANTY, State University of
New York.

Given two coins, 1 and 2, with probabilities p; and p; of obtaining heads in a single trial
(p1 + p2 > 1), a game is played with the following rules: (1) Toss coins 1 and 2 alternately
and (2) stop making further trials when for the first time the total number of heads exceeds
the total number of tails by exactly a (a = 1). It has been shown that the game JC, , which
starts with coin 1, and the game 3C. , which starts with coin 2, are complete.

22. A Characterization of the Exponential-Type Distribution. G. P. PaTiL,
MeGill University.

A real-valued random variable X is said to have the exponential-type distribution if its
frequency function is given by f(z; w) = a(x)e**/g(w) where the symbols follow usual
restrictions. We show that the exponentlal type dlstnbutlon is characterized by a recursion
relation, between the cumulants given by K, = K, where K ; ; is the jth order cumulant of
a distribution and the prime denotes differentiation with respect to the parameter.

23. Unbiased Ratio and Regression Estimators in Multi-Stage Sampling.
J. N. K. Rao, Iowa State University.

Inrecent years considerable attention has been given in the literature to the construction
of unbiased ratio and regression estimators, since the classical ratio and regression esti-
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mators are biased. Mickey (J. Amer. Statist. Assoc., 1959) has given a method of construct-
ing a broad class of unbiased ratio and regression estimators in simple random sampling
which includes the well-known Hartley-Ross unbiased ratio estimator. However, since in
practice multi-stage sampling is often employed, it seems necessary to extend Mickey’s
method to multi-stage designs. In this paper we extend Mickey’s method to two-stage
sampling and construct two different classes of ‘‘combined’’ unbiased ratio and regression
estimators. The estimators in class 1 depend on the sum of the population totals X; of the
n primaries selected in the sample, where X, is the ¢th primary population total of the
supplementary variate ‘“z’’ (this sum may not be known in practice). The estimators in
class 2 depend only on the overall population mean X of the variate ‘“z’’, so that the esti-
mators in class 2 may become more useful in practice. A simple method of variance estima-
tion, similar to that of Goodman and Hartley (J. Amer. Statist. Assoc., 1958) for the un-
biased ratio estimator in simple random sampling, is proposed.

24. The Robustness of ANOVA for a Class of 2-Associate PBIB Designs.
P. V. Rao, University of Georgia.

Let U = [Treatment (eliminating blocks) SS]/[Treatment (eliminating blocks) SS +
Error SS]. Under the hypothesis that the treatment effects are all equal and certain rando-
mization conditions are satisfied, the permutation moments of U were obtained by Welch
(1937) for Randomized Blocks design and by Mitra (1960) for Balanced Incomplete Block
design. In this paper, the first two permutation moments of U are obtained for 2-associate
PBIB designs with A; = 0 and A, = 1 under the following assumptions: (i) the treatment
effects are all equal, (ii) the blocks of the design are assigned to the blocks of the experi-
mental material completely at random, and (iii) within each block, the treatments are
assigned to plots at random. The permutation theory mean of U under these assumptions
is the same as its mean with ANOVA assumptions, but the variances differ in the two situa-
tions. The permutation theory variance of U for a 2-associate PBIB design is equal to
20—1)[(w—1) r — 1) (k — 1) +m]l/bk(k — 1)} [1 — (b — 1)71V], where v, b, k, m are
the parameters of the design and V* is the coefficient of variation of the block variances.
This result is used to assess the robustness of ANOVA for this design.

25. Bayes Sequential Procedures for Some Binomial Problems (Preliminary
report). SUDHINDRA NARAYAN Ray, University of North Carolina.

Consider a sequential decision problem for deciding whether or not the binomial param-
eter p exceeds 1 when a loss, proportional to a(p) = |p — %/, is incurred only if a wrong
decision is made. Moriguti and Robbins (Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs.
(1962)) studied the optimum ‘“‘boundary’ (sampling rule) and its asymptotic behavior
when the cost is a constant per observation. Their work is here extended to the case of ab-
solute deviation cost, a(p), per observation. The proposed power series representation of
the asymptotic boundary is verified by the derivation of upper and lower bounds
by a method due to Bather (Proc. Cambridge Philos. Soc. (1962)).

All of the above results are extended to a two-population problem in which one wishes
to decide which of the two binomial parameters is the larger; the role of [p — 3| above is
played by [p1 — p2|, and sampling is done in pairs with no distinction made between the
two kinds of “‘ties’’. Finally, a modified loss function, proposed by F. J. Anscombe (un-
published) for use in clinical trials, in which the proportionality ‘‘constant’ is reduced as
the sampling progresses, is introduced in each of the above problems. Here, the exact
boundaries are computable from simple recursion formulas. The asymptotic behavior is
also studied.
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26. An Asymptotically Optimal Sequential Design for Comparing Several
Experimental Categories With a Control (Preliminary report). CHARLES
DeWritr RoBErTs, University of North Carolina.

