SOME NON-CENTRAL DISTRIBUTION PROBLEMS
IN MULTIVARIATE ANALYSIS

By A. G. CONSTANTINE
C.8.I.R.0., Adelaide'

1. Introduction. Many problems in multivariate analysis involve the roots of
certain determinantal equations. For instance, in multivariate analysis of vari-
ance (or more generally, in testing the general linear hypothesis) one is interested
in the roots r; of the equation det (A — r(A + B)) = 0, where A and B are the
matrices of “between classes” and “within classes’” sums of squares and prod-
ucts, respectively (see Fisher [5], Hsu [9] and Roy [17]). Similarly, the canonical
correlations between two sets of variates are given by the roots of the equation
det (812828 — r*Su) = 0, where Sy, is the matrix of sums of squares and
products of the first set of variates, etc. (see Hotelling [7]).

The distributions of the roots in the null case, i.e., when the corresponding
population parameters are zero, were found by Fisher, Hsu and Roy. In this
paper the distributions in the non-null cases will be derived. In particular, the
density functions for the following cases are obtained:

(a) the non-central Wishart distribution (Section 6),

(b) The roots of the equation det ((A — r(4A 4+ B)) = 0, where the matrix
A has the non-central Wishart distribution, and B has the central Wishart
distribution (Section 7), and '

(¢) the canonical correlations (Section 8). In addition, the moments of the
“generalised variance” and of the likelihood ratio criterion for testing the
general linear hypothesis are given.

It seems difficult to give explicit expressions for the corresponding cumulative
distribution functions. However, a particular case of the probability integral of
the Wishart distribution is easily evaluated. If the matrix S has the Wishart
distribution, and if Q is a given positive definite symmetric matrix, then a series
expansion for the probability Pr {S < @} will be given in Section 9, where
S < @ means @ — S is positive definite.

A. T. James, [12], [13], has derived the distribution of the characteristic roots
of the covariance matrix and the non-central Wishart distribution. He ex-
pressed the density functions of these distributions as series of ‘“‘zonal poly-
nomials”. The zonal polynomials of a symmetric matrix S are certain homo-
geneous symmetric polynomials in the characteristic roots of S and may be
taken as a basis for such polynomials. The distributions derived in this paper
will also be expressed as series of zonal polynomials.

Many of the distributions arising in univariate normal sampling theory, such
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as non-central x°, non-central F, etc., can be expressed in terms of the classical
hypergeometric functions ,F,(Z) (see Erdelyi et al., [4]). Herz [6] has defined
hypergeometric functions ,F,(Z) of a complex symmetric matrix Z by means of
a multidimensional form of the Laplace transform. He showed that the non-
central Wishart distribution involves the function oF;, generalising the result
that the non-central x* distribution involves the classical Bessel function. In
Section 5, hypergeometric functions of a matrix will be defined as certain series
of zonal polynomials. The equivalence of the two sets of functions follows from
the important integral identity

1) f oexp(tr — RS)(det 8)" ¥ (8T) dS
8>

= Tw(t, k)C(R™'T) (det R) ™,

where C,(S) is the zonal polynomial corresponding to the partition k = (ki , k2,
k) of the integer k, ¢ is a complex number satisfying R(¢) > 3(m — 1),
and

(2) Pty 1) = "0 T 00+ ke — 36 = 1),

The integration is over the space of positive definite symmetric m X m matrices.
The identity (1) will be used repeatedly in the present work. It will be proved in
Section 3.

2. Zonal polynomials. A detailed discussion of zonal polynomials may be found
in James [12], [14]. For convenience, their definition and principal properties will
be restated here.

