ON THE ESTIMATION OF THE PROBABILITY DENSITY, I!

By G. S. Warson” axp M. R. LEADBETTER
University of Toronto and Research Triangle Institute

0. Summary. Estimators of the form f,(z) = (1/n) D i1 .(z — ) of a
probability density f(x) are considered, where z; - - - x, is a sample of n observa-
tions from f(z). In Part I, the properties of such estimators are discussed on the
basis of their mean integrated square errors E[ [(fa(z) — f(x))%dz] (M.IS.E.).
The corresponding development for discrete distributions is sketched and ex-
amples are given in both continuous and discrete cases. In Part IT the properties
of the estimator f,(z) will be discussed with reference to various pointwise
consistency criteria. Many of the definitions and results in both Parts I and IT are
analogous to those of Parzen [1] for the spectral density. Part II will appear
elsewhere.

1. Introduction. Many authors have considered the problems of estimating
the spectral density of a stationary time series from observations of the series
throughout a time 7. The corresponding problem of estimating probability
densities has received less attention in the literature. The authors were prompted
to make the present investigation while studying methods for estimating the
hazard function h(zx) = f(x)/(1 — F(z)), (Watson and Leadbetter [3]).
Whittle [4], in estimating probability densities, considers the case where the
unknown density f(x) has a prior distribution whose means and covariances
are known. He uses an ‘“expected mean square error” criterion to optimize his
estimators. That is to say, he considers estimators of the form f(z) = (1/ n)
> 71 wi(2;), for a sample of n observations z; , where w,(y) is chosen to make

(1.1) EpEst(fC) - f(x)]zy

a minimum. Here E, and E, denote averages over the prior distribution for
f(x), and the sampling fluctuations respectively.

Parzen [1] considers estimates fr(w), having a certain form, of a spectral
density f(w), from observations on a stationary time series, in time 7'. He uses
various criteria in judging the suitability of the estimate fr(w) and in discussing
its asymptotic properties as T — . In this paper we use these criteria in ob-
taining classes of estimators of a probability density. The estimators have the
form considered by Whittle, but the criteria employed by Parzen will be used
instead of the expectation (over the prior distributions) of the sampling mean
square error. Should prior probabilities be available, many of the general results
obtained will remain true for the mean taken also over the prior distribution,
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provided the quantities occurring are replaced by their means with respect to the
prior distribution. Most of our results are analogous to results obtained by
Parzen in the frequency spectra case. The correspondence is very close for the
theorems in this paper. In Part II, which will be concerned with “pointwise con-
sistency” the results are still similar in general form to those for frequency
spectra, but the differences in detail are much more marked, due to the essential
differences in the form of the estimators from those used in spectra estimation.

A recent paper by Parzen [2] on estimation of a probability density and mode
has also some points of contact with the present work. These are mentioned
below.

Explicitly the unknown probability density f(z) is to be estimated by esti-
mators of the form

(12) fu@) = (/w3 au(a = 2,

from a sample of n observations z;, -, . 8.(-) is assumed to be a square
integrable function, as is f(x).

In terms of this notation we give the following definitions which are due to
Parzen ([1], Section 4, etc.), and which give criteria on which judgements con-
cerning the suitability of particular classes of estimators, may be based.

The mean integrated square error (M.IS.E.) J,, of the estimator fu(z) is
defined by

(13) 1. = 8 ([ Guta) = 607" ).

Integrals where no limits are written are to be taken over the entire real line.
The symbol E denotes expectation. Let H(n) — «© asn — .
The estimator f,(z) is said to be integratedly consistent of order H(n) if

(14) H(n)J, — a limit which is finite and non-zero, as n — .

In the following sections various types of estimators are discussed and their
orders of consistency investigated. The type of estimator appropriate in a given
situation depends largely on the behavior of the characteristic function ®;(¢) of
the probability density f, for large ¢{. Two main classes of probability densities
are considered, consisting of those densities whose characteristic functions de-
crease in an “algebraic” and an “exponential” way as ¢ increases. Corresponding
to these classes, the appropriate estimators are of ‘‘algebraic type” and ‘‘exponen-
tial type” respectively. These terms are defined precisely in later sections.

