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By Davip L. JAGERMAN

System Development Corporation

1. Introduction. The study of sequences z; uniformly distributed modulo
1 has been pursued mainly by number-theoreticians in the field of analytic
number theory and diophantine analysis [2]. The properties of uniformly dis-
tributed sequences have recently become important in the application of Monte-
Carlo methods and in the formation of random number generators and tables
[3]. This paper proves a theorem which will facilitate the determination of the
autocorrelation function of a uniformly distributed sequence.

The symbol {z} denotes the fractional part of x, so that

(1.1) 0= {a} <1

The function {z} is periodic with period 1 and assumes the value 0 only when
z is integral. Let ~

(1.2) plx) =3 — {a},

then the function p (z) is also periodic with period 1, assumes the value % only
when z is integral, and satisfies

(1.3) —3<el@ =3

Since p (x) is a function of bounded variation, it possesses a convergent Fourier
expansion which is

(1.4) p(x) = kz:; (sin 2nkz/7k).

Let T denote the number of solutions of the inequalities
(1.5) 0={z;} =+, 1=j=N, 0=v<1,
in which v is fixed ; then the sequence z; is said to be uniformly distributed modulo
1 if and only if
(1.6) T =N+ o(N)
for each y. An important cfiterion is that of Weyl [2] which states that the se-

quence x; is uniformly distributed modulo 1 if and only if

N
(1.7) > eP™i = o(N), for each integral & = 1.
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In consequence of the well-known estimate
N
i2mhaj 1
e -,
% 2lha]

in which ||z|| denotes the distance from z to the nearest integer, and Weyl’s
criterion, the sequence x; = «j is uniformly distributed modulo 1, provided « is
irrational. In fact, if x; is of the form

1.9) Ti=a+ aj+ af + -0+ aug”,

in which at least one a, (1 = » < n) is irrational, then the sequence z; is uni-
formly distributed modulo 1 [1], p. 60.

The autocorrelation function ¢ (r) of a sequence gives information on the
extent of linear dependency among the successive terms of the sequence. The
autocorrelation function ¢ () is defined by

(1.8)

(1.10) ¥ (r) = limy,,, (1/N) ; p(@5) p(@j4r),

when the indicated limit exists. Let the sequence z; be uniformly distributed
modulo 1; then, after use of (1.4), (1.10) becomes

1 & (X sin 2k ( 2\ sin 21rux,-+,->

N ,; (l; wk ) ; ™ )

Since when {x} = 0, the Fourier series for p (z) has the value zero while p (z) =

1. it is necessary to establish (1.11).
Let

(1.11) Y(7) = limy,e

N

(L12) Y pla)p(esn) = 2 (fl M) (i S‘——n—zl‘”—ﬂ) +3 e
=1 j k=1 wk =1 j=1

™

J=

then |e¢;] < % and ¢; = 0 when {z;} > 0 and {z;4;} > 0. The number of times
e; # 0 cannot exceed the number of times {z;} = 0 plus the number of times
{z;+} = 0, which is o (N). Hence,

(113) é o(2)p(347) = é @1 sin 2mkz, f,’;’“) (i sin 2mv2;4, 2””‘”“") + o(),

y=1 ™

and (1.11) is established.
A concomitant function normally considered is the integrated power spectrum
A(w), defined by

(1.14) Alw) =¥ (0)o + g Y(7r) (sin 2wrw/77),

whenever the series converges. The function
(1.15) ¢ (@) = A (w),

when it exists, is called the power spectrum or spectral density of the sequence.
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One of the desiderata of a random number generator is that the sequence
generated possess a specified spectral density. A sequence whose spectral density
is constant, and hence whose autocorrelation function has the form

(1.16) Y(r) =0, r=1,

is termed white. Since it is possible to produce a sequence with almost any de-
sired spectral density, although not necessarily uniformly distributed, as the
image under a stmple transformation of a white sequence, it becomes important
to construct generators of white sequences [1], pp. 138-142.

The limit of (1.10) may be written as an asymptotic relation; namely,

(1.17) Z;p(xf) p@ire) =¥ ()N + @), w() = o).