Let S be a positive definite, symmetric m X m matrix, and ¢(S) a polynomial
in the elements of S. Then, the transformation

(3) 2(8) = o(L7'SL'™), L e GL(m)’

defines a representation of the real linear group GL(m) in the vector space of all
polynomials in S. The space V; of homogeneous polynomials of degree £ is in-
variant under the transformations (3) and decomposes into the direct sum of
irreducible subspaces Vi = D ® Vi, where k = (ki ko, -+, km), o = ko =
.+« = kn = 0, runs over all partitions of k into not more than m parts. In each
Vi, the irreducible representation {2«} = {2k, 2k, - - - , 2kn} of GL(m) acts,
each of these representations occurring exactly once in the decomposition. Each
V.« contains a unique one dimensional subspace invariant under the orthogonal
group O(m). These subspaces are generated by the zonal polynomials, Z(8S).
Being invariant under the orthogonal group, i.e.,

(4) Z(H'SH) = Z«(8), HeO0(m)

they are homogeneous symmetric polynomials in the characterlstlc roots of S.
James normalised Z,(S) by assuming that the coefficient of st in Z(8) is
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unity, where s; denotes the sum of the roots of S. However, to simplify later
formulae, a different normalisation will be adopted here, namely,

(5) Cu(8) = c(x) Z«(8)/1.3 --- (2k — 1),

where c¢(k) is the degree of the representation [2«] of the symmetric group on 2%
symbols (see Formulae (23) — (25) in [14]).

The zonal polynomials were defined above only for positive definite symmetric
matrices S. However, since they are polynomials in the characteristic roots of S,
their definition may be extended to arbitrary complex symmetric matrices.
Furthermore, if S is a symmetric matrix, and R is a positive definite symmetric
matrix, then the roots of RS are the same as those of R!SR! where R? is the
(unique) positive definite square root of R. Hence, one may define C,(RS)
= C.(R'SRY).

The fundamental property of the zonal polynomials is given by the following
integral, proved in [12]:

(6) o )CK(H'SHT) d(H) = C.(8)C(T)/C(I),
where I is the identity matrix, and d(H) is the invariant Haar measure on the
orthogonal group, normalised to make the volume of the group manifold unity.
In order to evaluate the integral (1), further information about C,(S) is
needed. Unfortunately, an explicit expression for C,(S) is not yet known, though
James has calculated and tabulated them up to order ¥ = 5. However, the
following lemma, due essentially to Hua [10], is sufficient for the purpose. First,
order the partitions of & lexicographically, ie., if x = (k1, ke, -+ ,kn) and
= (i,t, ++,twn) are two partitions of k, then define x > 7if by = ¢, -+,
ki =t , ki_;_1 > bip . Then
Lemma 1. Let S be positive definite, x a partition of k, and C(8) the correspond-
ing zonal polynomial. Then

(7) CK(‘S) = Z dx"r XT(S)7 dx,x # O,
TSK

where x,(S) s the character of the representation {r} of GL(m), and the summation
is over all partitions v with < « tn the sense of the above ordering of the partitions.

Proor. Let A.(S) denote the matrix representing S in the representation
{x} of GL(m), so that x.(S) = tr A.(S). The elements of 4,(S) are homogeneous
polynomials of degree % in S. Let V, be the vector space of polynomials generated
by these elements. V. is clearly invariant under the transformation

(8) ' S— L7'SL"™, L e GL(m),

and decomposes into a direct sum of subspaces associated with the representations
{27} of GL(m). Only those representations for which r < « can occur in this
decomposition, and the representation {2«} must occur. Now x,(S) is an element
of V, and is invariant under (8) if L is restricted to be orthogonal. Hence, in the
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decomposition of V, under (8), x«(S) must be a sum of invariant vectors, i.e.,
zonal polynomials. In other words, x.(8) = D .r<ccvrC:(S), and ¢, # 0.
Inverting this linear relationship gives (7). Q.E.D.

Nowlet 81, - - - , sm denote the characteristic roots of S, and k = (ky, - -+ , kn)
as before. Then

(9) Xx(S) = Z Cpy vos npy s?l e S:Lm,

where the coefficients in (9) are non-negative integers. If the monomials in this
expression are ordered lexicographically, the term of highest weight occurring is
it - .- skm with coefficient 1 (see Weyl [19], p. 134). Hence

(10) Cu(S) = de s -+ st + “lower terms”.

Now, if S is a symmetric matrix of rank & < m, then C(S) = 0 if kyyy = 0.
Furthermore, it follows directly from (7) that C.(8) = 0 for partitions « into
more than m non-zero parts, the same being true of the characters.

Finally, since the linear relation (7) is non-singular, and since the characters
are linearly independent, the zonal polynomials are also linearly independent.
Hence, they may serve as a basis for symmetric functions of S.

