SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE
WILCOXON AND NORMAL SCORES TESTS'

By Jerome Krorz’
Unaversity of California, Berkeley

0. Summary. Small sample power and efficiency are computed for the one
sample Wilcoxon and normal scores tests for normal shift alternatives. A re-
cursive scheme is given which reduces the problem of power computation per-
mitting investigations up to sample size N = 10. Local efficiencies for the two
nonparametric tests are computed for small samples using the values of the
normal scores statistic. In addition, efficiencies for large shifts are obtained by
comparing the exponential rate of convergence to zero of the type two error.

1. Introduction and notation. Let Xy, -+ , X N denote a sample with cumula-
tive distribution function F which has median u. The one sample Wilcoxon test
[7], and the normal scores test (Fraser 1957) for the hypothesis that F is sym-
metric about x = 0 against shift alternatives are based upon the respective
statistics

N ' N
(1.1) W, = k;‘kZNk and S = k}__“l,ENksz

where Zy; = 1(0) if the sth smallest observation in magnitude is non-negative
(negative). Ey; are numbers equal to the expected value of the sth smallest
order statistic from a sample of N absolute normal (chi-one degree of freedom)
variables. Large values of the statistics are significant for one sided shift alterna-
tives (u > 0). If we call the vector Zy = (Zm, - -+, Zyw~) the ordering, power
for the tests can be computed by summing P[Zy = zy] over those ordering values
2y which lie in each test’s rejection region.

2. Power calculations. In order to compute power for normal shift alternatives
it is sufficient to compute expressions of the form

(21) Pl =2l = N [ oo [ TLolt = sew) a

=1
0<t < - - <t y<o0

with s; = 2z»; — 1 the sign of the variable which is 7th smallest in magnitude,
and ¢ the standard normal density. Fortunately, the problem of integration over
N dimensions can be reduced to the problem of evaluating N successive one
dimensional indefinite integrals by adapting a two sample scheme of Hodges to
the one sample problem (see for example [4], p. 502). If we denote A.,(u) =
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PlZy = 2y and |X;| £ u for all 5] then the desired probabilities are A,,( ).
For normal alternatives,

(22) Ap(w) =®(u—p) —(—p), Ao =(u+p) —3(u)

where & is the standard normal cumulative. If we denote (zy, 1)
(2xm, *++ ,2wn, 1) and define (25, 0) similarly then probabilities for zy,, can
be obtained inductively using

(2.3a) An(@ = W+ 1) [ " An(we(u — u) du

(23b) Auwo(@) = (V4 1) [ Au(@le(u + u) du.

The expression (2.3a) is obtained by conditioning with'respect to the largest X;
in magnitude and noting that it is positive for (zy, 1) while it is negative for
the ordering value (zy, 0) in (2.3b). When suitably modified, the formulas are
applicable to densities other than the normal. The scheme was programmed for
a digital computer (1.B.M. 704) with the probabilities for all orderings zy , with

1 = N = 10, computed at alternatives u = 0(.25)1.5(.5)3.0.

TABLE 1

Selected values of power and efficiency of the one sample Wilcoxon for mormal
shift alternatives

