ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES

By Leonard E. Baum and Melvin L. Katz

Institute for Defense Analyses and University of Chicago

1. Introduction. Let $\{X_i: i=1,2,\cdots\}$ be a sequence of independent, identically distributed, nondegenerate random variables with common distribution function F(x). Let $S_n = \sum_{i=1}^n X_i$; denote by $F_n(x)$ the distribution function of S_n ; and let $a_n = P(S_n < 0)$. In this paper it is shown that if $EX_i = 0$ and $E|X_i|^{2+\alpha} < \infty$ for $0 \le \alpha < 1$, then $\sum_{n=1}^{\infty} n^{-(1-\alpha/2)} |a_n - \frac{1}{2}| < \infty$. In [3] Spitzer showed that if $EX_i = 0$ and $EX_i^2 < \infty$ then $\sum_{n=1}^{\infty} n^{-1} (a_n - \frac{1}{2}) < \infty$, while in [2] Rosén showed that this series was absolutely convergent. The methods of this paper follow closely the methods of [2].

2. Preliminaries. We require the following results of [2].

- (1) Let X be a nondegenerate random variable with distribution function F(t) and characteristic function $\varphi(t)$. Then there exist two constants $\delta > 0$ and C > 0 such that $|\varphi(t)| \leq 1 Ct^2$ for $|t| \leq \delta$.
- (2) Let $\{X_i: i=1, 2, \cdots\}$ be a sequence of independent, identically distributed, nondegenerate random variables. Let I_n denote an interval of the real line of length $l(I_n)$. Then $l(I_n) \leq n^p$, $0 , implies <math>P\{S_n \in I_n\} \leq Cn^{p-\frac{1}{2}}$ where C is some constant independent of n and I_n . Further $\sup_a P\{S_n = a\} \leq Cn^{-\frac{1}{2}}$ where C is again independent of n.
- (3) Let X be a random variable with distribution function F(x) and suppose $\int_{-\infty}^{\infty} \log (1 + |x|) F(dx) < \infty$. Then

$$\frac{1}{2} \{ F(x+0) + F(x-0) \}$$

$$= \frac{1}{2} + \lim_{N \to \infty} \frac{1}{2\pi i} \int_0^N \frac{1}{t} \left\{ e^{ixt} \varphi(-t) - e^{-ixt} \varphi(t) \right\} dt$$

$$= \frac{1}{2} + \frac{1}{2\pi i} \int_0^{\delta} \frac{1}{t} \left\{ e^{ixt} \varphi(-t) - e^{-ixt} \varphi(t) \right\} dt + R(1, x, \delta)$$

where $\delta > 0$ and $R(1, x, \delta) = (1/\pi) \int_{-\infty}^{\infty} F(dy) \int_{\delta}^{\infty} [\sin(x - y)t/t] dt$. The corresponding remainder term for the distribution function $F_n(x)$ will be denoted $R(n, x, \delta)$.

The following improvement of a lemma in [2] is also required.

Lemma. For any ϵ , $0 < \epsilon < \frac{1}{2}$, there exists a constant C, independent of n and x, such that $|R(n, x, \delta)| \leq Cn^{\epsilon - \frac{1}{2}}$.

Received January 17, 1963.

Proof.

$$|\pi|R(n,x,\delta)| \leq \int_{-\infty}^{\infty} F_n(dy) \left| \int_{\delta}^{\infty} \frac{\sin(x-y)t}{t} dt \right|$$

$$= \int_{|x-y| \leq n^{\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin(x-y)t}{t} dt \right| F_n(dy)$$

$$+ \sum_{j=1}^{n-1} \int_{|n^{\epsilon} < |x-y| \leq (j+1)n^{\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin(x-y)t}{t} dt \right| F_n(dy)$$

$$+ \int_{|x-y| \geq n^{1+\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin(x-y)t}{t} dt \right| F_n(dy).$$

From (2) and the fact that $\left|\int_{\delta}^{\infty} (\sin ut/t) dt\right| \leq C$ it follows that

$$\int_{x-y|\leq n^{\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin (x-y)t}{t} dt \right| F_n(dy) \leq C n^{\epsilon - \frac{1}{2}}.$$

From (2), again, and the estimate $\left|\int_{\delta}^{\infty} (\sin ut/t) dt\right| \leq C/(\delta |u|)$ it follows that

$$\sum_{j=1}^{n-1} \int_{|j|^{\epsilon} < |x-y| \le (j+1) n^{\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin (x-y)t}{t} dt \right| F_n(dy)$$

$$\leq Cn^{\epsilon-\frac{1}{2}}\sum_{i=1}^{n-1} 1/jn^{\epsilon} \leq Cn^{-\frac{1}{2}} \ln n.$$

Finally it is clear that

$$\int_{|x-y|>n^{1+\epsilon}} \left| \int_{\delta}^{\infty} \frac{\sin (x-y)t}{t} dt \right| F_n(dy) \le C_n^{-(1+\epsilon)}$$

and the lemma is proved.

