SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE
A FUNCTION OF A FINITE MARKOV CHAIN'

By S. W. DHARMADHIKARI
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0. Summary. Let {Y,, n = 1} be a stationary process with a finite state-space
J. We will use the definitions of a function and of a regular function of a finite
Markov chain given in [1].

In Section 1 of this paper we define, for each state € of J, a convex cone C(m.).
The main theorem (Section 2) asserts that if each ©(w.) is polyhedral, then
{Y.} is a function of a finite Markov chain. The hypothesis that each €(x.) is
polyhedral is not quite necessary and some results are given in Section 3 under
weaker assumptions. It is also shown that these weaker conditions are necessary
for {Y,} to be a regular function of a finite Markov chain. The final section
presents an example which shows that not every function of a finite Markov
chain is a regular function of a Markov chain.

The results of Gilbert [3] are at the root of our investigation. Gilbert always
assumed that the given stationary process {Y,} and the underlying Markov
chain were irreducible and aperiodic. However, his results continue to hold even
when these assumptions are dropped. In particular, the results of Section 1 of
[3] depend only on the stationarity and the Markov character of the underlying
chain. Theorem 2 of [3] also holds in a more general set-up (see Lemma 3.1 of
[1]).

Our stationary process {Y,} need not be irreducible or aperiodic. Our sufficient
conditions also do not necessarily yield such a chain.

1. The cones @(a.) and C(w.). Let {Y,} be a stationary process with a
finite state-space J = {0, 1, -+, D — 1}. ¢, u will denote states of J and s, ¢
(with or without affixes) will denote finite sequences of states of J. If s = €1 * * * €n
let p(s) = P[(Y1, ---, Y,) = s]. We will assume that each p(e) is positive.
It is convenient to introduce the empty sequence denoted by ¢, with the con-
ventions that p(¢) = 1 and p(s¢) = P(¢s) = p(s). For every ¢ define n(e) to
be the highest integer n such that we can find 2n sequences s; ,¢;, (¢ =1, -+ ,n)
of states of J such that the matrix ||p(set;)| is non-singular. The numbers
n(e) were introduced by Gilbert [3]. We will assume that each n(e) s finite. The
finiteness of n(e) implies ([1], Section 2) that, for every ¢, there are sequences
Seiytei, (=1, -++,n(e)) such that

(a) the matrix ||p(seete;)| is non-singular and
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1034 S. W. DHARMADHIKARI

(b) for each s, there are unique constants a.;(s) such that, for every ¢

n(€)
(1.1) p(set) = Z:I aei(8)p(Seiet).

Let E* denote the k-dimensional Euclidean space. It is then evident that
(1.1) expresses p(set) as an inner product of two vectors in E™®. Define the
vectors a.(s) and 7.(¢) in E™? by ad(s) = (aa(s), -+, Geno(s)), me(t) =
(p(seciet), + -+, P(Sencoet)). Then (1.1) can be rewritten as

(1.2) p(set) = (ae(s), m(2)).

Let a. denote the set of vectors a.(s) for all s and let 7. denote the set of vectors
me(t) for all &. Let €(w.), @(a.) respectively be the closed convex cones generated
by the sets 7. and «. . We will now study some properties of these cones.

LemMma 1.1. For every e, both C(a.) and C(w.) have dimension n(e).

Proor.

(i) Fors,k = 1, ---, n(e), observe that ac(se) = 84 . Therefore a.(sq4) is
the kth co-ordinate vector in E™®. Hence @(a.) contains the non-negative
orthant in £™®. This proves that @(a.) has dimension n(e).

(ii) The non-singularity of the matrix ‘|p(scete;)|| means that the vectors
me(tei), (+ = 1, -+, n(e)), are linearly independent. This proves that €(=.)
has dimension n(¢) and completes the proof of the lemma.

Let € be a cone in E*. Then €™ = {y in E* |(z, y) = 0 for all z in @} is called
the dual cone of @. Since probabilities are non-negative, it follows from (1.2)
that

(1.3) e(a.) c [e(x)].

Lemma 1.2. Let b be a non-zero vector of [€(w.)]". Then (b, 7.(¢)) > 0.

Proor. Suppose (b, m(¢)) = 0. Observing that w.(¢) = D ,mc(n) and
0, 7(u)) = 0, it follows that (b, w(u)) = 0 for all u. By induction, (b, 7.(¢)) =
0 for all ¢&. That is, b is perpendicular to €(w). But @(w.) has full dimension,
(by the previous lemma). Hence b must be the zero vector. This proves the
lemma.