3. Evaluation of the integral (1). Before proving the identity (1), let us note
one further consequence of Lemma 1. From the theory of characters (Littlewood
[16]) it is known that

kg oy &
x(8) = ai' ™ a5*™ .. ah* + “lower terms”,

where a, is the pth elementary symmetric function of the roots of S and where
by “lower terms” is meant monomials in the a, similar to the one displayed but
corresponding to partitions 7 < k. Expanding a, as the sum of the principal
p X p minors of S gives
C(8) = dy(det S;)* 7 (det Sp)** 7 - (det Sp)*™ + -

where S, = (si5), %, J, = 1,2, -+, p. Hence, if T is a diagonal matrix with
elements &, - - - , tm, then

(11) CT) = dnti* - -+ tam + “lower terms”,

11
C(ST) = dey ti* -+ tim (det Si)*7*2 .. (det Sp)™ 4+ - -+ .

TaroreEM 1. Let R be a complex symmetric matriz whose real part is positive
definite, and let T be an arbitrary complex symmetric matriz. Then

(12) f exp(tr — RS) (det S) ™0 (ST) dS = Tt k) (det B)~'C(TR™),
8>0

the integration being over the space of positive definite m X m matrices, and valid
for all complex numbers t satisfying R(t) > 3(m — 1). The constant Tn(t, k)
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s given by
(13) Tw(t k) = o™ P TITG+ ki — 35 — 1)).
3=l

Proor. (12) is first proved for the special case B = I, the m X m identity
matrix. Put

(14) #(T) = f exp(tr — 8)(det 8)*"0.(ST) ds.

f(T) is clearly a symmetric function of 7' (in fact, a homogeneous symmetric
polynomial). Hence, making the transformation T — H'TH and integrating H
over O(m), using (6), gives f(T) = [f(I)/C(I)] C«(T). Consequently, to
evaluate T',.(t, k) = f(I)/C«(I), it is sufficient to compare the coefficients of a
suitable monomial in 7 on both sides of (14). Assuming that T is diagonal, and
comparing coefficients of #i* - - - {» on both sides of (14), using (11), it follows
that

I‘m(t, K)
(15) = / , exp(tr — ) (det 8)IHmHD (ot 8 )k ( et S, ke
S,
-+ (det S)* dS.

To evaluate this last integral, put S = R'R, where R is an upper triangular
matrix, r;; = 0 if ¢ > j, r;i > 0. Then det S, = 711 -+ - % , and the Jacobian
of the transformation is 2™ [ 7, (see [3]). Substituting in (15),

Tu(t, k) = f . f exp (Z: r%5) I]l: () TR T g H drij
)

= 1<J

— 2D T (4 b — 3G — 1)),
=1
the range of integration being 0 < ry; < @, — <7y < oo, This proves (12)
for R = I. For the general case, substitute R!SR? for S in (14), the Jacobian
being (det R)*™*,

4. The Laplace transform. In the next section, hypergeometric functions
F4(8) of a matrix will be defined by series of zonal polynomials. C. S. Herz [6]
has also studied such functions, defining them by means of the Laplace trans-
form. The identity (1) can be interpreted as a Laplace transform and will be
used to show that Herz’s functions are the same as those defined in Section 5.

Let f(S) be a function of the positive definite symmetric m X m matrix S.
The Laplace transform of f(S) is defined to be

(16) 02) = [ expltr — S2)1(S) S,
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where Z = X + 1Y is a complex symmetric matrix, R(Z) = X and Y real, and
it is assumed that the integral converges in the “half-plane” R(Z) = X > X,
for some positive definite X, (the notation X > X, means X — X, is positive
definite). If this is so, g(Z) is an analytic function of Z in the half-plane, and, if
g(Z) satisfies the conditions

(17) f lg(X +4Y)]|dY < =,
and
(18) lim,... [ lg(X +4¥)[aY =0,
then the inverse formula
2‘}7”("&—1)
(19) 58) =t [ oy BT SZ)g(2) dZ

holds. In (19) the integration is taken over Z = X + Y, with X > X, and fixed
and Y ranges over all real symmetric matrices. For details, see Herz [6], and
references quoted therein. ,

From (1), the following theorem immediately follows.