Let X@ be the random variable resulting from a measurement with the jth category.
We denote the probability density of X by g(z, 7;). Wesay § = 0 when 7y, = 75 = -+ =
Tk = T0,andsay @ =jwhenr = -+ =7, =7;, = -+ =71, = roand 7; = 7 + A where
A>0,7=1,2 --- k. For deciding on the true value of 6 three sequential procedures are
examined with specification of how the procedures are carried out in practice. One procedure
is that of sampling in & (or less)-tuples of one observation on each category beginning with
a k-tuple. With this procedure after each observation either we decide a category is better
than the control and stop further sampling or we continue after (possibly) eliminating
categories that appear no better than the control. The second procedure selects at random
an order to examining the categories, and then one-by-one we decide if a category is better
than the control. The third procedure selects after each single observation a category on
which to sample next. With a definite loss function and a cost C > 0 per observation the
three sequential procedures and fixed sample size procedures are compared in a certain
asymptotic sense as C — 0. In particular, it is shown that the third procedure is optimal
and that the other two procedures are not optimal in this asymptotic sense.

27. Bounds on the Probability and Coverage of a Multivariate Tolerance Region
(Preliminary report). ErNEsT M. ScHEUER, The RAND Corporation,
Santa Monica, California.

Letx = (21, -+, Zp) be a random vector with unknown continuous density f. Based on
a sample x; = (zi;, -+, Zpj), J = 1, -+, n a tolerance region R is constructed where
R = {x:xi(ri) <z < Z,’(S;’),i = 11 ) p}y 3},(1) = xt(z) == x.(n),'&= ly Py
and 1 =r;<s;=sn,i=1,---,p. For fixed n andy (0 < v < 1) bounds are given on
« = P{at least 100 v% of the population of the x’s lie in R} and on E {[ --- [z f(x) dx} by
use of a Bonferroni inequality and of results of Wald (these Annals 14 (1943) 45-55). A
relation of these results to confidence regions for the multivariate median is discussed.

28. On a Construction of a Class of Resolvable BIBD. EstaER SEIDEN, Michigan
State University, (By title)
It is shown that one can construct resolvable BIBD for the parameters (v, b, r, k, ) =
(22n1 — 271 2201 2771 27 4 1 1) for m, a positive integer greater than or equal to 2.
The method of construction is geometrical.

29. On the Non-Existence of Balanced Incomplete Block Designs BIBD, With
Parameters (46, 69, 9, 6, 1) and (51, 85, 10, 6, 1). EsTHER SEIDEN, Michi-
gan State University. (By title)

The work of many authors provided either proofs of non-existence or solutions of all

BIBD for r < 10 except in two cases (46, 69, 9, 6, 1) and (51, 85, 10, 6, 1). This gap is now
bridged. It is shown that these two designs do not exist.

30. On Random Variables Which Have the Same Distribution as Their Re-
ciprocals. V. Sesuapr1, McGill University.

Let = be a random variable with p.d.f. (probability density function) f(z). The p.d.f. of
1/z is known to be (1/2?) f (1/z). If z and 1/z have the same distribution, the p.d.f. will
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satisfy the functional equation f(x) = (1/2%) f(1/z). The solution of the functional equa-
tion leads to the existence of certain Mellin Transforms. By looking up a table of Mellin
Transforms and their inverse Transforms, many well-known and commonly used prob-
ability distributions are obtained. Mention is also made of a more general functional equa-
tion which is obtained by considering a two parameter family of p.d.f’s. The equation
then is f(z; @, b) = (1/2%) f(1/z; b, a). It is shown that the p.d.f. of the ratio of two
independent samples from the same distribution satisfy the functional equations. Examples
of random variables (non-negative) satisfying the two functional equations are given and
some of the interesting properties of the distributions are examined.

31. On the Probability of Large Deviations of Families of Sample Means (Pre-
liminary report). J. SETHURAMAN, University of North Carolina.

Let ¢ (w), £2(w), -+ be a sequence of independently and identically distributed random
variables from (2, S, P) into (X, B) where X is a complete separable metric space and B
is the o-field of Borel sets. The distribution of £ is u and the sample distribution of & (w),
-+ £n(w) is u(n, w). Theorem 1. For any equicontinuous class, &, of continuous nonconstant
functions bounded a continuous function with a finite moment generating function, as
n— o, (1/n)log P {w: supseg | [fdu(n, ©) — [fdu| = ¢ — log p5 (¢) where 0 < pg (¢) < 1.
Theorem 2. For any compact (under the u.c.c. topology) class, &, of continuous functions
from X into R* with non-atomic induced distributions, as n — «, (1/n) log P{w: supaeq |
s(n, 0) [A] — plA]| Z €} — log p*(e) where @ = {4}, 4 = {z: fi(®) S &, -+« fu(®) < ai}
for some f(x) = (fi(z), -+ fr(x)) eFand —o < a1, - ar < o, and 0 < p*(e) < 1.
These results are allied to the results of Sanov [Mat. Sb. 84 (1957) 11-44] and possibly, could
be deduced from them. However, direct and simple proofs of these results are presented

here.