Let @eswi = @uj(seie) and let A, be the n(e) X n(u) matrix whose (¢7)th
element is @, . It follows easily from (1.1) that

(14) we(ut) = Aqmi(t).
(1.4) implies that, for an arbitrary vector b in E*® and for every ¢,
(1.5) (b, me(ut)) = (bAa, m(t)).

LeMMA 1.3. For every ¢, p and s, a(s)Aq = au(se).

Proor. Using (1.5) and (1.2), we have, for every ¢, (ac(s)da, m(t)) =
(ae(s), me(ut)) = p(sent) = (ou(se), m(t)). '
But €(m,) has full dimension. Hence the lemma.
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‘2. The main theorem. This section is devoted to showing that if each €(7.) is
polyhedral then {Y,} is a function of a finite Markov chain. We will first con-
‘struct a transition probability matrix M. Next we will construct a stationary
initial distribution m which, together with M, yields a Markov chain of which
{Y,} is a function.

Lemma 2.1. For each e, let [@(w.)]" be polyhedral and be generated by N (e)
non-zero vectors Bej, (j = 1, -+, N(e)). Define r.;(t) = (Bej, me(t)), for every t.
Then

(1) the B’s can be chosen in such a way that for each ¢ and forj = 1, --- , N(e),

(2.1) r(¢) = 1;

(ii) for all € and p and for j = 1, --- , N(e), k = 1, -+, N(u), there exist
non-negative constants m.; . such that for all ¢,

) N(p)
(2.2) ro(ut) = 2 meana(t);
and if (2.1) holds, then
D—1 N(mw)

(2.3) Z Z Mejur = 1.
p=0 k=1 X
Proor. Since the §’s are unique only up to non-negative multiplicative con-
stants, (i) will be proved as soon as we have (8¢;, me(¢)) > 0. But this follows
from Lemma 1.2.
Using (1.5) with b = B.;, we get for every ¢,

(2.4) (BeiA ew, mu(t)) = rei(nt) 2 0.

Thus B.;A  belongs to [€(m,)]*. Hence there exist constants m.; . = 0 such that
N(w)

(2.5) BejAen = kz—j:l mej,nkﬁnk .

(2.2) now follows by taking inner product of (2.5) with m,(¢) and using (2.4)
on the left side. If (2.1) holds, then putting t = ¢ in (2.2), we get

N

(2.6) rei(p) = k; Mejuk «

Therefore > oo D ok Mejue = DwuTej() = rej(¢) = 1, which proves (2.3)
and completes the proof of the lemma.

Let the conditions of the previous lemma hold. Let M, be the N(e) X N(u)
matrix whose (#j)th term is the quantity m.; . given by the lemma. Let N =
Y. N(e) and define M to be the N X N matrix

M 00 e M 0,01
(2.7) M= o
Mpyo -+ MD—I.D—I
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The non-negativity of the m’s together with (2.3) shows that M is a transition
probability matrlx The symbol I will denote a set of N elements conveniently
enumerated as {¢j [j = 1, --+, N(e);e = 0, 1, , D — 1}. Finally, f will
denote a function on I onto J deﬁned by f(ej) = e.

Let {X.} be a Markov chain with state-space I and transition probability
matrix M. For a sequence ¢ of length n, the quantity r.;(t) defined in the state-
ment of the previous lemma is going to be interpreted as r.;(t) = P[(f(Xa),

*, f(Xa1)) = t| X1 = ¢]. The Markov character of {X,} then requires
that the Equation (2.2) be satisfied.

We will now proceed to find a stationary initial distribution for M. It will be
convenient to write a vector # of N elements in the form (zo, - - - , zp_1), where
ze has the N(e) elements z.;, (j = 1, -+, N(e)).

(1.3) shows that a.(¢) belongs to [€(w.)]". Therefore, for every ¢, we can

find non-negative constants m(y, (j = 1, - -+, N(e)), such that
N(e)
(2-8) ae(d’) Z mgg)ﬂu

Let m be the vector of N elements defined by the m 7. Taking inner product
of (2.8) with 7.(¢), we get p(e) = D i3'm?;. This shows that m® defines
a probability distribution on I. Define m™™ forn = 0 by induction as follows.

