CORRELATIONS AND CANONICAL FORMS OF
BIVARIATE DISTRIBUTIONS

By H. O. LaNcASTER
University of Sydney

1. Introduction. This note gives an improved method of deriving the expansion
for the bivariate measure in terms of the two marginal measures and the canoni-
cal correlations and functions. Although such an expansion will not be available
for bivariate measures, which are not ¢’-bounded with respect to the product
measure, the notion of canonical variable may still be applicable and an example
is given. A theorem is proved that a bivariate measure is completely specified
by its marginal measures and the correlations between the members of com-
plete sets of orthonormal functions defined on the margins. This generalizes a
theorem that independence between two variables is determined by the vanishing
of every correlation between the members of complete orthonormal sets on the
marginal distributions.

2. Canonical forms of bivariate distributions. The canonical variables, £9 and
2%, and correlations, p;, have been defined in Lancaster [1]. The same notation
is followed here except that we write {£*®} and {#*®} for the sets complementary
to the canonical sets such that the direct sums, {¢°} + {£*®} and {4} +
{n*®}, are complete on the respective marginal distributions. Throughout we
shall use {z*°} and {y‘®} as complete sets on the marginal distributions. F(z, y)
is taken to be a general bivariate distribution function. In this section, we
assume that F is ¢’-bounded with respect to the product of the marginal distri-
butions, G(x) and H(y). In other words, we assume that

6241 = f (dF/(dG dH)}dG dH

(1)
= [ 9*agan = [ (@ry/(ac am),

s finite. & = Q(, y) is the Radon-Nikodym derivative of F(z, y) with respect
to G(x)H(y). We recall Theorem 2 of the previous paper and extend it slightly

as the following:
THEOREM A. The canonical variables obey a second set of orthogonal conditions,

(2) [Ea0ar =0 i i

and £¥ is also orthogonal to every square-summable function of Y, orthogonal to
the canonical variables; simalarly n*° 18 orthogonal to every square-summable func-
tion of X, which is orthogonal to £°.

Proor. The proof given in the previous paper is applicable.
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TurorEM B. If F(z, y) s a ¢’-bounded bivariate distribution with marginal
distribution, G(x) and H(y), then complete sets of orthonormal functions can be
defined on the marginal distributions such that each member of a set of canonical
variables appears as a member of the complete set of orthonormal functions. The
element of frequency can be expressed in terms of the marginal distributions,

(3) dF(z,y) = {1 + 2 pi 2 (')} dG(z) dH(y), ae.,
and
(4) ¢ = i p: .

=1

Proor. We give the proof for the case when G(x) and H(y) possess infinitely
many points of increase. The proof is easily adapted to the case when one of
the marginal distributions has only finitely many jumps. For the case where
both have only finitely many jumps, the proof has already been given in that
paper, where reference has been made to other proofs.

The general theory of orthonormal functions can be invoked to show that
the set of the products, 2%y, namely {x®} X {y”}, is complete on the product
distribution. © is square summable by definition so that we can minimize

(5) [ @ = Su)tdaan = g
where

Swn =1+ Z N 2y

m

1 mi ng
=1 + Z Z as; E(’) n(l) + Z Z bt E(“) *(4)

=1 j=1 =1 j=

+ 33 e €00 4 5 3 O, m = ot mayn =y,

=1 j=1 1=l j=1

by choice of the coefficients. After Theorem A, the solution is

(6) Swn =1+ Z pit 9@ + ZZ’ it O n*?
where
(7) vy = [ #904*9 aF.

We now prove that every 7v.; is zero. By Bessel’s inequality,
my mg ng
(8) I DONTEL S

As ¢ — o, p; must either be zero or approach zero as a limit. Suppose now that
Yus i8 N0t zero for some pair, £*“ and 9", As my — o, there is a p;, ¢ < my,
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*(u) *(v)

such that p; < |vu,|. This is a contradiction for the pair, £ and " obey all
the necessary conditions to be a canonical pair. v, is thus zero for all » and .
The minimization process, therefore, yields (3).

3. Bivariate distributions characterized by correlation.

TaEOREM 1. A bivariate distribution is completely characterized a.e. by its
marginal distributions and the matrix of correlations of any pair of complete sets
of orthonormal functions on the marginal distributions.

