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PROBLEM TO BE INVARIANT UNDER A LIE GROUP!
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1. Introduction and summary. Although a great deal has been written con-
cerning the theory of tests, decisions and inference for statistical problems in-
variant under the action of some group, (see for example [4]-[7], [9], [12]-[14],
[16]), no great amount of literature exists concerning the problem of discerning
whether or not a given problem is actually invariant under some group. In fact
the literature seems to consist of one abstract [8] and one paper [15].

In this paper necessary and sufficient conditions are developed that a statisti-
cal problem must satisfy in order that it be invariant, in a precise sense to be
defined later, under a fairly general class of transformation groups, Lie trans-
formation groups. It must be added, however, that.the sufficient conditions are
tb some extent tautological. In addition two methods of actually constructing
the group, if it can be shown to exist, are given, and the main theorem is illus-
trated by a variety of examples.

One of the examples yields the 1nterest1ng result that the fiducial dlstrlbutlon
of the correlation coefficient derived from a sample from a bivariate normal dis-
tribution by R. A. Fisher is not a Bayes’ distribution for any prior distribution.

2. The definition of a Lie group. The following definitions are essential to
what follows.

A group G is said to be a transformation group on the set E if G is a subgroup
of the group of all 1 — 1 mappings of E onto itself.

Let F be any subset of E, then the set of all elements gz for g ¢ @G, z ¢ F, is
called the orbit of F under G.

A topological group is a group which is also a Hausdorff space and the maps,

(i) g,h—)gh G XGd-G

(i) g 9 :G@—> G
are continuous.

Let @ be a topological group and X a Hausdorff space. Assume that for each
g £ G there exists a homeomorphism of X onto X, 7,: X — X:x — o(z, g) =
T,z such that

(i) T. = identity = I, e the identity of G

(i) T Toy = Toy0

(iii) The function (g, ) — ¢(z, g) : G X X — X is continuous, then ¢: G X X
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— X is called a topological transformation group of G acting on X by the func-
tion ¢.

If in addition,

(iv) T, = I & g = e, then G acts effectively on X.

A topological transformation group G is transitive on a space X if for every
z, y € X there is a g £ @ such that gr = y. The space X is then called a homoge-
neous space.

In what follows, differentiable should always be understood to refer to that
of class C*.

An n-dimensional manifold M", is a Hausdorff space which is locally n-dimen-
sional Euclidian at each point. Because M " is locally Euclidian, every point p has
a neighborhood with a system of coordinates zf , - - - , 7 .

A manifold, together with a set of overlapping coordinate systems, which
cover the entire manifold and has the property that the transformation between
any two overlapping coordinate systems is differentiable is called a differentiable
manifold.

A Lie group is a topological group which is also a differentiable manifold and
such that,

(i) g h—>gh:G X G -G

(i) g — g =G> G
are differentiable maps.

Let G be a Lie group and M" a differentiable manifold. Assume that for each
g € G there exists a diffeomorphism of M"onto M", Ty : M" — M": x — ¢(z, g)
such that:

(i) ¢: G X M" — M" is a topological transformation group,

(ii) The function (g, ) — ¢(z, g): G X M" — M" is differentiable, then
0:G@ X M" — M" is a Lie transformation group.

Examples of Lie transformation groups include all affine transformations of
R" and all orthogonal transformations of R".

Associated with any Lie transformation group G: M — M, is a set of infinitesi-
mal generators defined as follows the mappmg (g,2) > gz =y,9eGz,ye M
is differentiable. Let (g) = (g g%, 9) denote a set of coordinates at ¢ ¢ G
and (z) = (2', 2%, -+, 2") be a set of coordinates at some point zo of M. The
mapping can now be expressed as follows, ¥* = ¢%(g, #) @ = 1, -+, n, with
% differentiable. Put

¥i() = [9¢°(g, %) /99 o=

X: = D a¥i(x)(3/32%) is called an z'nﬁm’tesinwl generator of the Lie trans-
formation group G over the manifold M. It is a differential operator acting on
the space of differentiable functions of x.

Lie groups appear to be natural groups for a statistician to be concerned with.
They are locally compact and hence possess the Haar measure required in the
Hunt-Stein Theorem [9] or in Fraser’s work on fiducial probability, [4], [5] for
example. The transformations they induce are defined on a manifold, the type of
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space, the sample space or parameter space usually is in a statistical problem.
Finally the transformations induced by a Lie group are continuous, a property
that seems sensible for transformations applied to random variables or pa-
rameters in a real problem.

3. An invariant statistical problem. In what follows the essential components
of a statistical decision problem will be defined and necessary and sufficient
conditions that such a problem be invariant given, for most statistical problems
are generally made up of some of these basic components.