(2.9) m™? = m™py,
By the standard theory of Markov chains it follows that the limit

(2.10) m = lim,,.(1/(n + 1))2"()) m®

exists and forms a stationary initial distribution for M.
Lemma 2.2. For n = 0 and for every e,
N(e)

Zm(")ﬂea = ae(¢)

Proor. (2.8) shows that the lemma holds for n = 0. Suppose it holds for
n = v, Then, from (2.9), (2.5) and Lemma 1.3

N(w) D—1 N(e) D—1 N(e) N(n)

Z myﬂ)ﬁnk = Z Bﬂ’cé} ,Z=1 mg)mn wk = ; ;Z=1 me: Z Mg ukBuk
D—1 N(e) D—1 D—1
G;O.lemmﬂez = g%ae(‘ﬁ)Aeﬂ = ;)aﬂ(e) = a,(¢).

The lemma thus follows by induction.
The next lemma brings together all the results we have obtained so far.
LemuMA 2.3. Let M, m and f be as defined above. Let {X, ,n = 1} be a stationary
Markov chain with state-space I, transition matrix M and initial distribution m.
Then {f(X,), n = 1} has the same distribution as {Y,,n = 1}.
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Proor. Lemma 2.2 shows that Y -y m By = a(¢). Inner product with
me(t) yields

N(e)

(2.11) jz=‘,1m,,¢.,-(t) = p(et).

To prove the lemma it is now enough to show that for every n and for every ¢
of length n

(2.12) P[(f(X2), « -+, f(Xns1)) = t| X1 = ¢] = rei(2).

For, then (2.11) implies that {f(X,)} and {¥,} have the same distribution.

(2.6) shows that (2.12) holds for n = 1. Suppose it holds for n = ». If ¢ has
length (v + 1), we can write ¢ = uf for some u and for some ¢ of length ». There-
fore from (2.2) and by stationarity,

P(f(Xa), -+, f(Xo12)) = t]| X1 = ¢]]

N(p)

= 2 mauPl(f(Xe), -, f(Xosa)) = ¢ | Xa = uh]

N(p)

= k;mej.umk(t') = rg(ut’) = re(t).

The lemma now follows by induction.

We are now in a position to state the main theorem of this paper.

TaEorEM 2.1. Let {Y, , n = 1} be a stationary process with a finite state-space.
Let > n(e) < o and for each € let [@(xc)]" be polyhedral and be generated by
N (&) non-zero vectors. Then {Y,} is a function of a stationary Markov chain with
> N(e) states.

In view of the preceding lemma, this theorem does not need any proof. A
special case of the theorem is of some interest and is given by the following
corollary.

COROLLARY 2.1. Let {Y,} be a stationary process with a finite state-space. Let
n(e) < 2, for every e. Then {Y,} is a function of a stationary Markov chain with
>~ n(e) states—that is a regular function of a Markov chain.

Proor. We use the standard result that any convex cone in E" is either the
whole of E” or is contained in a half-space. [€(w.)]" cannot be the whole of E™
because its dual, namely €(w.), contains non-zero vectors.

(a) If n(e) = 1, then [€(w)]* reduces to the non-negative real line and is
clearly generated by 1 vector.

(b) Let n(e) = 2. Since @(m.) is two-dimensional, [(w.)]* must be a proper
subset of a half-space. But every such cone in E” is generated by at most two
vectors. [€(m)]" cannot be generated by 1 vector because it has dimension 2.

Thus if n(e) < 2, then [€(w.)]" is polyhedral and is generated by n(e) vectors.
The corollary now follows from the above theorem.

The result stated in this corollary has been reported by Fox [2].
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3. A theorem under weaker assumptions. The theorem proved in the preceding
section gives sufficient conditions for a stationary process to be a function of a
finite Markov chain. It is therefore of some interest to examine whether the
hypothesis that each €(w.) is polyhedral can be weakened. The non-negativity
of M was a consequence of the fact that 8.4 belonged to [€(m)]t. If we
incorporate a similar property into our assumptions, we do not need to assume
that €(w.) is polyhedral. There is no difficulty in getting a result. similar to
(2.2). This is borne out by the following generalization of Lemma 2.1.

LemMmA 3.1. For every €, suppose there exists a convex polyhedral cone C. , gener-
ated by non-zero vectors Be;, (j = 1, -+, N(e)), such that

(3.1) C(a) C €. C [e(r)]™.

Letrej(t) = (Bej, we(t)), for every t. Then, for all e and p and forj = 1, -+ , N(e),
k=1,---, N(u), there exist constants me; .. such that, for all ¢,
N(w)

(3~2) rei(ut) = k;lmej,#krnk(t)-

Further, the m’s in (3.2) can be chosen to be non-negative if, and only if, the vector
BeiA e belongs to @, . ,

. Proor. Lemma 1.1 shows that @, has dimension #(u). That is, there are n(u)
linearly independent B.’s. The linear span of the 8,:’s is therefore the whole of
E™®_ The vector B;A 4 lies in E™®. Hence there are constants Meju Such that

N(w)

(3.3) Bequa = ké; me]',#kﬂuk .

(3.2) now follows by taking inner product with m,(#) and using (1.5) on the
left side. It may also be noted that (3.2) implies (3.3). This is a consequence of
the fact that €(m,) has full dimension. The second assertion of the lemma is
then immediate. This completes the proof of the lemma.

This lemma immediately yields a generalization of Theorem 2.1.

TrEOREM 3.1. Let {Y, , n = 1} be a stationary process with a finite state-space.
Let D n(e) < o and suppose, for every e, there exists a convex polyhedral cone
C. generated by non-zero vectors Bej, ( = 1, -++, N(e)), such that C(a.) C €. C
[C(we)]t. For every ¢, u and for j = 1, -+, N(e), assume that B.;A . belongs to
Cy . Then {Y,} is a function of a stationary Markov chain with > N (e) states.

Proor. We will use the notation of the previous lemma. As in Lemma 2.1 we
can choose the §’s in such a way that r.;(¢) = 1. The non-negative constants
Mej i yielded by the previous lemma then satisfy, as before, D oo D bk Mejp =
1. We can therefore construet a transition matrix M as in (2.7). The existence
of non-negative constants m}; satisfying (2.8) follows from the assumption that
C(a.) C €.. Repeating the steps (2.9) and (2.10), a stationary initial distri-
bution m for M can then be constructed. But then Lemmas 2.2 and 2.3 hold
word for word. This completes the proof of the theorem.

If each ©(.) is polyhedral, then by taking €. = [€(w.)]! it is seen that the
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assumptions of Theorem 3.1 are satisfied. [See (2.4)]. The sufficient conditions
given by 3.1 are therefore weaker than those given by Theorem 2.1. That the
condition “B.;A . belongs to €,” is a crucial one is shown by the following lemma.

Lemma 3.2. Suppose, for every e, there is a convex polyhedral cone @, generated
by vectors Be;, ( = 1, - -+ , N(e)), such that for every ¢, uand forj = 1, -+ , N(e),
the vector Be;A o belongs to C, . Then, for every e, C(a.) C €. C [C(we)]" if, and
only 1f, ‘

(1) for every e, ac(d) belongs to €., and

(i) for every e and j, (Bej, me(¢)) Z 0.

Proor. The “only if” part is immediate. For the “if”’ part, let r.;(t) = (B¢,
me(t)). The assumptions imply the existence of non-negative m.;,; such that

N(w)

(3.4) rei(ut) = ;m‘uxumk(t)-

(ii) implies that r.;(¢) = 0. Then (3.4), with ¢ = ¢, shows that r.j(u) = 0,
for every p. Proceeding by induction it follows that r.;(t) = 0 for every . Thus
e. cle(r)]. '

(i) shows that there exist non-negative constants ¢.j(¢) such that a.¢) =
D 4.i(¢)Be; . Define ge;(s), for all s, by induction as follows

N(e)

(3°5) q.uk(se) = E;Qei(s)mef.#" .

Then ¢j(s) = 0, for all s and the assertion C(a.) C €, follows from the fact
that

N(e)

(3'6) a;(S) = ,1;1 Qe:i(s)ﬂei'

The proof of (3.6) follows the same lines as that of Lemma (2.2) and is therefore
omitted. The proof of the present lemma is now complete.

In terms of an underlying Markov chain {X,} from which the distribution
of the given process {Y,} can be obtained through a function f, the quantity
g.;(s) introduced in the proof of the preceding lemma has the following inter-
pretation. If s has length #, then g.;(s) = P[(f(X1), - ,f(X,)) = 8, Xpt1 = ¢]].
Equation (3.5) is then a direct consequence of the Markov character of {X,}.

We will now show that the sufficient conditions given by Theorem 3.1 are
also necessary when {Y,} is a regular function of a finite Markov chain. Let
e, denote the n(e) X 1 matrix all of whose eleients are equal to 1. Part IT of
Lemma 3.1 of [1] then tells us that, for every ¢, we can find a non-singular matrix
U.. of order n(e) such that: (a) the first row v, of U, is non-negative, (b)
Ucee = m(¢) and (¢) My = UdAoU,, is non-negative.