N a slope fp=.25| .50 | .75 | 1.00 [ 1.25 | 1.50 2.0 2.5 3 d
Power 5 .06250  .23586 .1450 | .2780| .4496] .6286| .7809| .8877 .9808 | .9981| .9999 2.
Cwt .988 .986 | .984 | .982 | .981 | .980 | .979 979 ., .881 .
6 .04688  .20689 .1248 | .2630( .4503| .6464( .8071| .9114 .9887 | .9992(1.0000{ 1. 2.
©.986 1983 | .980 | .977 | .975 | .973 | .972 .970 ! 784
7 .05469  .26104 , | .1552 | .3322| .5557| .7603| .8974| .9655 9981 (1.0000 . 8.
.986 .983 | .981 | .978 | .976 | .975 | .974 974 797
8 .05469  .28277 .1672 | .3689| .6139| .8180| .9356( .9831 .9995 |1.0000 . 3.42857
.982 .980 | .977 | .975 | .973 | ~972 | .971 .728
8 .07422  .36340 .2118 | .4364| .6827) .8654| .9581| .9905 .9998 |1.0000 . 3.5
. 977 975 | .972 | .970 | .969 | .969 | .968 714
9 .02734 16704 .1035 | .2713| .5146] .7499| .9038| .9728 .9992 (1.0000} . 3.42857
985 .982 980 | .977 | .975 | .974 | .973 757
9 .03711 .21803 .1323 | .3256( .5812| .8038| .9329| .9835 .9996 (1.0000) . 3.5
.983 981 | .978 | .976 | .975 | .973 | .972 727
9 .04883  .27494 .1637 | .3791] .6398| .8455| .9525/ .9897 .9998 [1.0000) . 3.55556
. .978 .976 | .973 | .971 | .970 | .969 | .969 .697
10 .00098  .00779 .00592| .0250{ .0765( .1777| .3274| .5009 7944 | .9396) .9866) 1. 1.
.938 .929 | .920 | .908 | .896 | .882 | .869 .844 | .816 | .794 .651
10 00977 .07048 .0480 | .1576| .3617| .6124 .8195( .9367 .9967 [1.0000) 3.
.983 .980 | .976 | .973 | .970 | .967 | (964 .959 744
10 .02441  .16119 1021 | .2822| .5437| .7847| .9276] .98294 | .9997 [1.0000 . 3.55556
.984 981 | .979 | .976 | .974 | .972 | .971 .706
10 .05273  .31066 1844 | .4274) .7013| .8914] .9734| .9957 | 1.0000 . b
.970 .968 | .967 | .966 | .965 | .965 | .964 .756
10 .09668  .50504 .2862 | .5669| .8153| .9476| .9904| .9989 | 1.0000 . 5.
.961 .960 | .959 | .957 | .956 | .955 .685
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3. Power and efficiency of the Wilcoxon test. Given an alternative x, the
sample size N, and a non-randomized significance level « = k/2" for the Wil-
coxon test, power is obtained by adding P[Zy = zx] over the k ordering values
2y which give significant values for W . All power values to accuracy believed
to be 4 decimal places were computed for « = .10, N = 1(1)10, and
p = 0(.25)1.5(.5)3.0. Selected values are given in Table 1.

Efficiency of the Wilcoxon relative to the one sample {-test was computed
using the randomized definition of Hodges and Lehmann (1956). For fixed
N, a, p of the Wilcoxon test, power of the ¢-test was computed at the same values
of a, p for two sample sizes N', N” (= N’ 4 1) needed to bracket the Wilcoxon
power. Interpolating linearly with the power gives N* = AN’ 4+ (1 — NN”
(0 = X £ 1) and efficiency ew,«(N, a, u) = N */N. A computer program was
used to obtain critical values and power values of the ¢ at the non-standard levels
a = k/2". The efficiency values given in Table 1 are extremely high in the region
of interest. For small «, the efficiency appears roughly to decrease with o which
is consistent with the fact that the sign test (which has generally lower efficiency
for normality) and the Wilcoxon test coincide for the smallest level @ = 1/2".
The efficiency appears also to decrease with u which is consistent with the results
of Section 6.

4. The normal scores test. The number of different values of the normal scores
statistic appears in general to be 2" corresponding to the 2" values of the order-
ing vector Zy . The values are symmetrically placed about the expected value
N/(27)? on the closed interval [0, N(2/7). The symmetric pairs are obtained
by interchanging 0’s and 1’s in each zy . Power for the normal scores test was
obtained in the same manner as for the Wilcoxon. It is necessary to compute
the weights Ex: to determine which zx» belong to the rejection region. A program
was written to evaluate the weights Ey; and to sort the ordering values zy ac-
cording to the values of the statistic S. The values Ey, to 5 decimals are given

TABLE 2
Expected values of absolute normal order statistics
Exn; i=1 2 3 4 5 6 7 8 9 10
N = 79788
.46739 |1.12838

.33490 | .73236 |1.32639
.26208 | .55336 | .91136 (1.46473
21569 | .44764 | .71195 |1.04430 |1.56983
18344 | .37695 | .58903 | .83487 |1.14902(1.65400
-15967 | .32605 | .50420 | .70212 | .93444/1.23485(1.72385
.14141 | .28752 | .44163 | .60849 | .79575(1.01765/1.30726|1.78337
.12693 | .25728 | .39335 | .53820 | .69636| .87526(1.08884|1.36966|1.83508
11515 | .23289 | .35485 | .48317 | .62075 .77198 .94412|1.15086(1.42436|1.88071
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in Table 2 for N = 1(1)10. A small table of percentage points of the null dis-
tribution along with the exact probabilities is given in Table 3.