In Section 2 we derive expressions for the §,(z) which minimizes the M.I.S.E.
J.. We sketch the corresponding derivations for the discrete case, where the
problem is to estimate the quantities p, associated with a discrete random vari-
able X for which Prob (X = r) = p,, (r = 0, £1, &2, - - -). Examples for both
discrete and continuous random variables are given.
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In Section 3 the case where the characteristic function of f decreases ‘‘alge-
braically” is considered. The minimum M.I.S.E. is evaluated for this case, and
estimates of “‘algebraic type” discussed. It is shown that there is an estimate of
algebraic type which has the same (M.I.S.E.) consistency properties as the
“minimum M.I.S.E.” estimate.

Section 4 contains a similar discussion for the case where the characteristic
function of f has an “exponential rate of decrease’” and estimates of ‘‘exponential
type” are used.

2. Minimum M.LS.E. estimation. Let f.(z) be the estimator as defined in
(1.2), of the square integrable frequency function f(x). For any function g(x),
either integrable or square integrable, write ®,(t) for the Fourier transform
®,(t) = [ ¢™g(x) dv, where the integral has the usual interpretation for square
integrable functions g(x). From definition (1.3) and Parseval’s formula,

(2.1) J.=E [f (fulz) — f(2))* dx:l;

(22) —(1/27) E [j %5, (1) — #,(t) | dt].

We can proceed to minimize either (2.1) or (2.2), obtaining of course equivalent
results.

Since
&7, (1) = s, (8) (1/0) 2 €™,
(2.2) becomes

27

B[ [1@0m & = a0 Fal,

[[am ien@Fa-1em

F1R0 1 (L= 2,0 P) |

This may be re-written as

onJ, = f(%+”; L a0 P)(

_ | 2,(t) ’ | &) (1 — | 2,(8) [)
(1/n) + [(n — 1)/n]| &4(8) | )dt + f L+ (n—1) |2 %
and so is minimized by taking &;,(t) = ®5,(t), where

o | ®,(2)
(24) () = Wy F T — D/l &)

®;,(8)

(2.3)
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The minimum M.I.8.E. J} , corresponding to &3, is, from (2.3), given by
[2(8) [ (1 — | 2,(8) [)

o5 SR R = VAL ZO)
ge 00 _ 1 EXON
» n Wl ITFx =10
or
(2.6) Jn = 82(0)/n — 0(1/n),

since the second term in (2.5) is dominated by [1/27(n — 1)][ |®,(¢)|” dt.
By similar arguments it may be shown that &5 (z) satisfies the integral equation

(1/n)8%(t) — [ f(@)f(z — t) dz + [(n — 1)/n] [ [ f(z — s)f(z — 1)83(x) ds da =
0, or writing g(t) = [ f(2)f(z — t) dx,

(2.7) (1/n) 55(t) + [(n — 1)/n] j g(t — ) 8;(s) ds = g(¥).

Taking Fourier transforms of the quantities in this equation yields (2.4) again.

ExampLes. In each case 8%5(-) was found by inverting (2.4).

(1) Cauchy distribution, f(z) = 1/(x(1 + 2%)), &;(t) = ¢

—7rz/2 0 r+1
% . n e . zlog(n —1) | 2n -1 r

IO e S 2 +75G=1) Fre
It follows from (2.6) that, (n/logn)J»% — (1/2x). This is a particular case of a
general theorem to be proved later (4.3), and shows that f» is here integratedly
consistent of order (n/log n), where f corresponds to &% .

(2) Gamma distribution, f(z) = 2* ‘¢ */T'(p) forp a positive integer, ®,({) =

(1 — i)™ Forp = 1, 8%(x) = (n*/2) exp (— | z | n?), and for p = 2,
8*(z) = [nl/2(n — 1)} exp (—azn* sin a/2) cos (|z|n* cos a/2 — a/2)

where @ = = — tan"[(n — 1)*]. For p a general integer, an exact result for
8%(x) is difficult, but we have approximately that

* - 1/2p 21 + 1 }
* - " — -1 a2
on(x) » zz-o: exp { z(n )"*? sin 5% T

(n p— 1)1—1/2p
sin{x(n — 1)Y* ¢os 2+1 T+ A+ 1 T
2p 2p

wherem = p/2 — 1if piseven,and (p — 1)/2if p is odd. This result is obtained
by approximating the zeros of [(1 4+ ££)? 4+ n — 1] by the points

tl - (n _ 1)1I2pei1r(2l+l)/2p’ 1= 0’ 1, ee, 2p - 1.

