ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES

~ By RoserT V. Hoge
University of ITowa

1. Introduction and summary. It is well known, in testing an hypothesis
concerning the means of several independent normal distributions with common
but unknown variance o°, that the likelihood ratio A, raised to an appropriate
positive power, is equal to the ratio of two quadratic forms. That is, there exists
a positive constant ¢ so that \° = X'AX/X'BX, where A and B are real sym-
metric matrices and X is a column matrix whose elements have independent
normal distributions. Since A < 1, we see that X'(B — A)X is a non-negative
quadratic form. In addition, we usually find that X'AX/s* and X'BX/s* have
chi-square distributions. That is, A*> = A and B’ = B. Consequently, in ac-
cordance with a theorem of Hogg and Craig [5], A(B — A) = 0and (B — A)® =
(B — A). Hence X'AX and X' (B — A)X are stochastically independent and
X'(B — A)X/s” is chi-square. Hence \° has a beta distribution provided each
chi-square is central; this is usually the case under the null hypothesis. The
analogous situation in multivariate statistical analysis introduces a rather in-
triguing theorem which almost seems obvious upon first inspection. We will
describe this situation after we present some notation and certain preliminary
results.

Let the (n X p) matrix X = (z;;) have the p.d.f.

exp{ — 3K (X — ) V(X — w)]}/ )" [K["* |[V]??, — o <z;4< o,

where the (n X n) matrix V and the (p X p) matrix K are real symmetric
positive definite matrices and u is a real (n X p) matrix. If V = I, the (p X 1)
column matrices Yy, -+, Y, of X  are independent and have, respectively, the
p-variate normal distributions N(wx, K), k¥ = 1,2, ---, n, where g1, -+, ¥a
are the (p X 1) column matrices of u'. In a recent article [7], Roy and Gnanade-
sikan proved the following results which are genéralizations of two theorems on
quadratic forms [3], [4]. Let A, A;, and A, be real symmetric (n X n) matrices.
Then X AX has the Wishart distribution W (K, r, y'Ay) if and only if AVA = A
(or A’ = A provided V = I). Here r is the rank of A and y’Ay is the matrix of
the non-centrality parameters. The forms X'A;X and X'A.X are stochastically
independent if and only if A;VA; = 0 (or A;A; = O provided V = I). These
results permit us to state, without proof, the chi-square decomposition theorem
of Hogg and Craig [5] in terms of Wishart variables.

TaEOREM 1. Let A, Ay, -+, A1, Ay be real symmetric (n X n) mairices so
that A = A+ -+ + A1 + Ay . Let X'AX, X'A;X, -, X'A;1X have Wishart
distributions and let A, be positive semidefinite. Then X AiX, ---, X AiX,
X'AX are mutually stochastically independent and X'A.X has o Wishart distri-
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bution. Moreover, if A = V" and if k = 2, the above conclusion is still valid even
though the hypothesis that A, is positive semidefinite is omitted.

Now, in most tests of an hypothesis concerning the means of a multivariate
normal distribution with unknown matrix K, the likelihood ratio, raised to an
appropriate positive power, is equal to the ratio of two determinants, say U =
|X'AX|/|X'BX|, where A and B are real symmetric matrices with ranks greater
than or equal to p. Usually V = I and hence, for simplicity, we assume that
this is the case. In addition, we frequently know, or it can be easily shown, that
both X'AX and X'BX have Wishart distributions. Accordingly, if the fact that
the likelihood ratio is less than or equal to one (or |[X'AX| < |X'BX| for all X)
implies that B — A is positive semidefinite, then Theorem 1 requires that X'AX
and X' (B — A)X be stochastically independent and that X'(B — A)X have a
Wishart distribution. Thus, if this is true, U has a well known distribution, for
it is distributed like [W4|/|W1 4+ W.|, where W and W are independent Wishart
variables. In the next section, we show that this is, in fact, the situation.

Finally, in the last section of this paper, we consider certain other theorems
on independence that involve Wishart variables.

2. The theorem. The following theorem, which the author thought was
obvious on first observation, is a rather tantalizing one and will no doubt generate
a number of alternative proofs. (Since I first constructed a proof of the theorem,
with the help of some suggestions of Professor H. T. Muhly, Professor W. T.
Reid and a Referee have presented additional proofs. I wish to thank all three
of these persons for their interest. The proof in this paper is actually a slight
modification of my original one; of the three proofs, it seems to be the one that
uses the most elementary concepts of vector spaces and matrix algebra.)