32. Significance Probability Bounds for Rank Orderings. PAuL SwiTzER,
Harvard University. (Introduced by Jerome H. Klotz)

Let X, , --+ , Xm be a sample of m from the p.d.f. f(z) andlet ¥, --- , Y, be an inde-
pendent sample of # from the p.d.f. g(y), such that g(u)/f(u) is a strictly increasing fune-
tion of u. Let the ordered ranks of the X’s in the pooled sample be denoted by the vector
c=(c1, " ,¢cm). Ifc' = (c{ , c,',.) is any vector in the range of ¢, we will say that
¢’ < ¢ provided c§ =< cjallj, and c;~ < cjsome j. I. R. Savage has shown that if ¢’ < ¢ then
P(c¢’) > P(c). Let C(a, b) denote the number of combinations of a things b at a time. The
minimum number of possible vectors, ¢/, which are such that P(c’) > P(c) is given by the
expression L = C(cm , m) — 3 Clem — ¢, m — j + Df;, where f; = Clej, 7 — 1) —

iy fiok C(cj — ¢i—k , k), fi = 1. Since all C'(m + n, m) vectors in the range of ¢ are
equally likely under the hypothesis f = ¢, a lower bound on the significance probability
for an admissible test is then just P = L/C (m + n, m). An upper bound is similarly ob-
tained by using the vector of ordered ranks of the Y’s in the expression for L and P. An

analogous result is obtained for the one-sample case.

33. Identifiability of Finite Mixtures. HENry TEicHER, Purdue University.

The class of all mixtures of an m-parameter additively closed family of distributions is
identifiable for m = 1 but not, in general, for m > 1 ( “Identifiability of Mixtures,” Ann.
Math. Statist. 32 (1961) 244-248). Here, two theorems on identifiability of the class of all
finite mixtures of a family of distributions are proved, one of these yielding the identifi-
ability of the class of all finite mixtures of normal (or Type III) distributions. An alterna-
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tive proposition leads to a necessary and sufficient condition for a class of finite mixtures
of binomial distributions to be identifiable.

(Abstract of papers to be presented at the Central Regional Meeting, Madison, Wisconsin,
June 14-16, 1963. An additional absiract appeared in the March, 1963
issue, and others will appear in the September, 1963 issue.)

2. A Two-Stage Sampling Procedure for Estimating the Common Mean of
Several Normal Populations With Unknown Variances. KHURSHEED
Arawm, University of Minnesota.

Richter (1960) considered the problem of estimating the common mean of two normal
populations using a two-stage sampling procedure with a fixed number of total observations,
say, n. The variances of the two populations are assumed unknown. In the first-stage a
sample of equal size, say, m, is taken from each population and the sample variances are
computed. The population corresponding to the smallest sample variance is selected for
sampling in the second-stage. Using squared error divided by the smallest population
variance as a loss function and a suitable estimator for the mean, Richter showed that
m = 0'(n??) is an asymptotic minimax solution for m. This paper generalizes the above
result for k¥ > 2 populations. It is also shown in this paper that the selected corresponding
sampling rule for & populations is minimax in a class of invariant procedures. The cor-
responding estimator of the mean is compared with an optimal invariant estimator.

3. Stochastic Processes and Genotypic Frequencies Under Mixed Selfing and
Random Mating. R. W. ArLarp, G. A. BAkER, Jr.,, G. A. BAKER and
J. Curisty, University of California, Davis; University of California,
Los Alamos; University of California, Davis; University of California,
Los Alamos. (By title.)

A theoretical stochastic model is developed from which it is possible to compute simply
mean genotypic frequencies and variances expected in any generation. The parameters in
the model specify hypotheses concerning the more important directed and non-directed
processes which affect populations mating under mixed selfing and random outcrossing.
Results based on this model agree closely with those obtained by using an electronic data
processing machine to impose stochastic variation on deterministic population models.
Application of these results to the interpretation of observations made on an experimental
population are discussed. It turns out that data of this sort are very insensitive to the
fraction of random outcrossing. This study was partially supported by the United States
Atomic Energy Commission and the National Science Foundation under Research Grant
NSF 6-4954.

4. Analysis of Genetic Change in Finite Populations Composed of Mixture of.
Pure Lines. G. A. BakEer, Jr., R. W. ArLLarp, G. A. Baker and
J. Carisry, University of California, Los Alamos; University of Cali-
fornia, Davis; University of California, Los Alamos. (By title.)

A mathematically manageable log-normal approximation was developed of a multi-
nominal genetic model which takes into account those directed and random processes which
control genotypic frequencies in populations consisting of mixtures of pure lines. Results
based on this model agreed closely with those obtained by numerical simulations performed
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on an electronic data processing computer. On the basis of this model we give formulas and
figures which show the dispersion to be expected for values of the relevant parameters as
determined in extensive field data on populations of largely self-pollinated plants (lima
beans, barley, ete.). In general, for the magnitude of random fluctuations in the viabilities
considered, it is true that, when the population size is of the order of a few hundred times
the number of pure lines, the sampling errors are small compared to the intrinsic errors
due to the fluctuations in the viabilities. A method of analysis of experimental data based
on the log-normal approximation is developed and applied. In the example, the observed
dominance of one variety of barley over another could be ascribed with confidence to a
larger relative viability. This study was partially supported by the United States Atomic
Energy Commission and the National Science Foundation under Research Grant NSF
6-4954.