Proor. Suppose that Fi(X, ¥) and Fo(X, Y) are two distinet bivariate dis-
tributions and let {z*°} and {y”} be complete sets on the common marginal
distributions, G(x) and H(y). Suppose that the correlations are

w _ [, @& o i=1,2355=12:;
(9) P = fx Y dFk(xyy)’ k= 1,2.

If F; and F, are not identical then there is a pair of sets, G* and H* say, such
that the measures, assigned to the intersection of the sets, P(X ¢ G*, Y ¢ H*)
by F; and F» are not identical and where neither P(X & G*) nor P(Y ¢ H) is
either 0 or 1. Let us form a bivariate distribution of an orthonormal step func-
tion taking two values, constant over G* and its complement and an orthonormal
step function taking two values constant over the set H * and its complement
respectively. These two step functions, £ and # say, will have a correlation de-
pending on P(X € G*, Y ¢ H*) and this correlation will be different for F; and
F, . The two values may be written p; and p, . We have to show that this leads
to a contradiction. Let us approximate to £ and 5 by series.

(10) Sm = ;aix(“, S. = 12 by"?

so that [(¢ — S.)*dG and [(n — 8,)* dH are each less than ¢*. By the Schwarz

inequality, for ¢ = 1, 2,
H
< [[szdF,- [a- S;)ZdF,-]

3
= [fez de (n —Si.>2dH] <e
Similarly IfS:.(.{- — 8,) dFi| < ¢ since [S;)dH < 1. We now have

o= [tmafs— [ enar,

[ sa = sy ar,

(11)

= [ G528 am — [ (on — 8484 aFy
(12)
= [ fetn — 82 + i (6 — Sw)lary

— [ tetn = 82) + 84 (5 — Sa) aPs.
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Taking absolute values after breaking the two integrals up into their two parts,
(13) 1 — pof < 4e.

Since € is arbitrary a contradiction has been reached if p; % p;. Fy and F, are
therefore functions identical a.e.

CoROLLARY. 4 mecessary and sufficient condition for independence of the mar-
ginal variables of a bivariate statistical distribution is that p;; = 0, for 1 > 0 and
J > 0, where the p;; are defined by (9).

Proor. Let Fi(X, Y) be the bivariate distribution and let G(X) and H(Y)
by the marginal distributions. Let the product distribution, F», be defined
so that Fo(X, Y) = G(X)H(Y). Then F; and F, have the same marginal distri-
butions and further the same correlation matrix; for the matrix of correlations
of F consists of zeroes by hypothesis and the matrix of correlations of F, is
easily verified to be the null matrix. F; and F, are therefore identical a.e. and
so Fi(X, Y) = Fo(X, Y) = G(X)H(Y), which shows that the two random
variables are mutually independent, since the joint distribution function fac-
torizes.

4. Canonical correlations in ¢’-unbounded distributions. The canonical form
of bivariate distribution has always been obtained by assuming that the bi-
variate distribution is ¢’-bounded with respect to the product of the marginal
distributions. However, in Section 3, we have not assumed ¢’-boundedness and
50 we might ask whether we can simplify the matrix, R, in the ¢’-unbounded
case. Let us consider arbitrary orthonormal linear forms, a“x and b"y; the in-
tegrals of the squares of these forms are unities and so the integral of a"xy"b
exists and is bounded by unity in absolute value. Let a and b take all permissible
values, then since |Fa"xyb| is bounded it will have upper limiting value.
Let the linear orthonormal forms, a"x and b"y, for this maximum be taken as
the first pair of variables in new orthonormal sets. The correlation matrix in
the new set will have no other non-zero term in the first row or column than
the leading term. A second pair can now be found orthogonal to the first pair
and the correlation matrix will have two non-zeros along the diagonal but every
other correlation in the first row or column will be zero. R can be diagonalized
by a repetition of this process. However, in a ¢’-unbounded distribution, there
may remain pairs of functions, which have positive correlation and do not occur
anywhere in the series.

ExampLe. Let ¢£”(2) be defined so that " () is zero outside the open in-
terval (k — 1, k) and in the interval is a polynomial of precise degree ¢ and
further so that

k - »
(14) [ H @ @) a = sy

Now define the kth bivariate distribution, Q.(z, ), with a probability measure
of 'B: uniformly distributed along the diagonal and (1 — ;) uniformly distrib-
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uted over the square. It is easily verified that
(15) [ ¥ @9 () d@u(z, y) = Bess.