TurorEM 2. The Laplace transform of (det 8) ¥ 0 (8) 4s given by

(20) fm exp(tr — SZ)(det 8) ™ (S) dS = Tn(t,«)(det Z)~'C(Z7Y),

valid for R(t) > $(m — 1), and the corresponding inverse transform is given by

2%m(m—1) —t 1
o W/;(z»o exp(tr 8Z)(det Z)~'C.(Z7") dZ
_ 1 t—4(m+1)
- I‘m(t; K) (det S) CK(S)'

Proor. To prove (20), put T = I, R = Z in (1). To prove (21), it has to be
shown that (det Z)™* C,(Z7") satisfies (17) and (18). To do this, note that since
R(Z) > 0, C«(Z™") is bounded, so that it is sufficient to verify the results for
(det Z)™*. This was done by Herz [6]. Q.E.D.

The Laplace transform defined above also satisfies the convolution theorem:
if g1(Z), g2(Z) are the Laplace transforms of fi(S), f2(S), then g1(Z)g2(Z) is the
Laplace transform of f(R) = [7 f1(S) f2(R — 8) dS, the integration being over
all S for which 0 < 8 <' R. Using the convolution theorem, an analogue of the
beta-function integral can be derived.

TuroreM 3. If R is a positive definite m X m matriz, then

I‘m(t, K) Pm(u)

I
t—}(m+1) _ u—}(m+1) = _m™Hr/omi7)
(22) [ (det ) det (I — 8)"™C(RS) dS = F- s

CK(R)7

where Tm(u) = ™™ P [[" T (u — 3 — 1)).
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Proor. The left hand side of (22) is a symmetric function F(R) of R, so that,
as in the proof of Theorem 1.

(23) F(R) = [F(I)/C«(I)] C«(R).
On the other hand, making the transformation S = RTR™,
R
(24) F(R)(det R)" ) = f (det T)* 1™ et (R — T)* 7 C(T) 4T
0
Taking the Laplace transform of both sides of (24) using the convolution theorem

to evaluate the transform of the right hand side, gives

[F(I)/C(I)] Tm(u + ¢, k) (det Z)™ C(Z7h)
= Tw(t, k) (det Z) "  C(Z7") Tm(u) (det Z)™".

Solving this equation for F(I)/C«(I) and substituting in (23) gives the result.
Q.E.D.

5. Hypergeometric functions. In analogy with the classical hypergeometric
functions of a single complex variable, we define

b 2) = 3o 3 (@) (a). C(Z)

(25)  slfalan, oo @psbus e b3 20 = G Sy T B TR
where
(26) (@) = g(a— 30— 1) k= (ki km)

and, as usual, (z), = x(z + 1) --- (z +n — 1), (z0)o = 1. If a is such that
the gamma functions are defined, then (26) may be written as

(27) (a)e= T'n(a, K)/Pm(a)-

In (25), Z is a complex symmetric m X m matrix, and it is assumed that p <
¢ + 1, otherwise the series may only converge for Z = 0. For p = ¢ + 1, the
series converge for || Z|| < 1, where || Z|| denotes the maximum of the absolute
values of the characteristic roots of Z. For p < g, the series converge for all Z.
The parameters a; and b; are arbitrary complex numbers so long as none of the
b, is an integer or half integer = 1(m — 1) (otherwise some of the denominators
in (25) will vanish). Finally, note that if one of the a; is a negative integer say
a; = —n then for k = mn + 1, all coefficients in (25) vanish, so that the function
reduces to a polynomial of degree mn.

Using the results of Theorem 2, integrating the series term-by-term, it follows

that

paFalan, - ,ap, 0301, - g —27) (det 2)7°
(28) = 1 - e M oo PR—
I‘m(c) 0 eXp(tr SZ)qu(a, yQp 5 bl s , bq ; S)

. (det S)° ¥ g8
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and
PFTH(G'I 3t 8p by, e by, 05— S) (det S)c—%(m+1)
2%m(m-—1) )
®0) =Tale) an(z>=xo exp(tr SZ),Fo(a, - -+ ap;by, - -+ ,bs—27)

-(det Z)™* dZ.