5. A New Table of Percentage Points of the Chi-Square Distribution. H. LEoN
HarrER, Wright-Patterson Air Force Base, Ohio.

For certain applications a table of percentage points of the chi-square distribution is
required which is more extensive and more accurate than any previously published. Having
encountered a need for such a table, the author set out to compute a six-significant-figure
table, accurate to within a unit in the last digit, of percentage points corresponding to
cumulative probabilities P = .0001, .0005, .001, .005, .01, .025, .05, .1 (.1) .9, .95, .975, .99,
.995, .999, .9995, .9999 for » = 1 (1) 100 degrees of freedom. The bulk of the table was com-
puted by making use of the relation between the chi-square distribution and the incomplete
Gamma-function ratio and interpolating inversely in a newly computed eight-decimal-place
table of the latter. The accuracy of the results obtained by this method is not satisfactory
for certain cases, especially those in which both P and » are small. It was possible to obtain
the required accuracy when both P and » are small by interpolating inversely in an auxiliary
table and/or by an iterative method based on an expansion in series. The only remaining
tabular values which may be in error by more than a unit (but not more than 3 units) in
the sixth significant digit are those for P = .9999 and » < 52. The paper includes the table
itself and a description in some detail of the method of computation.

6. On the Independence of Certain Wishart Variables. Roserr V. Hoga,
University of Iowa.

Let each of the mutually independent rows of the (n X p) matrix x have a p-variate
normal distribution with the unknown positive definite covariance matrix K. In each of
most of the tests of hypotheses which concern the means of these multivariate normal
distributions, the likelihood ratio, raised to an appropriate power, is equal to the ratio of
two determinants, say U = |x’Ax|/|x'Bx|, where A and B are real symmetric matrices with
ranks greater than or equal to p. In addition, we frequently know, or it can be easily shown,
that both x’Ax and x’Bx have Wishart distributions. In this paper, we prove that the fact
that the likelihood ratio is less than or equal to one implies that x’Ax and x’ (B — A)x are
independent and that the latter form also has a Wishart distribution. This proof is based
on a chi-square decomposition theorem of Hogg and Craig which can be extended to Wishart
variables. Another example of the use of this decomposition theorem is given. In addition,
the independence of Wishart variables and linear forms is considered.

7. On the Busy Period of Single Server, Many Queue, Service Systems (Pre-
liminary report). PErer D. WeLcH, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York.

Customers arrive from r sources and wait in r separate queues which are attended by a
single server. The arrival process from each source is Poisson, and these r input processes
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are mutually independent. The service times have an arbitrary distribution which is a
function of the source. Results are obtained which yield the joint distribution of the length
of the busy period and the number of each type of customer served during it. These results
hold for a wide class of service disciplines. The only requirements are that the server is
busy whenever there are customers present and that the total time a customer is in contact
with the server is his service time. In particular, they hold for the two priority service
disciplines: head-of-line and pre-emptive resume.

(Abstracts of papers to be presented at the Western Regional Meeting, Eugene, Oregon,
June 20-21, 1963. Additional abstracts will appear in the September, 1963 issue.)

1. A Review of the Literature on a Class of Coverage Problems. WiLLiam C.
GuenTHER and PauL J. TErrAGNO, University of Wyoming and Westat
Research Analysts, Denver, Colorado. (By title)

In recent years a large number of publications have appeared on probability problems
arising from ballistic applications. Many of these are concerned with topies which are often
referred to as coverage problems. Some of the results are found only in obscure sources and
are difficult to obtain, a fact which has led to considerable duplication of effort and waste of
time. Coverage problems are defined as the evaluation of a special type of probability which
depends upon a damage function, a distribution of aiming errors, and a target distribution.
Section 1 presents the case in which the damage function is of the zero-one type and the
target assumes a position with probability 1. In Section 2 the damage function is zero-one
but the distribution of the target does not concentrate all its probability at one point. Some
special results with an exponential damage function are given in Section 3. Reference is
made to 58 papers and reports.

2. Confounding in the 3(2*?) Designs. Perer W. M. Joun, University of Cal-
ifornia, Davis.

The 3(2472) design is the three quarter replicate of the 24 factorial obtained by omitting
one quarter. If the missing quarter is defined by I = A = BCD = ABCDor1= AD = ABC
= BCD the design is of resolution V (main effects and 2 f.i. clear). It is shown that either
design may be divided into two blocks, one of 8 runs and one of 4 runs, by using a high inter-
action from the defining contrasts as a blocking variable, and still be of resolution V. This
3(2¢72) design also provides designs of resolution III for 10 factors in 2 blocks of 6 runs, 9
in 3 blocks of 4 or 8 in 4 blocks of 3. The resolution IV design for six factors defined by I =
AB = AC = BC splits into six blocks of two. The latter design is a special case of this
general result; the design of resolution IV for 3(2773%) factors in 3(27~2) runs is divisible
into 3 (2773) blocks of size two.