Ineach of these cases wesee from (2.6) that n' *2J* — (1/2x) [2, [dt/ (1 + £7)].
These are again special cases of a.general result (3.3) which is proved later.
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(3) Consider the distribution given by f(z) = (1 — cosz)/(xz’) with
®;(¢) = 1 — |t if |{| = 1 and ®,(t) = O otherwise.

5*(z) = n [§£1_x_ /1 cos zt di ]

" (n—Drl =« b 1+ (n — 1)1 — 82 ]
Thus from (2.6), nJ — 1/7 and the estimator given by 85 is thus integratedly
consistent of order n.

Since, from (2.5), for any ®;(¢), nJx = [ |&;(t)[*(1 — |&,(¢)[*) dt, it follows
that in no case can the order of integrated consistency be greater than n, i.e. J&
cannot decrease faster than 1/n. The last example considered where ®;(¢) is non
zero only in a finite ¢ range (i.e., f has “finite bandwidth’’) is a case where the
order of integrated consistency of the optimum estimate is actually n. In fact it
is n in all cases where the density f(x) has a finite bandwidth since if ®;(¢) = 0
for |t| = L, from (2.5), 2enJ % — [Z, (1 — |&,(t)[*)xs(¢) dt where x,(t) = 1 if
|®:(t)| > 0 and xs(¢) = 0 otherwise. ‘

TuE DiscrerE CAsE. We now consider the corresponding minimum “M.I.S.E.”
problem in the discrete case. Let X be a discrete random variable such that
Prob (X =r)=2p,,7r= (0,1 +£2---).

Then the characteristic function ®»(6) of X is given by ®,(6) = D =, p.e™.
The quantities p, are to be estimated from a sample of n drawn from this distri-
bution. Denote by 7, the number of times the value X = r occurs in the sample.
Corresponding to (1.2), estimators of p, will be considered with the form

(2.8) Br = (1/n) Do Wa(r — 8N4,

omitting the dependence of 7, on n, where w,(r) is such that >, w,(r) = 1. It
is natural to define the “M.I.S.E.” in this case by

29)  Jo=EX(p — p)t = (1/27) fo "1 @(6) — @(6) [ b,

where ®(0) = Do Pre”™’. Writing ®,(0) = D m—w wa(r)e™, it may be shown
that J, is minimized by ®,(0) = ®,+(8) such that

2
(2.10) Bur(8) = | £2(0) |

(1/n) + [(n — 1)/n] | 24(6) |*’
as in the continuous case (2.4). The minimum M.I.S.E. J7 is given by

1 @p(0) I (1 — |®2(6) )
14+ (n—1)[®(0) |?

. The order of (integrated) consistency of the minimizing estimate does not
depend on the form of ®»(8). This is in sharp contrast with the continuous case
for which the order of (integrated) consistency depends strongly on the form
of the distribution as noted in the examples, and as discussed more fully in Sec-
tions 3 and 4. In the discrete case we have the result that the minimizing estimate

de.

(2.11) 2nJE = fo
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determined by ®,:(9) is integratedly consistent of order =, since from (2.11)
27
(2.12) nIE— (1/2m) [ xe(0)(1 = [ @(0) [ s

by the dominated convergence theorem, where x»(6) = 1 if [®z(8)| > 0, and
xr(8) = 0 otherwise. That is nJ% — I/2r — X =, p’asn — o where [ is the
measure of the subset of (0, 2r) for which |®;(¢)| > 0.

ExAMPLES.
(1) Geometric distribution p, = gp’,r = 0,1,2 --- .
wa(r) = (1 4 4p/ng") "

where z is the smaller root of the equation pz* — 2(ng” + 2p) + p = 0, from
which it follows at once that J7 ~ 2p/[n(1 + p)] as n — », verifying (2.12) in
this case.