In particular, the definition of a white sequence is equivalent to the asymptotic
form

(1.18) ; p(x;) p(@jtr) = o(NV), T

1%

1.

This raises the question of a more accurate investigation of the behavior of the
sum, in particular, the determination of further terms of its asymptotic ex-
pansion.

Let a be a positive integer and let j run over the set ¢ < j < a 4+ N; then the
asymptotic relation (1.17) takes the form

a+N

(1.19) ; p(@;) p@jr) = ¥(r)N + w®, a).

An investigation of the behavior of the term w (N, a) as a function of both N and
a may now be made. It would be especially important to determine when effective
estimates of w (N, a) may be given which are uniform in a.

In the practical use of sequences uniformly distributed modulo 1, it is im-
portant to recognize the limitations imposed by a digital computer. The most
important limitation, from the viewpoint of employing precise mathematical
statements concerning infinite sequences generated by use of the properties of
irrational numbers, is the restriction to a finite number of digits in the representa-
tion of a number. For the purpose of random number generation, this distinction
can be profound. If an irrational number is desired, a rational approximation
must be employed and the effect of the replacement carefully evaluated. For
such use one must undertake independent investigations of the properties of any
proposed random number generator especially with regard to the effect of round-
off error on the desired result [3], p. 37. It is shown in this paper that the sequence

(1.20) z; = af, a irrational,
is white. This suggests that the sequence given by
(1.21) z; = (a/m) 7, (a, m) = 1, a, m integral
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may possibly constitute a satisfactory random number generator for appropriate
choice of a m and for a finite range of j. The author has investigated this sequence
and determined the joint probability distribution and autocorrelation functions
of z;, j3- . The author has prepared a paper to present the results of this re-
search.

2. Analytical discussion. The difficulty inherent in the formulation of (1.11)
for the computation of the correlation function lies in the inability normally
to effect the summation in closed form of the trigonometric series. However, if
it were possible to perform the indicated limiting operation first, the difficulty
would vanish. That that is possible is guaranteed by the following theorem,
whose proof is the subject of the analytical discussion.

TueoreMm 1. Let z; (j = 1) be a sequence uniformly distributed modulo 1, then
the autocorrelation function ¢ (7) exists and is given by

Y(r) = Z Z (1/7k») limy,e (1/N) Z (sin 2nkz;) (sin 2mvzjyr)

k=1 p=1

whenever the indicated limit exists. The summation over k and v may be performed

in etther order.
Proor. It will be convenient to 1ntroduce the function

N
@.1) F(r, k,v) = limy.o 1/N) D (sin 2nkz;) (sin 2mwvziy.),
j=1 ‘
in which it is assumed that the limit exists. From (1.11) one has
M—-1 M-—1
2.2) Y(r) = kX; 21) [F (v, k, »)/n"kv] + limyoe B, 2
in which
N ) . )
Ry = 1 3 [ > sin 27rlcx,) (Z sin 21rv:c,+,)
NialL\e=xx 7k y—2
M—1
sin 27rk:c, ( sin 27rvx,_,,,>
(23) +( 2 ) =ZM
sin 21rlcacJ "= sin 21ru:c,~+,>:|
+ (S5 (5 )|
One now has
Rl < u l: Z sin 2nkz; Z sin 2wy,
©.4) N =1 wk y=—M T
* M—1
sin 21rlcx, sin 274, sin 2rkz; sin 21rvx,+,:|
Z v=zu v Z wk g ™ )

In order to proceed with the estimation of |Ry,u|, the following lemma is
required.
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. 1
< [a——
= min (1’21rM|lxll)

The following standard theorem derived from Abel’s transformation of series
will be used:

LEMMA.