TuroreM 2. Let x be a real (n X p) matriz. Let A and B be two real symmetr'w
(n X n) matrices having ranks r and s, respectively, where p < r < s. If A=A
and B? = B, then a necessary and sufficient condition that B — A be positive sems-
definite is that |x' Ax| < |x'Bx| for all real x.

Proor. First, we prove that [x'Bx| < |x'x| for all x. Since B = B’, there exists
an orthogonal matrix L such that

' I, 0

o - (& 9).

Let y be an (n X p) matrix defined by x = Ly Then |'x| = |y'y| and |x'Bx| =
|y’ L'BLy| = |y'L'BLL'BLy| = |yyo|, where L'BLy = y, . Thus, the first s rows
of yo are the same as those of y, but the last n — s rows consist entlrely of zero
elements. Tt is known (for example see reference [6], p. 101) that |y'y| is equal to
the sum of the squares of all (p X p) determinants formed from the rows of y.
Likewise, |yoyo| is a sum of squares; however each term in this latter sum is a
term in |y'y| and hence |yoyo| < |y'y| and |x’ Bx| < ¥ xl, for all y and thus all x.
Now suppose [x'x| = |[x'Bx| # 0 and thus |y'y| = |yoye| 0. We wish to show
that y = yo (or x = Bx). There is at least one (p X p) determinant of y, that is



INDEPENDENCE OF WISHART VARIABLES 937

non-zero, say the one formed by the first p rows, y1, ¥z, - -+ , ¥» . Consider each
of the last n — s rows of y; let us take y,41 for illustration. Since |y'y| = yeyol,
we have that the determinants
¥y 1 n
ys ys \p)
fl=|i == ] =0
Yo Yo Yo
Yot1 Yot Yot1
That is, the vector y,+1 belongs to subspace spanned by the vectorsyi, - -+, ¥i-1,
Vis1, ***, Vo, = 1,2, -+, p.Since y1, ¥2, -+ - , ¥p are linearly independent,
the only vector common to those p subspaces is the zero vector. Accordingly,
¥.+1 consists only of zero elements. L1kew1se, Yoz, ¥. are zero vectors and

hencey = yo . Thatis,y = L'BLyand L'x = L' BLL'x and x = Bx when |x’ x|
|x'Bx| > 0. Conversely, if x = Bx, we obv1ously have |x'Bx| = |x'B'Bx| = |x'x|.
So we have proved that if [x'Bx| 5 0, then |x'Bx| = |x'x| if and only if Bx = x.

Since Ix Bx| < |x x| for all choices of x, we know, by choosing x to be Ax,
that |x’A’BAx| < [x'A’Ax|. However the condltlon of the theorem is |x'Ax| <
|x Bx| for all x; thus, by replacing x by Ax, we see that [x A Ax|
|x’ A’BAx|. Consequently, it follows that |(Ax)’Ax| = |(Ax)'B(Ax)| and thus
Ax = B(Ax) for all x such that |(Ax)’(Ax)| 5 0. Since rank A = r = p, this
requires A = BA = AB. Flnally, we have that (B — A)’ = (B— A)(B— A) =
(B — A)B = B — A; that is, B — A is idempotent and thus positive semi-
definite.

Conversely, if B — A is positive semidefinite, we have by Theorem 1 that
A(B — A) = Oor AB = A. But we know, since A’ = A, that |x'Ax| < |x'x|,
for all x, from an earlier a.rgument If we choose x to be Bx, we have
that |x'B’ ABx| |'B'Bx| and |x'(AB)’(AB)x| < [x'Bx| and %’ Ax| < |x'Bx|
because AB = A. This completes the proof of the theorem.

3. Other results on independence. T. W. Anderson, in his excellent book
[2], uses Theorem 4.3.2 (of that book) as a rather fundamental theorem dealing
with random variables which have Wishart distributions. We now prove, using
Theorem 1, a theorem that is essentially Anderson’s Theorem 4.3.2.