Now two of these distributions can be mixed
(16) Q(z,y) = ali(z y) + aQe(z,y), @t a=1 1>a,a >0
and orthonormal sets defined of the form '

@ =1, Xe(0,1) or (1,2)

2 = —ddal? if X £ (0, 1)
(17) 2P = dlaz?if X e (1, 2)

2® = ayi(z), i>0

0 = g (x), (>0

{z®} is complete. {y‘”} can be formed in a similar manner. z*° and ym are the
first pair of canonical variables with a canonical correlation of unity. If 8; >
Bz, 2 is the (¢ + 1)th canonical variable and 8; is the (¢ 4+ 1)th canonical

correlation for ¢ > 0. The canonical set is not complete since members of the
set {¢5?(x)} never appear in it.

This procedure could be varied by arranging the distributions to be mixed
in a checkerboard pattern. Let us now give a bivariate distribution which is
not ¢’-bounded but nevertheless has a canonical set of variables and distinet
canonical correlations.

Let a probability measure be defined by

(18) WX =57 =3) = py, rye
so that pi; = Dis and let
(19) 2P = 2o Ppi = w;
7 o 7

(20) ’;1 w; = Wi.
An infinite set of orthogonal functions can now be defined by

2 = (W), X=12--4
(21) = =W/ (wiaWisr), X=i+1

- =0 forX >+ 1.

A similar set of orthonormal functions can be defined on the other margin.
Let now a set of positive numbers, the required canonical correlations, be
given so that 1 > a; = a; = -+ = 0. It is required to find a symmetric bi-
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“variate distribution with these canonical correlations, {a.}, and with marginal
frequencies, {wi}, with the obvious limitations w; > 0 and >, w; = 1 and a
further requirement, W, = w1 + w: > a: . A probability with a single canonical
correlation of a; is now obtained by setting

(¢}
pir = wwi + &

(1) (1)
P12 = P21 = WiW2 — 01

(22)
pg) = wow; + &

p¥ = waw;, fori>2o0rj> 2.
This gives a probability distribution if & = wyw, . In this distribution, the corre-
lation of z¥ and y* is contributed to only by the four cell probabilities given in
(22) and is 6; W/ (wywe). It can take any Va,lue between 0 and W, < 1 and conse-
quently the value, a; . The probabilities, {p. 7}, can be modified without altering
the first correlation if the amounts added in the four leading cells are propor-
tional to wyw; , wiws , waw; and wew, respectively. We define

P = p + sawav;/ W3, i=1,27=12

P = pfy = wws — daw;/Wa, i=1,2
(23) (2) 2

Pz = ws + &

P2 = waw; = p$ fori> 3 orj > 3.

Once again the correlation between z® and y® is §Ws/(wsW2) and this can
take any value between zero and W3 . But a; < a1 < W, < W3, 8, can be chosen
to give a second correlation of a; . The correlation between z and y* remains
a; since the probabilities added in the cells of the leading 2 X 2 submatrix are
proportional to the product of the marginal distribution. (PSP} can be defined
in a similar manner and the process can be continued. p;; is defined as the limit
of pi2’ as n — w. It is easily verified that 2 is uncorrelated with y? for ¢ = j.
The correlations defined are thus canonical. No restrictions have been put on
the a; except @1 < 1 and so Za? may be infinite. A ¢’-unbounded distribution
with an arbitrary set of canonical correlations has therefore been constructed.
In this artificial probability distribution the expansion holds

(24) pis = wan(1 + az®y® + am®y® . ..)

for the successive terms are the &’s and the series is convergent. Suppose 7 = j
for definiteness. Then the terms in (24) with superscripts less than (¢ — 1) are
each zero. The sum of the terms with superscript greater than (¢ — 1) is con-
- vergent, for

@5) |12 aa®y® = 2 PP £ X wenaWa Wi < W'D we < Wi,
[ g % T N
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The term with superseript, (¢ — 1) is @y W._yw; ‘W3 ", when ¢ = j and this will
be unbounded for an infinity of values of ¢. If ¢ > j the corresponding term is
—a;_1/W;, which is always finite.

REFERENCES

[1] LancasTeR, H. O. (1958). The structure of bivariate distributions. Ann. Math. Statist.
29 719-736.

[2] LancasTER, H. O. (1960). On statistical independence and zero correlation in several
dimensions. J. Austral. Math. Soc. 1 492-496.