(2) Poisson distribution p, = ¢ "m’/r! + =0,1,2--- .
wa(r) = (n/n — 1)&[(—14)’/(” — 1)71e"™ 115 (—2ms),

where I,(z) is the Bessel function of order r with imaginary argument.
(3) Distribution for which po = a/(27)
p. = (1 — cos ar)/(war®), r=+1£2 - 0<a=m

We have, similarly to Example (3) in the continuous case,

wi(r) = " [sin ra __fa - cos 70 do
" (n — D r v 1+ (n— 1)o(a — 0)2]"
3. Characteristic functions which decrease algebraically. Disc_ussion of the
asymptotic properties of J7 , asn — o, requires some knowledge of the behaviour

of &;(t) as |t| — . Following Parzen we make the following definitions: ®(¢),
the characteristic function of f, decreases algebraically of degree p > 0 if

(3.1) linyese [11,(8)] = K* > 0.

An estimator f,(z) = (1/n) 2.1 d.(x — ;) has algebraic form if ®;,(t) can be
written as h(Ant), where h(¢) is a bounded even square integrable function and
A, — 0 asn — «. This is equivalent to requiring

(3.2) 8.(x) = AZKk(A7'Z) with h(s) = &(2).
Parzen [2] has considered this type of estimate and shown that they are con-

sistent and asymptotically normal, as well as considering their pointwise mean*

square error. N _
In this section ®;(¢) is assumed to decrease algebraically of' degree p. The
section is divided into three parts. In 3A, the order of consistency of the optimum
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estimate, based on &% , is investigated. In 3B, the same is done for estimates of
algebraic type and, in 3C, an estimate of algebraic type is constructed with the
same consistency properties as that based on &7 .

3A. Consistency properties of the optimum estimate.

THEOREM. Let ®;(t) decrease algebraically of degree p > %, K as in (3.1), then
J , the minimum M.IS.E., satisfies

(33) R (120K [1d/(1+ )] 8s o .

Proor. Choose T such that, for [t| = T, ||t/7*|&;(¢)| — K '| < e where
e > 0 is fixed.

112 [ | &,(¢) [° _ 1% ’ | &,(8) |*
I e e 70 ek e e

1-1/2p di _ 1-12p dt
tn Lo (n— 1) + [pek— " f—T (n — 1) + |tPPK

1 1
1-1/2p - _
o flt|>r [(n - 1) + WT)IW |t * (n — 1) + |f|*K l]dt-

The first and third terms are dominated by 2T%" "**/(n — 1) > 0 asn — .
The second term tends to a finite limit, namely,

1-1/2p
. n ds _ ll2pf dt
fim (n = 1> f iFeee - B T

The fourth term is dominated by

1-1/2p ds
F [” [o=1% ItI“’K“‘] .

where |®;(t)[’|t| < P, say, a bound which exists since |®;(¢)|’|¢|”” is continuous
and tends to a limit as |¢{|] — . Thus the fourth term is arbitrarily small (uni-
formly in n) for sufficiently large T' and an application of (2.4) and (2.6) yields
the desired result. Hence the estimate f,(z) formed from &% is, when ®;(¢) de-
creases algebraically of degree p > 0, integratedly consistent of order n'™/*".

3B. Consistency properties of an estimate of algebraic type.

TarorEM. Let f,(x) be an estimate of algebraic type, and &;(t) decrease alge-
braically of degree p > 0. If [ [(1 — h(t))*/|t|*] dt exists (where ®;,(t) = h(Aat))

and if A, = D" then

1-1/2p 1 2 K 2p—1 (1 - h(t))2
38 oo [ R a+ oD f“—"'_wtlzp dt

where J, is the M.1S.E. corresponding to 8, and K = lim,.., (|&:(¢)[*|¢/?).
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Proor. From (2.3), with &;,(¢) = h(4.t),

oant 7y = n—llzpfh2(Ant)(1 — | &,(t) ") dt
(35)
+ nl—IIZPf | (pf(t) [2(1 - h(Ant))2 dto

The first term on the right-hand side is, for 4, = Dn7V?,
D [ 1) dt = o [ (4 |20 Fae— D [ H(0) a,

since h(¢) is bounded. The second term on the right-hand side of (3.5) becomes

o[ —h@)) o [ (1= R@®)?
k0 [ g a0 [ S

3 —1 172 ? K
I:{n | ®,(D"n ") | |t|"} - D““’P] dt,

where the second integral tends to zero by the dominated convergence theorem.
The right-hand side of (3.5) therefore converges, as n — «, to D[ h(t) dt +
KD™ [ [(1 — h(¢))*/|t|™] dt, which completes the proof.