TueoreM 3. Let X' be a (p X n) matriz with independent column matrices
which have p-variate normal distributions with positive definite variance-covariance
matriz K. Let E(X') = T'w, where I is a real (p X r) matrix and W is a real
(r X n) matriz. Let H = ww’ be non-singular and let G = X'wH™. Then GHG'
and X'X — GHG' are stochastically independent and have Wishart distributions
W (K, r, THI') and W (K, n — r, 0), respectively.

Proor. Define the matrices A; and A, by the equatlons GHG =
(XwHHHH'wX) = X' (WH'W)X = XAX and XX — GHG' =
X'X — XA, X = X'A;X. We see that A? = (WH'w)(WH 'w) = wH 'w =
A; . Accordingly, the rank of A, equals the trace of A; which is tr(wH'w) =
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tr(H'ww’) = tr(I,) = r. Since, in the notation of Section ,V=1I XAXis
Wishart with non-centra,lity matrix (FT'w)A(Tw)' = Tww'H 'ww'T’ = THI".
However, X'X is Wishart with non- centrahty matrix (T'w)(T'w)’ = THI'
Thus by Theorem 1, X'A;X and X'A;X are stochastically independent and
X'A;X is W(K, n — r, 0). This completes the proof of the theorem.

In his book, Anderson actually shows that G and X'A;X are stochastically
independent. This raises the more general question: When and only when are
the linear forms X'B stochastically independent of the forms X’AX? An answer
is provided by the following theorem. The notation of Section 1 is used here.

THEOREM 4. Let A be a real symmetric (n X n) mairix and let B be a real (n X s)
matriz. A necessary and sufficient condition that X'AX and X'B be stochastically
independent is that AVB = 0 (or AB = 04f V = I).

Proov. Since there exists a real symmetric (n X n) positive definite matrix D
such that DD’ = V, the transformations X = DW and y = Dv indicate that
we need only to give the proof when V = 1.

Let Xi, -+, X, be the columns of X. If X’AX and X'B are independent,
then the quadratic form X;{AX; and the s linear forms X;B are independent.
Thus, by an earlier theorem [1], AB = 0.

Now assume that AB = 0 and let C = (c;;) be an orthogonal matrix such
that C'AC = diag(az, -+, @, 0, ---,0), where a; % 0,7 = 1,2, ---, 7,
where r = rank A. Thus AB = 0, or CACC'B = 0, requires that C'B be of
the form (0', H')’, where 0 is an (r X s) zero matrix and Hisan [(n — r) X s]

matrix. If the independent columns of X are denoted by Yi, Yz, ---, Y., let
X,C = (Yl,Yz, s ,Y,,)C = (Zl,Zz, e ,Z,,);tha,tis,Zk = C1kY1+62kY2+
oo+ emYn,k=1,2, - ,n It is wellknown ([2], pp. 51-2)that Z,,Z,,---,Z,

are independently normally distributed, each with variance-covariance matrix
K. Thus X’'AX = X'C(C'AC)C'X = D iy apZiZr , andX'B = (X'C)(C'B) =
(Zy,2Zy, --+, Z,)(0', H')". Thus X'B is a function of at most Z,41, +-- , Z, .
Accordingly X'AX and X’'B are independent. This completes the proof.

Almost as a corollary to Theorem 4, we obtain

THEOREM 5. Let A be a real symmetric (n X n) matriz. If the rank of the real
(n X s) matriz B is s, a necessary and sufficient condition that X'AX and X'B be
stochastically independent is that X' AX and X'BB'X be stochastically independent.

Proor. The necessity of the condition is quite obvious. Let us thus consider
the proof of the sufficiency of the condition. If X'AX and X'BB'X are inde-
pendent we have AVBB' = 0. Hence AVB(B'B) = 0. Since B is of rank s,
B'Bis a non- smgular (s X s) matrix. Thus AVB = 0; so, by Theorem 4, we have
that X’AX and X'B are independent. This completes the proof.

Let us now reconsider Theorem 3. We know (using the notation and results
of that theorem) that GHG' = X'wH 'wX and X'A;X are independent; so

= Ay(wH'w), since V = I there. Thus 0 = A;wH 'ww’ or 0 = A,w'H™
because ww’ is non-singular. Hence, with Anderson, Theorem 4 requires that
X'A,X and G = X'w'H ™ be stochastically independent.
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