These are exactly the formulae used by Herz [6] to define the hypergeometric
functions, so that the functions defined by (25) are identical with those defined
by Herz. In what follows, we shall often make use of some of Herz’s results. The
reader is referred to his paper where a detailed theory, including many topics not
touched upon here, may be found.

In conclusion, we note the following two particular cases of (25).

oFo(Z) = g Z C(Z)/k!

= exp (tr Z),
which is proved in [14]. Substituting for, of'o(Z) in (28),

(30)

N _ a—}(m+1)
Fola; Z) = (@) /;0 exp (tr — S) exp (tr SZ) (det S) dS

) =det (I — Z)™°
so that

(31) det (1 — 2)™ = go > (a). 1042)/RY,

which generalises the binomial series.

6. The non-central Wishart distribution. The non-central Wishart distribution
is the distribution of the matrix § = XX', when the m X n matrix X has the
normal distribution

(32) (det 2r2) " exp (tr— £ 27 (X — M) (X — M)").

Herz [6] expressed the distribution as a “Bessel function”, (F; , by inverting the
moment generating function (Laplace transform) of the distribution. James [13],
[14] gave a zonal polynomial expansion by proving

o™ i C.(XX")

(33) fm,m) exp (tr ViX) dV = s 20 20 7o

where V(n, m) is the “Stiefel manifold” of orthogonal m-frames in n-space, the
connection between C, and Z, being given by (5). The derivation here will follow
that of Herz.

Let X have the distribution (32), and let Z be a complex symmetric m X m
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matrix. If f(S) denotes the probability density function of S = X X', then the
Laplace transform of f(S) is g(Z) = € [exp (tr — ZXX')], € denotlng the
expectation. Multiplying (32) by exp (tr — ZXX') and integrating over X,
using the well-known result

f exp (tr — RXX') exp (tr SX') dX = =™ exp (tr ;; R‘lss’> (det B)~*

(see, for example, [6], p. 481), gives
9(Z) = (det 22)™*" exp (tr — 137 MM

cexp (tr 1=V MM 27 (Z 4 3277 det (Z + 3= 7
Putting W = Z + 1=7' in (34), and inverting gives

(34)

2%m(m—l)
f(S) = W -/;(z)>o exp (tr SZ)g(Z) A
(35) = (det 22) ¥ exp (tr — Q) exp <tr — %E_IS)
2‘%’"(7"—1)

e _1_ —1 1 —in
@D ]; o exp (tr WS) exp (tr 22 QW—) (det W)™ dW,
where @ = 23" MM’'. Observing that exp (tr 3= Q@ W) = JFo 37 QW ),
we have, from (29) or equivalently by expanding the exponential according to
(30) and integrating term-by-term using Theorem 2, that

2ém(m—l) ( 1.4 1 —in
W jz;(w)=wo exp (tr WS) exp tr 5 >TOwW ) (det W) aw
| 1 1.4 fn—(mtD)
(36) = I‘m(%n) oF'1 <2 n; 5 2 QS) (det S)

C’(lE"lQS)
I‘(% l;)zx: (Gn)k!

Hence
TaeorREM 4. The density function of the matriz S = XX', when X has the dis-

tribution (32) 1s given by
(Tw(3n)) ™ (det 22)*" exp (tr — ©) exp (tr — 427 S)
- (det 8)¥™™ P F, (3n; 3277 2 8).

The distribution is called the non-central Wishart distribution on n degrees of
freedom with matrix of non-centrality parameters @ = MM =7

COROLLARY 1. Comparing coefficients of C in (36) and in [13], Theorem I1I,
p. 877, gives
(38) Z(I.) = 2°(3n)«.
(This result appears difficult to establish more directly.)

(37)
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CoROLLARY 2. The moments of the “‘generalised variance’’, det S, are given by
(39) El(det 8)] = [['w(t + 3n)/Tw(3n)] (det 22)"1F; (—t; §n; — Q).

Proor. Multiplying (37) by (det S)‘ and integrating it follows from (28)
that

C[(det 8)"] = [Tn(t + in)/Tn(3n)] (det 22)* exp (tr — Q) 1Fy (3n + t; 3n; Q).
Applying the Kummer transformation formula, [6], p. 488,
(40) 1F1 (a;0; Q) = exp (tr Q) ;1 (b — a;b; — Q),

to this last expression gives the result. If ¢ is an integer, 1F; (—t; 3n; — Q) is a
polynomial of degree mt.