Let ¢ be the set of all experimental outcomes, By a o-algebra of subsets of
X, O the set of states of nature, and" P (-,-), the specification, a real-valued
function defined on By X ©, such that for each 6 £ ®, P (-, 6) is a probability
measure on By . Let A be the set of actions available to the statistician, B4 a
o-algebra of subsets of 4, and L, the loss function, a real-valued function on
® X A X X such that L(6, a, x) is the loss to the statistician when he takes
action a, after observing z, and 6 is the true state of nature. L is assumed jointly
measurable in @ and z. Let D be the class of randomized decision functions from
X X B, into the unit interval, such that for each z, 8, is a probability measure on
(4, B,) and such that for fixed a, §, is a measurable function of x. The associated
risk R(6, &) for 0 £ © is defined by,

R(6,8) = f L8, a, z) d(z, a) dP(z, 6).

The above statistical decision problem is said to be invariant under the group
G if,

(i) G is a transformation group on each of &, ©, 4,

(ii) g: € — % and g: A — A are each measurable transformations on the
respective spaces,

(iii) P(¢B, g8) = P(B, 6), B ¢ By, 0 ¢ ® where g belongs to the transformation
group G on ® X A X X obtained by defining ¢g(9, a, ) = (g6, ga, gx) and

(iv) L(g9, ga, gr) = L(6, a, x).

If in addition g8 = ¢ for all g £ G the decision procedure § will be said to be in-
variant under G.

The goal of this paper is to find necessary and sufficient conditions that a
statistical decision problem, in which ®, A, and % are differentiable manifolds,
must satisfy, in order that it be invariant under the action of some Lie trans-
formation group.

The following lemmas will be required later.

Lemma 1. If G is a Lie transformation group over the manifolds, ©®, A, % its
infinitesimal generators, when it is considered a Lie transformation group over
©® X A X X, are of the form,

= a9y 9 8a) 2 7(g) 2
Xl—;‘pz(a)60a+2ﬂ:pl(a)aap+zy:o’l(x)ax1,

1.e., X 18 the sum of the infinitesimal generators of G over ©, A, X respectively.
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Proor. This is an immediate result of the particular nature of,
GOXAXXL—>0XAXX.

LemMA 2. Let F be any real-valued differentiable function defined on ©® X 4 X <.
If F s invariant under the Lie group G, i.e., F (g8, ga, gx) = F(0, a, x) for all
g € G, then X;F = 0, where the X; are the infinitesimal generators of G. If X.F =
0 and G is connected, then the converse is true, namely F is invariant under G.

Proor. If F(0, a, ) is invariant under G then F (g6, ga, gz) is independent of
g. That is, 9F (g0, ga, gx)/dg' = 0. But [9F (g8, ga, gx)/8g')s=e = X.F, thus
X.F = 0 for all 7.

Conversely suppose X;F' = 0 for all 7. Now,

F(ghbo, ghao , ghzo) = F(g6:, gas , gz1),
where 6; = hby, a; = hao, £; = hxo . Thus
[0F (ghbo , ghao , ghao) /39 1s—e = [XiFlo—t, amay.oms; = O.
Now
OF (o , hao , hzo) [0k’ = [9F (ghbs , ghao , gha) /3 (gh) 'l—e

= ;{ [9F (ghto , ghas , ghts) /3g°]- [99°/3(gh) T} gme -

Thus 0F(h6y, hae, hxe)/0h’ = 0 for all j, and since G is connected F is
invariant.

The main theorem of the paper is the following.

TuarorEM. Let the random variable X have a density f(x, 8) with respect to Le-
besgue measure, and let f and the loss function L be differentiable functions. If the
statistical decision problem is invariant under a Lie transformation group G then,

(1) Z%(O) +Zp(a)~ Z”(x)gi—’y=o for all 4,

Y
(2) > vi(6) a;‘;ff+ > o?(z) alogf -3 60’(; @) forals,
¥ Y
where the linear differential operators
(3) me +Zﬂw T 2ol o
a=1 .- ,8B=1, sy =1, ,u; 1 =1, -+ -, vare the infinitesimal

genemtors of qQ.
Conversely, if there exist differentiable functions, Y5 (6), ), ol (x); & = 1,
,;8=1, -+, tvy=1,---,u;¢ =1, ---, v such that

(1) (1) and (2) above are satisfied

(2") there exist constants cix 1,5,k =1,---,rsuchthat X; X ; — X;X; = ZiC;:k X
the X; being given by (3)
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(8") the X generate a connected group G, then, the statistical problem defined
previously is invariant under G.