This theorem shows that an estimate of algebraic type is integratedly con-
sistent of order n* Y/, if &; decreases algebraically of degree p. It corresponds to
part of Parzen’s result (5.28) [1].

The remainder of the result corresponding to Parzen’s (5.28) may be stated
as follows:

TaroreM. Under the conditions of the previous theorem, except that A, = Dn™"'",
then, for 0 < r < p,n" " J, — (1/2xD) [ K(t) dt.

This is proved in the same way as the previous theorem and states that f. is
integratedly consistent of order w7 for r < p.

3C. An estimator of algebraic type, with the asymptotic optimum property. If
&;(t) is known to decrease algebraically, of degree p, an estimator can be found
whose M.IS.E. J, satisfies the same (M.I.S.E.) consistency relation (3.3) as
does J* . This means that if the asymptotic efficiency of the estimator is defined
as liMyow [J%/J,] then this estimate has asymptotic efficiency 1. The estimator
is of algebraic type with h(¢) = (1 + [f|*")™, 4. = Dn™"'. By (3.4) it follows
that

1120 1 [1+ KD”|i*
and D = KV yields (3.3).

4. Characteristic functions which decrease exponentially. The following
definitions for this case corresponding to those in Section 3, are again very similar
to those used by Parzen.
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The characteristic function ®,(¢) is said to decrease exponentially, of coefficient
p > 0if

(4.1a) |8,(t)] < Ae™™*!, for some constant A and all ¢.
1
(4.1b) iMoo fo [1 + &%, (ut)["1 dt = 0.

This definition includes a wide variety of characteristic functions which would
usually be considered as having an exponential rate of decrease.
An estimate f,(x) formed from 8,(z) is said to have exponential form if

4.2) ®;,(t) = h(A.e*"") where A, — 0asn — o, a>0,

and A is as before, bounded and square integrable. The remainder of this section
is divided into four parts, the first three corresponding to those in Section 3. The
fourth part deals with an extension, which includes the case of normal random
variables, to a generalized type of exponential decrease.

4A. Consistency properties of the optimum estimate.

THEOREM. Let ®;(t) decrease exponentially of coefficient p. Then Jy , the minimum
M.IS.E. satisfies

(4.3) liMye (n/log n)J* = 1/(2mp).
Proor. We have
|8, (2)|* _ e l
T+ - DR@P Y ) T4 = Do @
(4.4) o

<201+4) | I+ (o — DB + (n — Do)

using (4.1a), since |®;(¢)|” is even. But this is not greater than

. log (n—1)
. R dt ® ot ]
20+ 0 [ 2 [ e e €
_ \ 1 log(n—1) [! ds 1 ]
=201+ 4) [n -1 2p o 1 4 e2?|®/(vs)|? + 2p(n — 1)

(where v = log (n — ,1) /(2p), t = vs), and this expression tends to zero as
n — «. We have also that
e—2ﬂ|¢| 1

n
(4.5) fognd T (n = Do dt—»—p,
and hence by (4.4)
2
(4.6) - [2,(0)| dit—1 as n— o,

fogn) TF m— DBOF" "%
Finally, using (2.5), the result follows.
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Hence if ®;(¢) decreases exponentially of coefficient p, then J7 is integratedly
consistent of order n/log n.

4B. Consistency properties of an estimate of exponential type. Let f.(z) be an
estimate of exponential type. That is, ®;,(f) = h(A4,e*'"). In addition to being
bounded (by the bound B), and square integrable, suppose that h(t) satisfies the
following condition:

4.7) 1 —h(t)| = Bift| for |t <1
Then the following result holds.