' = sin 2nlz
l=M 1rl

l o

(2.5) arz0],|> bl < B=|> ab| < axB.
=M =M
Also standard is the following estimate:
1
(2.6) sin 2mrpz| <
2, o 2epe S g

The use of the above theorem and the estimate of (2.6) yields

= sin 2#lz 1

2. = .
(2.7) e owl | T 2M||2|

One has

2 sin 27lz  Ssin 27l XS sin 2xlx
(2.8) > o 2 A ; )
and hence
= sin 2xlz] M1 sin 2nlx

(2.9) ‘z=u wl )Y wl |’

In the case 2rM||z|| > 1, the lemma is clear. Accordingly, assume 2z M||z| =
1. One has

M—1 M—1
(2.10) ; sm 21rlx ; |sm 21rl||x]|| < Z 9llal| < 2M|ja]| < 1/
Therefore,
(2.11) sin2aly 1y <1

i=n 2

The lemma follows from (2.7) and (2.11). Further, (2.8) yields

M=1 . ) .
sin 2xlx 1 sin 2xlx
<z
(212) st wl -2 z;u wl
and hence, by use of the lemma
M—-1 s
sin 2xlz| _ 3
(2.13) =1 wl 2°




1248 DAVID L. JAGERMAN
Application of the above lemma and (2.13) to (2.4) yields

(Bl < (1/N) 3 [min (1, 1/2x M]ja])) min (1, 1/25M][au]))
(2.14) =
+ g min (1, 1/2eM|z]) + gmin (1, 1/20 M|z )]

The Cauchy inequality applied to the sums in (2.14) yields
1< . 1 T [1 A ( 1 )]
R il I 1 I -
v < [y Zmim (v g ] L 2o O s

IR 't
2|N = " dm2 M| ]| 2LNjI A M2/ ]

It is now necessary to employ another lemma.
LemmMa. If the sequence z; is uniformly distributed modulo 1, u Z 0, b >0,

then

(2.15)

N
1/N) Zl min (@, 1/0” |lz;|") < 4ub™ + o(1).
= .
Let @ > 1 be integral and even. Divide the interval [0, 1] by the points of
division sa™*, 0 < s < a. The sum ¥ min (), 1/b” |j;]|”) is dissected into

Zojmin @', 1/8 Jlz;l*) + - + _Z_;l min (', 1/6° &),

in which each sum is taken over all z; satisfying

1

(2.16) sa Sz} <sat+a

The number of such z; is Na—* + o(). For the sums corresponding to s = 0,
s = a — 1, the estimate u is used. In the terms correspondingto 1 < s < a/2 —
1, one has ||z;|| = sa™". For the terms corresponding to a/2 £s=Za—2let
¢s=a—s—1;thenl < ¢ < a/2 — 1. For this range of s, one has {z;} =1—
llz;]l, and hence, the inequality [|z;l| > oa ' is valid. Hence,

N ) 1 _ a/2—1 R a2
(217) ; min (uz, WIF) < {Na™' + o(N)} {2u2 +2 2 min (uz, b_23"2>}

s=1

The function min (%, ¢’ s"") is monotonically decreasing; hence

a/2—1 2 @ 2
- .2 @ .2 @ _ 2au
(2.18) ; m1n<u,b—28§><j; Imn<u,52—v—2>dv— T
One now obtains, from (2.17) and (2.18),
N
(2.19) (1/N) X min (%, 1/ lz;1") < 4u/b + 2 /a + o(1).
j=1

Since @ is arbitrary, one may choose a so large that 20’0 < ¢/2 (e > 0) and



AUTOCORRELATION OF UNIFORM MOD 1 SEQUENCES 1249

then N so that [0(1)| < ¢/2; hence, 2u a™* + 0(1) = o(1) for large N and the
lemma follows.

A simple consequence of the definition is that x4, is uniformly distributed
modulo 1 if z; is; hence, applying the above lemma to (2.15), one has Ry, » =
O (M™*) uniformly in N. Since M may be chosen arbitrarily large, the theorem
follows.

CoroLLARY 1. If x4, + kx; is uniformly distributed modulo 1 for all v > 0,
k> 0,7 > 0, and vxj1, — kz; is uniformly distributed modulo 1 for all v > 0,
k>0, (k # v), 7 > 0, then

Y(r) = 21: (1/27°k") limy. (1/N) fi cos 27k (T, — ;).

From the identity
(2.20) sin 27kz; sin 27v ;4. = c0s 27 (v2;4, — ka;) — 3cos 2w (vij4r + kj).
one has
(2.21) limy., (1/N) ﬁ; sin 27kx; sin 27wz 4,

N
= limy.e (1/2N) