USE OF THE WILCOXON STATISTIC FOR A GENERALIZED
BEHRENS-FISHER PROBLEM*

By Ricuarp F. PorTHOFF

University of North Carolina

0. Summary. Heretofore, the ordinary Wilcoxon statistic for the two-sample
problem [9], [5] has been used only to test the null hypothesis that the two parent
populations are identical. This paper presents a technique for utilizing the
Wilcoxon statistic to test a broader type of null hypothesis, like that encountered
in the Behrens-Fisher problem: we show that the usual Wilcoxon test, with
(m + n + 1)/12mn replaced by 1/[4 min(m, n)], may be used to test the null
hypothesis of the equality of the medians of two symmetrical (continuous) dis-
tributions which are of the same form but which have different (unknown) scale
parameters; more generally, the test still works for testing the equality of the
medians of any two symmetrical distributions.

1. Introduction and statement of results. We have a sample {m X;’s and
a sample of n Y ’s from parent populations with ¢.d.f.’s G(x) aud H(y) respec-
tively. It is known that

(11) G(x) = F(blx - b101) and H(‘y) = F(bzy - b202),
where the c.d.f. F is continuous and is symmetric about the origin:
(1.2) F(—w) + F(w) =1, —o < w < w,

In (1.1), the scale parameters b; and b, and the medians ¢; and 6, are assumed
unknown; the function F' may or may not be known. In order to test the null

hypothesis
(1.3) Hy: 0, =0,

against alternatives H, : 6; % 6,, we will utilize the basic Wilcoxon statistic
9], (5]

(1.4) Wonn = (1/mn) 3, 2, U(Y; — Xo),

=1 j=
where the function U(d) equals 0 if d < 0 and 1 if d > 0. We may assume
m = n. We will show that, if we base a test of Hy (1.3) on the critical region

(1.5) 2m | Wan — 3| > 2ap2,

then such a test (1.5) will be (approximately) of size o (where ‘“size”’ means
maximum probability of Type I. error) and will for practical purposes be con-
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sistent. [By 2.2 in (1.5) we are denoting the point above which lies 100(a/2)%
of the N (0, 1) distribution.]

More generally, the test (1.5) is still valid under a null hypothesis even
broader than the set-up of the generalized Behrens-Fisher problem (1.1-1.3).
If, instead of (1.1), we consider a model in which

(1.6) G(z) = Fi(x — 6;) and H(y) = Fi(y — 6),

where both Fi(w) and Fo(w) are symmetric about w = 0 [see (1.2)] and con-
tinuous, then the test (1.5) still works for testing Ho (1.3). The test (1.5) is a
conservative test.

2. Proof of results. To prove the results stated in the previous section, we will
need to utilize the following five points:

(i) Regardless of what the two parent populations are, the distribution of
(Wonm — B(W )/ [var(Wa..)] is asymptotically N (0, 1) under rather general
conditions. This is well-known. (For proof and statement of conditions, refer to
[4], Theorem 3.2 or [2], Theorem 6.1; alternatively, the proof follows easily from
Theorem 8.1 of [3].)

(ii) Under the broad model associated with (1.6), the expectation of W,
(1.4) will always be % if H, (1.3) is true. In the course of proving this, let us
establish a formula for E(W,, ) for the case of general §, where we define § =
6 — 6, . We write

E(Wan) = PIX < ¥} = [ Py = 0) au(y — 8)

(2.1) ©
— .;_ + fo [Fi(u + 8) —Fi(u — 8)] dFy(u),

the last step being reached through a series of manipulations some of which
utilize the symmetry of F; and F,. Now we plug § = 0 into (2.1) to get what
we want.

(iii) We also see from (2.1) that, except for certain trivial types of odd-shaped
distributions F; and Fy, E(W,,) will be =% if Hy (1.3) is not true (i.e., if
8 % 0). More exactly, 6 > 0 implies E(W ) = % and § < 0 implies E(Wpn,») =
1. but in each case it will be an inequality rather than an equality unless F; and
F, are of such peculiar form as to cause the integral in the last line of (2.1) to
vanish. [It is not impossible for this integral to vanish: e. g., let § = § and take
Fi(w) = F(w), Fo(w) = F(10w), where F is defined by F(w) = 0, w £ —1;
Fw)=14w —-1=2w= -5F(w) =% —-iswsHFw=wi=
w1 Flw) =1wz= 1]

(iv) No matter what the two parent populations are,

(2.2) var(Wa,.) = 1/4m.

This upper bound (2.2) follows trivially from [1], Formula (2.5), or from an
equivalent inequality in [8], p. 3.
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(v) For the model based on (1.1),
(2.3) SUPo<h; by<o VAL (W) = 1/4m  if Hy is true.

To prove this, we take note of (2.2) and observe that (2.3) will be established
if we show that

(24) limg,o var(Wan,.) = 1/4m if H, is true,

where we define b = b;/b; . Now the basic formula

var (Wam,.) = (1/mn)[P{X < Y} + (1 — m — 2)(P{X < ¥})*
+(m—-DPIX; <Y, X; <Y+ (n—1DPIX<Y;, X <Y,

is well-known {see, e.g., [6], [7], Equation (3), or [1], Equation (2.4.2)}. Given
(1.1 — 1.3), it is easily seen that lim,.o P{X; < ¥, X; < ¥} = % and
limso P{X < Y;, X < Y,;} = }; applying these two relations to (2.5), we
obtain (2.4).

We now have the five points we need. From (i), (ii), and (v), it follows that,
under the generalized Behrens-Fisher model (1.1 — 1.2), the test with critical
region (1.5) is a size-a test of Hy (1.3) (disregarding inaccuracies due to the
normal approximation). More generally, it follows from (i), (ii), and (iv)
that, even under the broad model associated with (1.6), the test (1.5) is such
that its probability of falsely rejecting Hy (1.3) can never exceed « (again dis-
regarding the approximation). The consistency of the test (1.5) is of course
established by utilizing (iii), and employing an argument similar to that given
in [5], pp. 58-59.

3. Remarks. (a) Our discussion considered a model and null hypothesis
based on (1.1-1.3), and also considered the more general set-up associated with
(1.6). If we wish, we can consider a still more general null hypothesis: the
test (1.5) can be used to test P{X < Y} = % against P{X < Y} 5 1. But this
latter set-up appears to be so general as to be almost useless.

(b) By way of comparison with (2.2), we may recall that, when G = H,
W m.n has variance (m 4 n 4 1)/12mn (which is the value used by the ordinary
Wilcoxon test [9], [5]).

(¢) Although our entire discussion was in terms of a two-tailed test, the
extension to one-tailed tests is immediate.

(d) Confidence bounds on § associated with the test (1.5) are easily obtained.

(e) It does not appear that the test (1.5) is unbiased.

(f) For the case m = n, we find from [1], Formula (2.6), that

(3.1) var (Woa) 2 (2n + 1)/120° if P{X < Y} = 3,

it being assumed only that the two parent c.d.f.’s G and H are continuous;
furthermore, it can be shown that the equality sign in (3.1) holds if and only if
G = H. The following implication of (3.1) is of some practical relevance to
our present interests: if an experimenter (erroneously) uses the ordinary Wil-

(2.5)
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coxon test rather than the test (1.5) for testing a null hypothesis of either of
the types specified in Section 1, then (if m = n) his probability of Type I.
error will always exceed the intended value «, unless G = H.
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