3. A Note on a Multiple Minima in Least Squares. Roger H. Moorg, Los
Alamos Scientific Laboratory, Los Alamos, New Mexico.

For the purposes of least squares estimation, it is common to relate the observations by
a model which often takes the form y; = f(%i; «) + e; . The uniqueness of the least squares
estimate of the parameter vector « is often simply taken for granted. This note is concerned
with the characterization of statistical models which lead to more than one least squares
solution. Recognition of this phenomenon is important in certain problems, notably those
in which the sampling behavior of the parameter estimates is examined by Monte Carlo
methods.
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4. Estimation of the Interval Containing the Change in Mean Value. DoNALD
E. Rosison, Space Technology Laboratories, Inc., Redondo Beach, Cali-
fornia.

Let X and Y be independent normal random variables with unknown means x and » and
common unknown variance ¢%. Suppose an independent sample on X is taken at distinct
ordered times (s1, sz, ---) and that at some time, sy , the mean switches from u to » and
independent sampling on ¥ begins at distinct ordered times (41 , ¢z, -+ -). In various prob-
lems it is usually assumed that N is known, so that (21, -+, 2xy, 1, -+, Yu) is the
correct division of the sample into X’s and Y’s. Probability statements subsequently
made are conditional upon this correct classification.

By contrast, we assume N unknown, although requiring the total sample size N -+
M to be known. The classification of the time ordered sample (z;1, 22, --- , ¥p) into X’s
and Y’s is the problem of estimating the change in mean value. This problem is solved by
maximum likelihood estimation. Probability statements conditioned by the true known
value of N are given for both correct and incorrect classification. These probabilities de-
pend on the quantity (u — »)/o.

(Abstracts of papers to be presented at the European Regional Meeting, Copenhagen,
Denmark, July 8-10, 1963. Additional abstracts will appear in the
September, 1963 issue.)

1. The Influence of Smoothing on the Correlation Between Two Synchronous
Series. C. LEVERT, Royal Meteorological Institute, Netherlands.

In climatological studies one often is inclined to consider the existence of an ‘‘event’’
in a time-series (e.g. a slow change in the general mean level, possibly indicating a climato-
logical change) as the more probable, the more various synchronous meteorological time-
series, referring to neighbouring stations, show analogous tendencies. Moreover, the larger
the similarity (resemblance, correlation) between these series, the more probable the event
is not a random result. Since most series are very irregular, a smoothing process is applied,
so that such a resemblance can be seen much easier in a visual way. The author has made
some statistical computations on this subject. One starts with two synchronous station-
ary time-series, either mutually correlated or non correlated, these series possessing either
identical or not identical autocorrelations; randomness is considered as a special case of
autocorrelation. Next a moving-average smoothing process is carried out in each or only
in one of the two series over equal or unequal numbers of terms and the expression for the
new correlation coefficient between the new series is derived. Some conclusions which are
based on this expression are formulated which may be important in investigations of syn-
chronous meteorological and also time-series in other fields. Among others it once again
turned out to be better to base a well justified statistical conclusion as to the similarity
between synchronous series only on the initial series themselves and to smooth these series
only for the benefit of a quick tentative orientation.

2. Selection of Categories for Some Permutation Results Based on Grouped
Data (Preliminary report). Joun E. WaLsH, System Development Cor-
poration, Santa Monica, California.

Conversion of data to categorical form by grouping has computational advantages. Also,

categorical data procedures are applicable for data from arbitrary univariate or multi-
variate populations. The major disadvantage is insensitivity of categorical data procedures.
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When a specified alternative is of principal interest, selection of categories to emphasize
this alternative can offset this disadvantage. Knowledge of null probability concentration
is helpful in making suitable selections. Sometimes, for permutation situations, the data
can be used to estimate the null probability concentration and re-used, with no conditional
effects, for the procedure based on the resulting categories; e.g., consider the two-sample
problem (possibly multivariate). All observations are considered to be fixed and probability
enters only in dividing the totality of observations into two sets of the sizes of the samples.
Under the null hypothesis, all functions that are symmetrical in the totality of observa-
tions are constants for this permutation probability model, and can be used in selecting
categories; the empirical distribution function is especially useful. The median test and
generalizations are examples of this method. Similar approaches apply to the several-
sample problem, investigation of randomness, independence of entries of a bivariate vari-
able, etc.; also to some situations where observations are obtained in independent groups.

(Abstracts of papers to be presented at the Annual Meeting of the Institute, Ottawa,
August 27-29, 1963. An additional absiract appeared in the March, 1963 issue,
and others will appear in the September, 1963 issue.)

2. The Use of Quasi-Range in Setting Exact Confidence Bounds for the Standard
Deviation of a Normal Population. H. LEon HARTER, Wright-Patterson
Air Force Base, Ohio.