TueorEM. Let ®;(t) satisfy (4.1a), and let f,,(x) be an estzmate of exponential
type such that h(t) satisfies (4.7). Let A, = Dn™" Jor b > 3 and o < 2pb. Then
the M.I.S.E. J, corresponding to f.(x) satisfies
(4.8) lim, . [(n/log n)J.] = (1/27)(2b/a).

To prove this we establish first two lemmas.
LeMMA 1. Under the conditions of the theorem,

(4.9) (1/log n) f X (K(t)/t) dt > b as n— o.
Dn ™!
For this integral may be written as
1 1 2 2
1 d 1 h (¢ dt + 1 K (t) i
lognJonst  logn Joa-s log n

The first term is b — log D/logn — b as n — . Using (4.7 ) it follqws that the
second and third terms tend to zero.-Hence, the result follows.
LeEmMA 2. Again under the conditions df the theorem,

(410)  (n/logn) f 18,()F(1 — ®5.(£))2dt— 0 as n — w.

For this expression is equal to

2 (Lros () G,

ar

on ! P ' n"x)] 2 X

< 7 —9°f bl ud
= fog 7 Jon-s A exp [ 2 log <D Bi = dz

lognf (1+ B)*4 exp[ 2° log %)]_
%, which

Each term tends to zero by virtue of the assumptions & < 2pb, b =
completes the proof of Lemma, 2.
Proor or THE THEOREM. From (2.3)

o " J, = fh2(D “esltly gy — 1 fh”(Dn"’e“"')lcpf(t)F dt
log n log n log n

+ g7 | BAOF = 2,0 .
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The first term is (2/log n) [3.-s h*(z) (dx/a) — 2b/a by Lemma 1. The second
integral tends to zero since it is dominated by (B*/logn) [ |&,()|* dt. The third
integral tends to zero by Lemma 2.

This completes the proof of the theorem which shows that the estimate f,(z)
of exponential type, is consistent of order n/log n.

4C. Estimates of exponential type with the asymptotic optimum property. From
(4.8) any estimate of exponential type, with h(t) satisfying (4.7) and A, = Dn™°
(b > %, a £ 2pb), has M.I.S.E. J, such that

limoe [(n/log n)J,) = (1/27)(2b/a).

Hence any such estimate with a = 2pb is an estimate with the asymptotic
optimum property (4.3), a result which is again analogous to Parzen’s (5.16)
in the case of estimation of a spectral density.

4D. Generalization of exponential decrease. The definition of exponential type
decrease has an extension which includes the case of normal random variables.
This extension is to the case of characteristic functions which decrease exponen-
tially of degree r and coefficient p. A characteristic function ®;(¢) is said to de-
crease in this way if the following conditions hold:

(i) |®s(t)] < Ae™"*!" for some constants A > 0,p > 0and 0 < r < 2.

fl dt
o 1 4 exp (2p07)|®(tv)|?

—0 as v— o,

(ii)

We can generalize the definition of estimators of exponential type so that they
_are suitable for this case and similar results to those in Section 4 then hold. For
example the following result is the extension of 4.3.
TaEOREM. Let ®;(t) decrease exponentially of coefficient p and degree r. Then J |
the minimum M.LS.E. satisfies

lima- [/ (log ) ""1T% = [1/7(2)""].
This is proved in a similar way to (4.3).

General conclusions. The form of the optimum estimate (in the minimum
M.I.S.E. sense) depends heavily on the behavior of ® . However, in the cases
where something is known of the behavior of ®;(¢) as ¢ becomes large it is some-
times possible to obtain estimates with the same (M.I.S.E.) consistency proper-
ties as the optimum estimate. That this is true in the cases where ®; decreases
algebraically and exponentially respectively is seen from Sections 3C and 4C. It
is evident also that the M.I.S.E. consistency results for estimates of exponential
type are not strongly dependent on the form of the function %, when ®; de-
creases exponentially. In the case of estimates of algebraic type, for ®; decreasing
algebraically, we need to know more about the precise form of the function & to
discuss the M.I.S.E. consistency relations, than we do in the exponential case.
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