3. Theorem. Let $\{X_i: i=1,2,\cdots\}$ be a sequence of independent, identically distributed, nondegenerate random variables. If $EX_i = 0$ and $E|X_i|^{2+\alpha} < \infty$ for some $\alpha \in [0, 1)$ then $\sum_{n=1}^{\infty} n^{-(1-\alpha/2)} |P\{S_n < 0\}| - \frac{1}{2}| < \infty$. Proof. Setting x = 0 in (3) it follows that

$$\begin{split} a_n - \frac{1}{2} &= P\{S_n < 0\} - \frac{1}{2} \\ &= \frac{1}{2} \{F_n(0+) + F_n(0-)\} - \frac{1}{2} P\{S_n = 0\} - \frac{1}{2} \\ &= \frac{1}{2\pi i} \int_0^{\delta} \frac{1}{t} \left\{ \varphi^n(-t) - \varphi^n(t) \right\} dt + R(n, 0, \delta) - \frac{1}{2} P\{S_n = 0\} \\ &= \frac{1}{\pi} \int_0^{\delta} \frac{|\varphi(t)|^n}{t} \sin \left\{ n \arg \varphi(t) \right\} dt + R(n, 0, \delta) - \frac{1}{2} P\{S_n = 0\}, \end{split}$$

where $\delta > 0$ is to be determined later. Since $|\sin n\theta| \leq n|\theta|$, it follows that

(4)
$$\sum_{n=1}^{\infty} n^{-1+\alpha/2} |a_n - \frac{1}{2}| \leq \frac{1}{\pi} \int_0^{\delta} \sum_{n=1}^{\infty} n^{\alpha/2} |\varphi(t)|^n \frac{|\arg \varphi(t)|}{t} dt + \sum_{n=1}^{\infty} n^{-1+\alpha/2} |R(n,0,\delta)| + \frac{1}{2} \sum_{n=1}^{\infty} n^{-1+\alpha/2} P\{S_n = 0\}.$$

It follows from the lemma with ϵ chosen less than $(1 - \alpha)/2$ that

$$\sum_{n=1}^{\infty} n^{-1+\alpha/2} |R(n, 0, \delta)| < \infty.$$

From (2) it follows that $\sum_{n=1}^{\infty} n^{-1+\alpha/2} P\{S_n = 0\} < \infty$. By hypothesis, $E|X_i|^{2+\alpha} < \infty$, and thus it follows that $\varphi(t) = 1 - (EX^2/2)t^2 + 1$ $t^{2+\alpha}[R(t) + iI(t)]$, where R(t) and I(t) are bounded real functions on any finite interval (See [1], p. 199). Therefore,

$$\arg \varphi(t) = \arctan \{t^{2+\alpha}I(t)/[1 - (EX^2/2)t^2 + R(t)t^{2+\alpha}]\}$$

and for $\delta_1 > 0$ chosen sufficiently small one obtains

(5)
$$|\arg \varphi(t)| \le Ct^{2+\alpha}|I(t)|.$$

Next, by a well known Abelian theorem ([4], p. 182 Corollary 1a) one has

(6)
$$\lim_{u\to 1^-} (1-u)^{1+\alpha/2} \sum_{n=1}^{\infty} n^{\alpha/2} u^n = \text{const.}$$

and thus for 0 < u < 1

(7)
$$\sum_{n=1}^{\infty} n^{\alpha/2} u^n < C(1-u)^{-(1+\alpha/2)}.$$

Letting $u = |\varphi(t)|$ one obtains for $t \neq 0$ that

$$\sum_{n=1}^{\infty} n^{\alpha/2} |\varphi(t)|^n \le C(1 - |\varphi(t)|)^{-(1+\alpha/2)}.$$

Thus from (1), (5), and (7) for sufficiently small δ

(8)
$$\frac{1}{\pi} \int_0^{\delta} \sum_{n=1}^{\infty} n^{\alpha/2} |\varphi(t)|^n |\arg \varphi(t)| t^{-1} dt \le \int_0^{\delta} |I(t)| t^{-1} dt.$$

The proof is concluded by showing that $\int_0^{\delta} |I(t)| t^{-1} dt < \infty$ and this is accomplished as in the proof of Lemma 3 of [2].

Finally it may be noted that the theorem fails if $\alpha \geq 1$; this is easily seen by choosing X_i to be the random variable taking the values +1 and -1 each with probability $\frac{1}{2}$.

REFERENCES

- [1] Loève, M. (1960). Probability Theory, 2nd ed. Van Nostrand, New York.
- [2] Rosén, B. (1962). On the asymptotic distribution of sums of independent identically distributed random variables. Ark. Mat. 4 323-332.
- [3] SPITZER, F. (1960). A tauberian theorem and its probability interpretation. Trans. Amer. Math. Soc. 94 150-169.
- [4] WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.