For a normal population, reasonably good interval estimates of the population standard
deviation ¢ may be obtained from one suitably chosen sample quasi-range. The coefficients
of the rth quasi-range w, in exact confidence bounds for ¢ are found by taking the reciprocals
of percentage points of the (standardized) quasi-range W, = w,/s, which are themselves
found by inverse interpolation in a table of the probability integral. The interval between
exact lower and upper confidence bounds, each associated with confidence 1 — P, is, of course,
an exact central interval (confidence 1 — 2P). Results have been computed for r = 0(1)8,
sample size n = (2r + 2)(1)20(2)40(10)100, and P = .0001, .0005, .001, .005, .01, .025, .05,
.1 (.1) .5. The definition of efficiency commonly used for point estimators is extended to
confidence bounds and confidence intervals. The following tables are included, together
with a description of the method of computation: (1) a table of upper confidence bounds
and central confidence intervals for ¢, based on one quasi-range, together with their effi-
ciencies, for that value of r which maximizes the efficiency of the upper confidence bound
for each combination of » and 1 — P and (2) a similar table for that value of r which maxi-
mizes the efficiency of the central confidence interval, when the two values of r differ. -

3. Renewal Processes Based on Distributions With Increasing Failure Rate.
Ricaarp E. Barrow and FRaANK ProscHAN, San Jose State College and
Boeing Scientific Research Laboratories, Seattle, Washington. (Invited)

Let M (t) = E[N (t)] denote the expected number of renewals, N (), in [0, t) for a renewal
process with underlying distribution F where F (0~) = 0. We say F has increasing (decreas-
ing) failure rate, denoted IFR (DFR), if log(l — F) is concave when finite (is convex on
[0, ©)). We show that the ordinary moments, the binomial moments, and the variance of
N (t) with underlying IFR (DFR) distribution F having mean u are dominated (subordi-
nated) by the corresponding moments and variance of a Poisson process for which the under-
lying exponential distribution also has mean u. We show that if F is IFR (DFR) with mean
p,then (a) M(t) 2 () kM (t/k), k=1,2, --- ;62 0, (b) M(t) < (2) tF®/[s [l — F@)]-
dx £ (Z) t/u, (¢) M(h) < ()M (@ + h) — M () for h = 0 and all ¢ = 0. Dropping the
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IFR (DFR) restriction, we show that (a) M (t) < kM (¢/k) + k, (b) M (t) = t/fé 1 — F(z)]-
dr — 1 =2 t/u — 1for k=1,2, --- and t = 0. Inequalities for generalized renewal pro-
cesses are also obtained. The results have application to the comparison of replacement
policies.

4. Optimality and the OC Curve for the Wald SPRT. JaAmMEs A. LECHNER,
Westinghouse Research Laboratories, Pittsburgh, Pennsylvania.

This paper examines ‘‘conjugate pairs’’ of points on the OC curve of a Wald Sequential
Probability Ratio Test (SPRT). Such pairs are shown to exist for certain classes of SPRT’s.
For these classes, every point on the OC curve is a member of exactly one such pair. The
well-known optimality property of a SPRT, which states that no other test of equal size
and power (at the defining values of the parameter) can have a smaller expected sample
size for either of the defining values, is extended to each conjugate pair. The OC curve is
shown to be obtainable in a simple way, without the necessity of a parametric representa-
tion, by use of this notion of conjugate pairs.

(Abstracts not connecled with any meeting of the Institute.)
1. On Estimation and Transforms. S. EBrRENFELD, Columbia University.

Numerical methods of differentiation and for the inversion of generating functions and
Laplace transforms, using Laguerre polynomials, are applied to some estimation problems.
One problem considered involves the estimation of probabilities related to compound
distributions. Let X; , X, , - - - be independent random variables with known distributions.
Furthermore, let N be a random variable with an unknown distribution. The problem is to
make inferences about the compound random variable Z = X; + X, 4+ -+ + Xy on the
basis of %k independent observations, Ny, N2, --+, N, on N. Unbiased estimates for
Q(z) = Prob (Z > z) are obtained and studied. Another problem considered involves the
estimation of the busy period distribution in a Queueing system with known Poisson ar-
rivals but unknown service distribution, on the basis of independent observations S;,
8., -+, Sk of the service time. The method uses a functional equation relating the Laplace
transforms of the service time and busy period distributions. The Laplace transform of the
busy period is then estimated and numerically inverted to obtain estimates of Prob (B > b)
where B denotes the busy period random variable. The same type of approach can be
applied to a variety of estimation problems in Queueing and Renewal theory. Where the
distribution of service time is known the method may be viewed as a numerical method
for solving functional equations of the type frequently occurring in probability theory.

2. Functional Equations in Information Theory. Davip G. Kenparr, Uni-
versity of Cambridge.

An axiomatic characterisation of Shannon’s entropy = p; log(1/p;) has been given by
Fadeev. His axioms require functional equations to be satisfied by the entropy Hi(p:,
ps, -+, px) for all k, and further require 4 (¢) = H:(¢, 1 — ¢) to be continuous on the com-
pact interval [0, 1]. In this paper Fadeev’s algebraic axioms are used ‘only in so far as the
concern the functions H; and H;, and his continuity axiom is replaced by the' equally
natural requirement that the function & (-) is to be monotonic increasing on the half-open
interval 0 < ¢ < 1. In this way a pair of functional equations is obtained which are shown
to have the Shannon entropy as their only admissible solution.
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3. Information Theory and the Limit Theoremﬁ)r Markov Chains and Proc-
esses With a Countable Infinity of States. Davip G. Kenparr, Uni-
versity of Cambridge.