7. The non-central means case in multivariate analysis of variance. In this
section we shall derive the distribution of the characteristic roots r; of the matrix
A(A + B)7\. In multivariate analysis of variance, A is the “between classes”
matrix of sums of squares and products, and B is the “within classes” matrix.
The likelihood ratio criterion for testing equality of the mean vectors is then
W =] (1 = r;) = det (B(A + B)™), see Wilks [20]. Lawley [15] and Hotel-
ling [8] have proposed the ecriterion T§ = Y r;/(1 — r;) = tr AB™, and Roy
[18] has discussed tests based on the largest or smallest of the roots.

In the non-null case, B has the Wishart distribution and A has the non-central
Wishart distribution with matrix of noncentrality parameters Q. Bartlett [1]
and Constantine and James [2] expressed the distribution of the r; as a multiple
power series and calculated the coefficients for the terms up to fourth order.
Here, we shall give a zonal polynomial expansion for the distribution.

TureorEM 5. If the m X m matrix A has the non-central Wishart distribution on
s degrees of freedom and matriz of noncentrality parameters Q, and B has the Wishart
distribution on t degrees of freedom, the covariance matrix in each case being =, then
the probability density function of the roots of the matriz R = A(A + B)™ is given

by

7™ Tn((s + £)/2) yo— ro—
TG & (0 — @ (L) I —

= (s + 1)) C(Q)C(R)
I<I (re = 1) 2 2 o). C(Dk!

Proor. The roots are clearly invariant under the simultaneous transformations
A — 13435 B— 137 B3} g0 that the joint distribution of 4 and B may
be assumed to be
[exp (tr — Q)/T (3s) T (3t)]exp (tr — A — B) (det 4)** ™ (det B)¥* ™™

. ()Fl (%8; QA).

(41)

Transform to variables G = A + B, R = G AG™. The Jacobian is
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(det Y™, and hence, the joint distribution of G and R is
[exp (tr — @)/Tn (3s) T (38)] exp (tr — @) (det @)™ F; (4s; QF'RG?)
- (det R)¥™™ ™ det (I — R)¥ ™™,

the range of the variables being G > 0, 0 < R < I. It would be of interest to
be able to integrate out G from this expression and so obtain the distribution of
the matrix R, but this appears difficult unless @ is either a scalar matrix or of
rank 1.

R, being symmetric, can be diagonalised by an orthogonal transformation,
i.e., there is an orthogonal matrix H such that H'RH is a diagonal matrix with
the roots r; down the diagonal. In order to specify this transformation uniquely,
it is assumed that the roots are arranged in decreasing order, 71 > 12 > +++ > 1y,
and the elements in the first column of H are positive. Under this transformation,
the volume element dR becomes

(43) dR = I<I (ri — r;) 1] dri d(H),

where the measure d(H) is that derived by the exterior product of differential
forms on the orthogonal group. With this measure

P
H) = ——.
(44) [, 4 = 25
(43) and (44) are proved in James [11]. Substituting for R in (42), and inte-
grating over H, gives the joint distribution of r,, - -- , r, and G,
exp (tr — Q) ie—m—1) — ) 3EmeD R
I‘m(%S)I‘m(%t) (H 7'1) II (]- 7'1) J;I (7'1 7‘])
(45) .
-exp (tr — G) (det @) = m( s; Q' HRH' cﬁ) d(H).

The factor 27" multiplying the integral arises from the restriction that the
elements in the first column of H are positive, so that the integral is actually
only over this 2 "th part of the orthogonal group. Expanding the function o,
as a series of zonal polynomials and integrating over O(m), using (6),
§mz
) o [ " 0F1< s; QG'HRH' G*) d(H) = m);z%%)
The symbol R has been retained in (45) and (46) since C,(R) is a polynomial
in 7, -+ ,rn. Finally, substituting (46) in (45) and integrating out G using
(1) gives the required result. Q.E.D.
CoROLLARY. The moments of the Uikelthood ratio criterion, W = II (=)
= det (I — R), are given by

s Tulh + T +8) o (4, o 1 o
an e = B ey (4 5 6+ 05 -9).
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Proor. Multiply (42) by det (I — R)" and integrate over R and G, using (22)
and (1).