The normal scores test has power properties identical with those of the Wil-
coxon test for N and « sufficiently small. The rejection region for the normal
scores test coincides with that of the Wilcoxon for & < .10 and N = 5. For
N = 6,7, a < .10 it coincides at the natural « levels of the Wilcoxon (the normal
scores having more a values). Finally, the normal scores test is equivalent with
the Wilcoxon at natural levels of the Wilcoxon for N = 8 and o = .05469,

TABLE 3

Upper percentage points of the normal scores null distribution

nominal levels

PlSzsl| .001 005 010 025 050 075 100
N =14 3.19153 2.92045
06250 .12500
5 3.98041  3.77372 3.54177
03125  .06250 00375
6 4.78731  4.60387  4.41036  4.19828  4.01484
,01563 03125  .04688  .07813  .09375
7 5.58518  5.42551  5.25013  4.92131  4.65074  4.49107
.00781  .01563  .02344  .04688  .07813  .10156
8 6.38308  6.09556  5.80004  5.44592  5.19155  4.97884
00391 .01172  .02344  .05078  .07422  .10156
9 | 7.18006 6.92368  6.78761  6.35767  5.96432  5.70704  5.51022
.00105  .00586  .00977  .02539  .05078  .07422  .0996l
10 | 7.97884  7.62309  7.35800  6.88809  6.50397  6.20723  5.98996
.00008  .00488  .00977  .02539  .04980  .07520  .09961

TABLE 4

Selected values -of power and efficiency of the one sample mormal scores test for
normal shift alternatives

N a slope | #5c° | .50 | .75 | 1.00 | 125 | 1.50 2.0 25 |3 d
Power 8 | .07422  .36430 | .2122| .4375| .6839| .8662| .9583| .9905 | .9998 | 1.0000 3.42857
st .981 .978 | .975 | .973 | .971 | .970 | .968 .680
9 | .03711  .21815 | .1323| .3256| .5811| .8033| .9323| .9831 | .9996 | 1.0000 3.42857
.984 .980 | .978 | .975 | .974 | .971 | .969 719
9 | .04883  .27630 | .1641] .3804| .6416| .8470| .9532| .9899 | .9998 | 1.0000 3.5
.986 .980 | .978 | .976 | .973 | .971 | .071 .691
10 | .02441  .16135 | .1022) .2826| .5443| .7851| .9277| .98287 | .9997 | 1.0000 3.5
.985 .983 | .980 | .977 | .975 | .972 | .971 .701
10 | .05273  .31300 | .1857| .4310| .7055| .8940| .9743| .9959 | 1.0000 3.6
.982 979 | .977 | .975 | .973 | .971 | .969 .623
10 | .09668  .50962 | .2884| .5716| .8199| .9499| .9910| .9990 | 1.0000 . 4.55556
977 975 | .972 | .970 | .968 | .966 .641

See Table 1 for N < 7and a < .10, N = 8 and a < .05469, N = 9 and a < .02734, N = 10 and a < .01855.
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normal scores test is generally more powerful for smaller shift, with the Wilcoxon
improving and sometimes becoming more powerful for larger shift in the region
of interest. Selected power and efficiency values are given in Table 4.

N = 9and a £ .02734, and N = 10 and o < .01855. For larger « values the

‘5. Local efficiency. At the hypothesis » = 0 the power of the parametric and
non-parametric tests is the same being equal to the level a. Hence interpolation
with respect to the slopes of the power curves at u = 0 for the two one sided
tests can be used to define local efficiency for small samples. As pointed out by

Professor Lehmann,

N
(51) O—Z:P[ZN =al| =X s By/2" = (28 — n(2/n)/2"
p= 1=1
where s; is given in (2.1) and Ey; and S are given in (1.1). Thus the derivative
of the power for either non-parametric test at x = 0 can be obtained from

(5.2) ; [28(zx) — n(2/7)Y/2"

where R is the rejection region of values of Zy . Thus summing the values of
the normal scores statistic over the rejection regions for W and for S gives the
respective slopes of the two tests. The slope for the ¢-test using N observations

is given by

N 5 ti )—-(N~l)/2
53 (7Y (4 2

where ¢, is the upper « percentage point for the ¢ statistic. Randomization gives
efficiencies for u = 0 as given in Tables 1 and 4. The limit of the local efficiency
(N — =) gives the Pitman values (3/7 for W and 1 for S). The local Wilcoxon
efficiency appears, roughly, to decrease towards its limiting Pitman value.