Proor. The measure induced by the density function f(z, 6) is invariant under
the action of @, if and only if f(z, §) = f(gz, gB) Det (3¢*(g, x)/é)x")
Differentiating this relation with respect to g* and setting ¢ = ¢ one obtains,

0= X.f +f[; (907 (x)/02")]

This is equivalent to (2). (1) follows immediately from Lemma 2, completing
the proof of the necessary part of the theorem.

It was stated in the introduction of the paper that the sufficient conditions
that would be developed were somewhat tautological. The following discussion
should indicate the reason for this statement.

In the second lemma it was shown that if the differentiable function F (9, a, z)
is invariant under the Lie group G, then it must be such that X;# = 0 for X, any
infinitesimal generator of G. It is not however true that if a function F is such
that X:F' = 0 for a set of linear differential operators of the form under considera-
tion, then there is a Lie group of transformations G under which F is invariant.
The linear operators may not generate & (global) group of transformations, but
only a local one (i.e., one for which inverses etc. are only defined in a neighbor-
hood), or perhaps nothing significant at all. The condition (2') above is the
necessary and sufficient condition that a local group be generated (this is Lie’s
Second Fundamental Theorem). Necessary and sufficient conditions have been
given for a global group to be generated (see [11]), however these conditions do
not seem to be easy to apply. If one does have a particular set of linear operators
satisfying (2') the most efficient method of finding out if they generate a global
group appears to be to generate the local group and then to check to see if it is
actually global. Two methods of doing this follow later.

The sufficiency part of the theorem relative to the loss function now follows
from the above considerations and Lemma 2. To complete the proof of the
theorem it must now be shown that the probability measure induced by f(z, 6) is
invariant or that, f(z, 6) = f(hz, h8) Det (do*(h, ) /0z") for all h.

Now,

of (he, h9) /8h’ = [3f (gh, gho) /(gh) "]=e
= 2. {[8f(gha, gho) /3g]-139°/3(gh) ]} g=e = 22 1097/(gh) o= X iflomzy om0,
where x; = hzx, 6, = hé.
Similarly,
(8/0h’) Det (3p*(h, x) /0z”)
= 2. [99°/3(gh) j]a=e(; o (hz)) Det (3¢®(h, x) /dz™).
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Using the above relations and (2),

8h7 {f(hz, h8) Det (3¢ (h, x)/d2")} = 0.

Therefore f(hx, ho) Det (dp*(h, z)/0z") is a constant with respect to A, and
setting b = e, and using the fact that G is connected, it equals f(z, ). The proof
of the theorem is now completed.

The theorem has the following corollary for the case in which X is a real
random variable with cdf F'(z).

CoRroLLARY. Let X be a real random variable with c.d.f. F(zx, ). The statistical
problem is invariant under the connected group G if and only if F./Fy = a(8) /b(x)
i.e., F./Fy factors into a function of x times a function of 0 and b(zx)(8/dx) +
a(0) (8/06) generates G.

Proor. This corollary follows immediately from Lemma 2 and the fact that
for a real random variable invariance of the probability méa,sure and invariance
of the c.d.f. are equivalent. This corollary is inherent in [10].

The reader will have noted that derivatives of all orders have been assumed to
exist in the definition of a Lie transformation group. One can in fact proceed
with fewer derivatives than this. Minima] conditions are a topic of current
research in the theory of Lie groups.

Two methods of actually generating the local group from a given set of linear
operators now follow:

Method 1. Let the local group G be generated by the r linear operators X, ,

, X,. If £ = g(z), then,

F=exp(@Xi+ X+ - +¢gX)z' for i=11,---,n,
ie.,
v = L l(gX + o + X)) /mla
Method 2. Let the local group @ be generated by X1, - -+, X, once again. Find
the integrals @1, - -+ @n of (¢'X1 + -+ + ¢g"X,)u = 1 then solve
‘p'.(x‘,...’j)_—_(p(xl,.‘..’x")_l.l i=1---,n
for Z.

The following example illustrates the first method and the corollary.

ExampLE 1. Suppose one is concerned with the Pareto distribution F(z) =
1 —(1/z%) z =2 1 a > 0, ie., one wishes to find if it is invariant under some
group. Now F,/F, = (a/z) In z, i.e., F./F, factors as required; therefore F(x)
may be invariant under some local Lie transformation group. Let us try to gen-
erate this group by Method 1 given above.