8. The distribution of the canonical correlation coefficients. The canonical
correlations were introduced by Hotelling [7] as a measure of the relation between
two sets of variates. Let x = (&1, -+« , %), ¥y = (41, - * , ¥Ya), P = @, denote the
two vector variates, =i; and Z,; their respective covariance matrices and Z;, the
p X ¢ matrix of covariances between the components of z and the components

of y. The (p + ¢)-vector variate (z1, --- ,Zp, %1, - - , Yg) then has covariance
matrix
2:11 E12 ,
z = , Zn = Zi,.
2o 2

Hotelling showed that there exist non-singular linear transformations
(48) z— Nix = u, y— Noy = v,
such that the new variates (u, v) have covariance matrix

I PO

(49) PIO
00 I
where P is the p X p diagonal matrix with elements p;, -+ , pp arranged in

decreasing order down the diagonal. The p; are the canonical correlations. They
are easily seen to satisfy the determinantal equation

(50) det (2225 2 — p°2u) = O.

Any function of the elements of = which is invariant under the transformations
(48) must be a function of the p; so that (49) is the canonical form of = under
such transformations.
Given a sample from the population, the maximum likelihood estimates ; ,
-, rp of the p; satisfy the determinantal equation

(51) det (81282 S — 7°Su) = 0,

where the S,; are the corresponding submatrices of the sample covariance matrix
S.
We shall derive the distribution of the canonical correlation coefficients r; ,
-+, 7, assuming that the variates (z, y) are jointly normally distributed with
covariance matrix Z. Without loss of generality it may be supposed that the
means are zero. The sample may then be represented by the (p 4+ ¢) X n par-

titioned matrix Gf), where X and Y are p X n and ¢ X n matrices, respectively.
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The sample covariance matrix is then

xx' xvy’
Yx' vy
so that (51) may be written as

(52) det (XY’ (YY) YX' — #XX') = 0.

The roots r; of (52) are clearly invariant under the transformations (48), so
that 2 may be assumed to be of the form (49).

The distribution of 7, , - - - , 7, will be found first conditional upon y; , -« - , ¥,
being given. The author would like to thank a referee for suggesting this method
of obtaining the distribution.) If y is given, the conditional distribution of the
matrix X is normal with covariance matrix @ = Z;; — 21,25 s and mean matrix
ZpZnY = AY;ie.,

(53) (det 27Q) " exp (tr — 107 (X — AY) (X — AY)").
Since X is assumed to be (49),
1 — pf - m
(54) Q= , A= T 0= (r:0).
1 — pp Po

Y is of rank ¢, so that there is an n X n orthogonal matrix H such that YH =
(Y1 :0) where Y; is a ¢ X g non-singular matrix. To do this, choose any n — ¢
orthonormal vectors in the orthogonal complement of the space spanned by the
rows of Y as the last » — ¢ columns of H. Then, putting W = XH, Equation
(52) becomes

7
det (XH <Y1> (YY) ™N(Y1:0)H'X — r2XHH’X’> =0

0
I, 0
ie. det | W W —r2WW'| =0
0 0
or
(55) det (UU' — PA(UU' + VV')) =0

where W has been partitioned in the form W = (U : V), U a p X ¢ matrix and
Vap X (n — q) matrix. Furthermore,

tr @N(X — AY)(X — AY) = tr @(XH — AYH((XH — YH)'
(56) = tr QW — (AY1:0) (W — (AY1:0))’
=tr QU — AY) (U — AYY) + tr @7'VV'.