A. Rényi at the 4th Berkeley Symposium showed how the limit theorem for Markov
chains with finitely many states and having strictly positive transition probabilities could
be proved by information-theoretic methods. In this paper his method is adapted so as to
work for chains (discrete time) and processes (continuous time) with a countable infinity
of states, when there exists a non-negative totally-finite sub-invariant measure not identi-
cally zero. It turns out that the best results are obtained when the Shannon functional”
Z p log (p/=) is replaced by the Fisher functional = p2/x.

4. Bivariate Normal Test With Two-Sided Alternative Hypothesis (Pre-
liminary report). Akto Kupo and Hipro Fusisawa, Kyushu University
and Nagasaki University.

Suppose a bivariate normal distribution with known variance matrix, which we can as-
sume, without loss of generality, variances be ‘“one’’. Our problem is to test the null hy-
pothesis that their means are zero, Ho ; 6§ = 6; = 0, against the alternative H; ; (6, = 0,
6, = 0) or (6; < 0, 6; < 0) where one of the inequality is strict in both cases.

We shall show that the likelihood ratio test is based on the statistic, 2 = K if ; 72 >
Oand x? = K — %} if #1 %, < 0 and & < &7 (i # J) (i = 1,2) where K = (& — 2p%: & +
Z3)/ (1 — p?), & (i = 1, 2) are sample means, and p is the correlation coefficient. The dis-
tribution of this statistic is given by P, (x? > R?) = P,(x2 > R?) arc cos (—p) + 2& (R) —
2® (R, R; p) where the probability in the right is that of a x2 variable with d.f. 2 exceeds
R?, &(-) standardized normal distribution function, and ®(-, -; p) is a bivariate normal
distribution function with means zero, variances one, and correlation p. This result can be
generalized to the case of unknown common variances and known correlation. Our result
can be applied to derive the exact distribution for a two sided test (when k& = 3) in: Barthol-
omew, D. J. (1959). A test of homogeneity for ordered alternatives II. Biometrika 49 328-

335.

5. On Comparing Coefficients of Variation in the Case of Two Independent
Samples From Normal Populations (Preliminary report). Nico F. Laus-
scHER and D. E.'W. ScuumANN, National Research Institute for Mathe-
matical Sciences, Pretoria, and University of Stellenbosch.

In this paper we derive a statistic by which the null-hypothesis of equal population co-
efficients of variation, in the case of the two sample problem, is tested. The test statistic
contains a nuisance parameter. Methods of estimating this parameter are given and its
effect on the distribution is under investigation. Percentage points of the distribution funec-
tion (as a function of the sample sizes) are computed for various values of the nuisance
parameter. Approximations to the exact distribution are also given.

6. On a Property of the Cauchy Distribution. Nico F. LauBscHER, National
Research Institute for Mathematical Scienges, Pretoria.

In this note the following result is obtained. Theorem. The Cauchy distribution, with
p.d.f. given by f(z) = knr! (k2 + (x — u)?), k>0 — © <z < o, is the only family of
distributions which has the property that the distribution of the sample mean is identical
to the population distribution.
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7. Effective Entropy Rate and Transmission of Information Through Channels
With Additive Random Noise. K. R. PARTHASARATHY, Indian Statistical
Institute, Calcutta. (Introduced by Ingram Olkin)

The famous McMillan’s theorem regarding ergodic sources can be reformulated as
follows. Consider the minimum number of n-length sequences which have a total prob-
ability excegding 1 — e If u is the measure describing the source denote this minimum by
Na(e, p). Then lim, n~! log Na (e, u) exists and is equal to the entropy rate of source as
defined by Shannon. In this paper it is proved that for any not necessarily ergodic but
stationary source the same limit exists except for a countable set of ¢’s. Two functions
A (e) and B(e), (0 < € < 1) are constructed in such a way that 4 (¢) = B(e) except on a
countable set and the lim sup and lim inf of [n~! log N, (e, u)] lie between A (e) and B (e).
Further, as n — « both the functions A4 (¢) and B (e) converge to a unique limit A (x). The
precise description of H () is also given. Finally the coding theorem and its converse are
proved for all stationary channels with additive noise.