Its infinitesimal generator is X = — q(8/da) + z In x(8/92), a =
exp{—— gla /0 — z Inz (8/8z) o} = exp[— ga 8/dala = a — ga + g'a/2!
—g'a/3! -+ = a %, & = explgz Inz (3/0x]t = D m (l/m')[gxin 2(8/8x)]"x.
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LetInlnz =y, = > .(1/m!)(g 8/3y)™ exp(¢*) = exp(e’™) = 2%, i.e., the
local group is given by & = ca, & = £°, ¢ > 0, which is actually a group.

ExampLE 2. A problem that is of interest in the field of statistical inference is
to find out if the c.d.f. of the correlation coefficient r, estimated from a sample of
size N from a bivariate normal distribution with correlation coefficient p is
invariant under some group of transformations. This problem is of interest for
two reasons, first if such a group exists and it is locally compact the Haar measure
on it provides a particularly appealing prior measure to use in the application of
Bayes’ theorem. Secondly if the group exists and it satisfies certain properties a
fiducial distribution for p may be constructed following Fraser [4] [5] and it
would be of interest to compare this fiducial distribution with the one given by
Fisher in his original paper on fiducial probability [3].

The density of the correlation coefficient may be written as,

2n—2 1 — 2)}1»(1 _ r2)}(n—3) 0 21 a.
( p > ( P' )

(4)  falr,p) = I I’l3(n + )]

a=0 .
wheren = N — 1. (See [1].)
The c.d.f. will be invariant under a Lie transformation group only if there
exist differentiable functions a(r), b(p) such that,
d d
7 [0(r)fa(r, p)] = b(p) a;fn(r, p).
Write f, as, Kn(1 — p2)"(1 — r)¥*®¢(2pr). Therefore

(1= " Lfar) (1 = 0 0(2p)]

(5)

= b(p)(1 — )} OL(1 — P)"C'(20r)2r — (1 — p*)" 'npC(20r)].
Set p = 0

(0) g;[a(r)u — ] 2 p(0)(1 — )0 (0)2r
Therefore,

C(0)a(r) (1 — A} = — b(0) (1 — A" C"(0)2/(n — 1) + K.
Equation (5) becomes
(6) (1 — ")[b(0)C"(0)2rC(2pr) /C(0)
— b(0) (1 — 7*)C"(0)4pC’"(20r) /C(0) (n — 1) + 20KC’(20r) /C(0)]
= b(p)[(1 — p*)C"(2pr)2r — npC(2pr)].

Set r = 0, yielding b(p) = (1 — p°) X a constant.
Setting p = 0 the constant = b(0), i.e., b(p) = (1 — p*)b(0). Substitute in

(6),
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(7) b(0)C’(0)2rC’(20r) /C(0)
— B(0) (1 — )C’(0)4pC"(26r) /C(0) (n — 1) + 2pKC" (201)
= (1 = p)b(0)[(1 — p")C’'(20r)2r — npC(2pr)].
Equating the coefficient of pr* on both sides of (7),
(0)C"(0) T’} (n + 1)]/C(0) + b(0)C'(0) T’} (n + 1)1/C(0) (n — 1)
= b(0)T’[3(n + 2)].
Therefore b(0) = 0 or,
Ii3(n 4+ Din/(n — 1) = T'F(n + 2)TEn].

The latter is easily seen to be impossible, consequently 5(0) = 0 implying
b(p) = 0. It therefore follows that the c.d.f. of the correlation coefficient is
invariant under no Lie transformation group. .

Lindley in [10] proved a theorem to the effect that for real random variables
a fiducial distribution is a Bayes’ posterior distribution if and only if the problem
is invariant.

Applying this theorem here one can now say that the fiducial distribution for
p is not a Bayes’ posterior distribution for any prior distribution.

This example also demonstrates that a possibility suggested to me by Dr. J.
Berkson is not true in general. Namely, that when the fiducial distribution pro-
vides a frequency interpretable probability, that probability is the one given by
the Bayes’ formula with a uniform distribution of the prior probabilities.

ExampLE 3. In [2] an example is given to demonstrate that the above men-
tioned theorem of Lindley does not extend to spaces of dimension higher than
one. Unfortunately the theorem quoted in [2], from which it follows that the
given example is in fact a counterexample, is not general enough. The theorem
proved above is of sufficient generality. Doubtlessly the given example still
provides a counterexample; however it seems useful to give an example to which
the above theorem may be applied more easily.

Consider

f(@,y, @ B) = (2m) o (a) expl—}(z — @)’] exp[—}0’(a) (¥ — B)]

where o(a) is selected as in [2]. One may easily verify that Condition (1) of the
theorem above leads to a contradiction. _

I would like to thank David Lowdenslager for looking over a section of this
paper, and the referee for a number of suggestions.
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