Let B¢, (j = 1, - - - n(e)), be the row vectors of U.+ and let €, be the convex
cone spanned by the B/’s. Since M, is non-negative, the relation Udd, =
MU, shows that B.;A. belongs to €, . It was shown in Section 2 of [1] that
it is always possible to take s.; to be the empty sequence. Therefore a.(¢) =
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(1, 0, +--, 0) = vUs. This shows that a.(¢) belongs to €.. Finally,

wemi(¢) = e. which is non-negative. That is (Bej, me(9)) = 0.

Lemma 3.2 therefore shows that €(a.) < €. < [€(m.)]". The conditions
of Theorem 3.1 are thus necessary in the regular case. We have not been able to
extend this result to the general case. It is however believed that the final solu-
tion of the problem of characterizing functions of finite Markov chains lies in
this direction.

4. A counterexample. Gilbert [3] has mentioned the possibility that the class
of processes which are functions but not regular functions of finite Markov
chains may be empty. In this section, we show by an example that the class is
not empty.

The term “pseudo-Markov matrix”’ will denote a square matrix each of whose
rows adds to,1. Lemma 3.1 of [1] shows how probabilities connected with a
stationary process with ) n(e) < « can be computed from pseudo-Markov
matrices through a functional approach. This procedure will be followed in
this section.

Consider the pseudo-Markov matrix

M 0 0 0 11—\ "
0 =N 0 0 L+ N
M1 = 0 0 )\1 0 1 - )\1
0 0 0 —N\s 14N J
(1=M)/2, e(1+N), (1 =N)/2, —c(14+N), M+ chs—N)

with stationary initial distribution (.25, ¢ X .5, .25, —¢ X .5, .5). Let the 5
states be numbered 01, 02, 11, 12 and 21. Let g be a function defined by g(ez) = e,
(¢=1,2;¢e =0, 1), and g(21) = 2. Then g gives rise to a 3-state function proc-
ess for which we can compute the pseudo-probabilities of various eventualities.
We will get a proper process as soon as we choose the \’s and ¢ in such a way
that these pseudo-probabilities are non-negative.

It should be noted that: (i) since only one state of the underlying process goes
into the state 2 of the function process, we must have p(s2t) = p(s2)p(2t)/p(2);
(ii) for the function process, the pseudo-probability is zero for any sequence which
passes from 0 to 1 or from 1 to 0 without passing through 2. Hence it is enough
to ensure that pseudo-probabilities of the form p(0"), p(17"), p(2"), p(0"2),
p(172), p(20"2) and p(21"2) are non-negative, where " denotes a sequence of
ne’s in succession. In the following formulae ¢ is either O or 1.

p(e") = (25)IN7" + (—1)" " 2eNi),

p(2") = (B + e — W)™,

p(€2) = (2571 — M) + (—1)" 2\ (1 + Neva)],
p(2€"2) = (.25)IN7H(1 — M)? 4+ (—1)" 2N G0 (1 + Aevo)’]-

These expressions show that we will get a proper process if we choose the N’s
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and ¢ in such a way that
0<M<L(2=123); M>N,((H=223); 0<c<.5;
MAces— M) >0; (1 —=N\)*>2(14+N)(k=1,2;i=2,3).

It is clear that the Conditions (4.1) can be satisfied. For example, take A, = .5,
A= 4,N = .3andc = .06. We get

)\1 + C()\3 ol )\2) = 494
(1 —N\) =25,  2(1+4+N)=.168  2(1+xN) =.156
(1 =)= 25 2(14+N)°=.2352  2(1+ N)® = .2028.

Thus the Conditions (4.1) are satisfied.

Now for ¢ = 1, 2, let A;, u; be real numbers with u; 5 u and A4; ¥~ 0. Let
0, = Ayi™ + Aqui™". Then 0,0; — 03 = A145(u1 — us)® 5 0. In the expression
for p(*), observe that \; # oy and ¢ % 0. Hence, for ¢ = 0, 1, p(e)p(é) —
[p(é)]® # 0. Thus for our 3-state process, n(0) = n(1) = 2 and n(2) = 1.
That is, n(¢) = 2 for each e. Corollary.2.1 then shows that this process can be
expressed as the function g of a 5-state Markov chain.

Define the function & by h(0) = h(1) = 0 and h(2) = 1 and consider the
2-state process which is the function hg of the 5-state Markov chain obtained
above. This author has considered this 2-state process in [1]. It is shown there
that this new process has Y_n(e) = 4 and that it cannot be expressed as a func-
tion of a 4-state Markov chain—that is, it is not a regular function of a Markov
chain.

We have thus constructed a stationary process which is a function but not a
regular function of a finite Markov chain.
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