Substituting (56) in (53), it follows that U and V are independently distributed
(in the conditional distribution given Y'), the distribution of U being normal with
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mean matrix AY;, and that of ¥V normal with mean matrix 0, the covariance
matrix in both cases being Q. Hence, the distribution of UU’ is the non-central
Wishart distribution on ¢ degrees of freedom and with matrix of non-centrality
parameters 307" AY,Y7A" = 2Q7' AYY'A’, and the distribution of VV’ is the
Wishart distribution on n — ¢ degrees of freedom. Then, according to Theorem

5, the conditional distribution of r y e, r“,’,, m> e > 7'3, ,given yy, -+, Ygis
in?
"" I‘,,(%’n) < 1 - ’ r> 2\ $(g—p—1)
expltr —=Q AYY A ri
N e e CEr I DRSACIE (L7
o 0 1 1 —1 YYIAI)
1 — f $(n—gq—p—1) f 2 (E’n)xcx(zﬂ A C. R2
I =) I GF =) 2 2 == (£)
where

To find the unconditional distribution of 7, - -, r,, multiply (57) by the
marginal distribution of ¥ and integrate over Y. However, (57) is a function of
YY’, so that it is sufficient to integrate over the distribution of YY’. Now the
marginal distribution of Y is normal with covariance matrix =y = I, so that Y'Y’
has the Wishart distribution on n degrees of freedom, i.e.,

(58) [27"Y/Ty(3n)] exp (tr — 3YY’) (det YY),
Multiplying (57) by (58) and integrating term-by-term leads to the integral

f exp (tr _1 (I +A'97'A) YY') (det YY')ir—e™D
Y¥'>0 2

.C. (.;- A'Q—IAYY'> ary).

Substituting for @ and A from (54), the integral is, by (1),
Ty(3n) (3n) 2" T (1 — o)™ Cu(P?)

where P is the diagonal matrix with elements p} , - - - , o5 . Hence

TuEOREM 6. Suppose the variates T, -+ ,Tp, Y1, *** ,Ya P = ¢q, are normally
distribution with zero means and covariance matriz Z. If pi , - - , py are the roots
of (50), the maximum lLikelihood estimates 13, -+ - , % from a sample of size n,
n = p + q, are given by the roots of (51), and have the density

T (3n) it e
T,(39)Te(3(n — ¢))Tp(3p) IT = e (I

(n—q—p—1 = (%n)x(%n)lt CK(Rz)CK(P2)
I =¥ ’g GEEHDIPY G, AUALTEEE

where R* and P* are diagonal matrices with elements ri and o} respectively.

(59)
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9. Incomplete gamma and beta functions. We conclude by giving the cumula-
tive distribution functions of the Wishart distribution and the multivariate beta
distribution. More precisely, we shall give zonal polynomial expansions for the
probabilities Pr {S < @} where the matrix S has either of the distributions just
mentioned.

THEOREM 7.

Q
/ exp (tr — AS) (det 8) ™ gg

(60) = T (8)Tn((m + 1)/2) , 1
B (R (o = (det )" 1F (t;t+§(m+ 1); —QA>,

Lw(8)Tm(3(m + 1))
Tn(s + 2(m + 1))

3
] (det R)™*™ det (I — R)*H™™ 4R =
0

(61) .(detQ)ngl(s,—t-l-%(m—l—1);s+%(m—l— 1);Q>,

for 0 <Q<I.

Proor. (60) is proved by putting S = Q7% dS = (det Q)™ dT, 0 < T
< I, expanding exp (trQ! AQ'T') as a series of zonal polynomials and integrating
term-by-term using (22). Similarly (61) is proved by putting R = @'TQ
expanding det (I — Q7)™ = |Fy(—t + % (m + 1); QT) and integrating.

Substituting the appropriate parameters for ¢ and A in (60), gives Pr {S < @}
when S has the Wishart distribution, namely, if ¢ = in, and A = =7, where
n is the number of degrees of freedom and = is the covariance matrix, then

Pr{S < @} = [(det =7 @) T'(3(m + 1))/Tu(3(n + m + 1))]
Fr(3n; i(n 4+ m+1); — 327'0).

In the univariate case, m = 1, the series in (60) and (61) can be reduced to
polynomials (truncated exponential and binomial series) when s and ¢ are integers
or half-integers. For m = 2, this does not seem to be so. Furthermore, for m = 2,
Pr (S < Q) = 1— Pr{S > @, since the set of S where neither of the relations
S < @nor S > Q holds is not of measure zero. The complementary probabilities
Pr {S > Q} seem difficult to evaluate.

(62)
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