It is interesting to note that similar methods were used and similar results
obtained by H. R. van der Vaart (1950) for the two sample Wilcoxon test. In
addition, the two sample results of Witting might also be noted for comparison.

6. Far distant efficiency. To obtain the other end of the efficiency curve
(u = o) for the non-parametric tests relative to the -test, a comparison of the
rates of convergence to zero of the type two error (8) can be used. Following
the methods of Hodges and Lehmann [3] in the two sample problem we note for
normal shift alternatives that the type two error of the ¢-test converges to zero
at the rate exp(—du’/2) for large u neglecting terms of smaller order (see for
example Nicholson, 1954). The constant d, is given by

(6.1) di = N/[1 + &&/(N — 1)).

The following theorem which is a modification to the one sample case of a
theorem by Hodges and Lehmann [3], permits comparison of exponential rates
of convergence for the non-parametric: tests.
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TaEOREM. The probability of the ordering vector zy is given, up to terms of smaller
order, by exp[—d(zx)u’/2] for large u where X ; are independent normal with mean
u and variance 1. The constant d, which depends upon zy , ts determined in the
Sfollowing way:

(i) from the vector zy , construct a walk in the x, y plane by taking a step in the
y direction for each 1 and a step in the x direction for each 0-proceeding in sequence
(see Figure 1);

WALK FOR zy= (0,0,1,0,0,1,0,1,1,0,1, 1,1)

T

i (xryr)
N =13
m=7
n =
r =

/ KarYa)
,/I d:2"'3'\‘ 4-|0| 4"'2 4'0‘3=92/
) 2z T3 " ?
/' (X3,y3)
,,r/' (Xz,Yz)
(xo¥s) (xy.) X

Fic. 1.

(ii) determine r -+ 1 corner points (z;, y:) ¢ = 0,1, 2, ---, r as the smallest
set of points which determines the lower convex hull of the graph. (xo, yo) = (0, 0)
and (z,, y,) = (n, m) where m is the number of 1’s in zy ;

(iil) define

d@' = Axi + qu, Z:f Ayi < A.’I),‘ ,
4(Az:) (Ay:) /(Az; + Ay:) of Ay = Az,

with Az, = @, — %1, Ay: = ys — Yo fori = 1,2, -+, r;

(iv) d(zw) = D imidi.

Proor. The proof uses transformations similar to those given in [3]. The
transformations are of two types according as Ay;/Az; < 1 or = 1. Consider-
ing the expression (2.1) we transform the ¢; variables to a collection of » and
w variables by breaking the walk into two regions. The first N, = z, + y, var-
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iables determine the first region where 0 < Ay;/Az; <1lfori=1,2,---,a
(where a is the largest such value). The transformation for this collection is
hh =
(6.2) tr =t + wo 1/14
tvg = tyg—1 -+ wo N.,—l/lt (in Figure 1, N, = 5, a = 2).

If there are no corner points for which Ay,;/Az; < 1 we omit this transformation
(N, = 0). We next determine the remaining N — N, variables for the region .
1 < Ayi/Az; £ © i = a+ 1, .-+, r by the transformation

AYar1 — Al'a+l)
t . =17 + <________
Nat1 1 ANumr
tygrz = w1 + Wi1/n
tNa+l = tNa+1—1 + wlnANa+1—1/“

Ay, Az,
Wi+l = V2 + (—inT;—H) ®

tNaps = tNapa—1 T W, AN gy g—1/ I

(6.3)

v = tv1 + ’wr—a.AN,—1/ I

where AN: = Az; + Ay; and N, = N. If there are no corner points satisfying
the conditions on Ay;/Az; omit this transformation and take a = r.

The transformatlon which defines the N = N. + 2 izi ANoys varlables
vo,Weis =1,2, -+ No— 150, Wi, 0 = 1,2, - “ANewr — 1, k=1, 2,
r — a, is linear Wlth Jacobian |0(v, w)/dt| = N_'+°—1 . Without the constant
factor —% the exponent of the integrand of (2. 1) equals Z ¥ 1 (¢ — su)® which
can be expressed in terms of the (v, w) variables using (6.2) and (6.3). After
some algebra the expression is:

Ng—1

Napd + vouc + Novs + z; wo; coj + 0(1/)

(64) 4Az, A ANg4x—1
-+ Z [(_A"%M) ”,2 4 ANotx v;‘: + / Wrj Ckj —+ 0(1/#)]
k=1 otk =1
where the constants are given by the expressions
Ng
¢ = 2(Az, — Ay.), Coj = —2 Z Sk
k=j+1
ANg 1k _ A
i =2 2 (w— sNa+,,_l+,~> for k=1,2,---,r—a
2t AN oix

and are positive because of the conditions on the two regions of the walk. O(1/u)
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here denotes the terms in », w which are multiplied by 1/u or 1/4’. Noting that
we can express d as the sum of the constants multiplying x* in (6.4) we write
(2.1) in the form exp(—du’/2)g(x) where

(65) g(l‘) — N!MN_T+G_1f . fe—%Q(v,w,#) H dv,' H du)ij,
7 3

(v,w)eR

Q(v, w, p) is the expression given in 6.4 minus terms in x°, and R is the region
of integration for the (v, w) variables determined from the region0 < t; < -+ <
tv < . Dropping the factor exp[— (cuvo + O(1/u))/2] and integrating over
the larger region B; = {0 < v < -+ < v,q, wi; > 0} we get an upper bound
(since terms in 1/u4® are positive) of the form Ku""+* ™ where K, is a positive
constant independent of u. Next if we replace R in (6.5) by B = RN {0 < v, < 1},
and replace the factor exp(—cvou/2) by exp(—cu/2), and integrate, we get a
lower bound for g(u) of the form Ko(u)u" "+ exp(—cu) where Ko(n) — Ko,
0 < Ky < « as p — « using the dominated convergence theorem. Thus it fol-
lows that limu. (—21n P[Zy = 2zy]/u*) = d which completes the proof.

Applying the theorem, it follows for large u, that the type two error for each
non-parametric test is dominated by the probability of that zy in the acceptance
region with the smallest d value (probabilities for other d values being of smaller
order). Randomization between sample sizes for the t-test (linear interpolation
in d; to match the minimum d of W, or of S) can then be used to define far
distant efficiency (ew,:(N, @, =) and es,;(N, a, «)). Selected values are given
in Tables 1 and 4 under 4 = . The minimum d value in the Wilcoxon accept-
ance region is generally larger than that of the normal scores test for given
(N, «) with a resulting greater far distant efficiency. This general statement
appears to be true even for smaller u in Tables 1 and 4 for a few isolated a values.
For example for N = 10, o = 25/1024 the power of the normal scores test falls
below that of the Wilcoxon at u = 1.5. This may be explained by the fact that
the normal scores test has one different ordering in its rejection region (zy =
(1,0,0,0,1,1,1,1,1,1) withd(zy) = 4for Sandzy = (1,1,1,1,1,1, 1,0,
1, 1) with d(2y) = F for W). This gives a minimum d in the acceptance region
of § for S and 3% (the next smallest d value after ) for the Wilcoxon.

7. Conclusion. Because of the extremely high efficiency of the non-parametric
tests relative to the ¢ in the region of interest, it is the author’s opinion that the
non-parametric tests would be preferred to the ¢ in almost all practical situations.
The exactness of the null distribution, good power for a wide class of shift
alternatives, and the negligible loss in efficiency on the home ground of the
t-test support this conclusion.

The normal scores test although most powerful locally and usually more
powerful in the region covered becomes less powerful for large shift when com-
pared to the Wilcoxon. In any case for the sample sizes covered the difference
in power is somewhat academic. The greater number of significance levels must
be balanced against the more difficult null distribution when comparing the
normal scores test with the Wilcoxon.
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