8. Probability of a Positive Sample Correlation. HaroLp RuBEeN, University
of Sheffield.

It is well-known that the probability integral for the correlation coefficient, r, in normal
samples cannot be expressed in terms of elementary functions. However, the probability
integral for the special caser = 0 is readily expressible as a probability integral for¢, though
this does not appear to have been noted previously. Thus, since r = 0 if, and
only if, D1 (#; — ) y: = 0, and since 21 (z: — %) ¥:, conditionally on fixed 1, -+, Za ,
is normal with mean (poy/oz)D v (z; — £)? and variance o3(1 — p?) - D1 (x:i — %),
prob [r= 0|z, -+, %] = ®[(m — 1) p(1 — p2)~4-{u/(n — 1)}}], where w = D1 (z; — £)2/os
and &(-) is the standardized normal distribution function. Again, u is a chi-square with
n — 1 degrees of freedom, whence prob [r = 0] = f8° ®[(n — 1)t p1 — p2)7t
{u/(n — 1)}3ld F._, (u), where F,_; (-) is the distribution function of chi-square with n —
1 degrees of freedom. The latter integral is immediately identifiable with

prob [tn1 2 —(n — 1)} p(1 — p?)7Y,

where ¢, is a Student variable with n» — 1 degrees of freedom, defined formally as t,_1 =
z/{u/(n — 1)}}, z being an N (0, 1) which is independent of u. The result is then
prob [r 2 0] = prob [try S (v — 1) p(1 — p?)7H].

Incidentally, this also follows from the known distribution of b, the sample regression co-
efficient of y on z. The latter distribution is of Pearson Type VII form centred at 8 = poy /o= ,
the population regression coefficient of ¥ on x (Kendall and Stuart, The Advanced Theory
of Statistics, 1 p. 392), or equivalently, (ez/ay){ (n — 1)/ (1 — p2)}} (b — B) is a ta_1 , the re-
quired result then following on noting (as indicated previously) that » = 0 if, and only if,
b=z0.

The result obtained finds application in the evaluation of the probability that a random
sample, supposedly drawn from a bivariate normal population, shall give a misleading result
in the sense of exhibiting a positive (negative) correlation when the population correlation
has a given negative (positive) value. It also provides a useful spot check on F. N. David’s
1938 tables of the correlation coefficient, and may be of some value in possible future exten-
sions of these tables.

9. Approximate Methods for Computing Elliptical Probability Coverages.
Hans K. Ury, University of California, Berkeley.

Several approximation procedures are investigated for evaluating the bivariate normal
probability integral over the area of an offset ellipse. The problem is as usual transformed
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to evaluating the circular normal integral with unit standard deviation over an offset
ellipse oriented parallel to the principal axes of the distribution. Regions are defined in
terms of four variables: A, the area of the ellipse; e, the ratio of minor to major axis; and
(d, 6), the two polar center coordinates. Approximations accurate to within 0.01 and 109,
are obtained over the following regions by using the circular coverage function over the
equal-area, equi-centered circle, with correction factors depending on 6: (1) A < 0.2,
ez0.1,d=<10;(2)A = me=0.5,darbitrary. Over (3) A arbitrary, ¢ = 0.5, d < 1.0, an
error of less than 0.02 and 5%, is attained. For coverage probabilities below 0.1, the accuracy
is in general greater than that attainable through standard interpolation methods in existing
tables, and region (2) goes beyond the center-limits of such tables. When the elliptical
coverage does not exceed 0.05 [0.03], the uncorrected circular coverage will give virtually no
error for ellipses with ¢ = 0.5 [0.1] and d < 1.0. For larger and ““thinner’’ ellipses with d > 1,
some other approximation methods are discussed. The behavior of the error as a function
of the four variables is also investigated.

10. On a Generalized Weighing Problem (Preliminary report). Hans K. Ury,
Stanford University.

A well-known weighing problem consists of finding the one false coin in a set of Y_j=' 37,
and whether it is heavy or light, in » weighings using only a balance. For the case of k (=1
2, - -+) equally false coins formulas are derived for the maximum number from which these
defectives can be extracted in n (=1, 2, ---) weighings (a) under similar conditions, (b)
with known good coins available, (¢) direction of defectiveness known, (d) direction known
and good coins available.

A group testing application of the above problem is the following: if a system containing
m similar components has exactly k¥ known defectives and if analyses to determine these
must be carried out using the components themselves [(a), (¢)] or perhaps similar compo-
nents outside the system [(b), (d)], then the above formulas in turn give the number of
analyses required under the minimax approach. For (¢) and (d) this is the smallest in-
teger Z[logm! — log k! — log (m — k)!]/log 3, for (b) it is the smallest integer =[log 2 +
logm!—log k! —log (m — k)!1/log 3, and for (a) it appears to be the same as for (b) pro-
vided ¥ > 1. For k = 2, the optimal methods without recombinations are described. It is
shown that these rather simple procedures will require at most one additional analysis.

11. Spearman’s Footrule—an Alternative Rank Statistic. H. K. Ury, D. C.
Kirinecke and L. F. WaeNER, University of California, Berkeley.

A known but neglected rank statistic, Spearman’s Footrule (British J. Psychology, 1906),
is based on the sum of the absolute values of the differences between two rankings. Formulas
are derived for its mean and variance and the covariance with Spearman’s p and Kendall’s
7. A thorough numerical description is given, including the exact sampling distribution for
up to ten ranks when all permutations are equally likely and approximate results, obtained
by Monte Carlo methods, for 11 to 15 and 20 ranks. Exact formulas for the frequencies of
the seven smallest and the two largest values have been obtained. The statistic appears to
be asymptotically normal, but this has not been proven.



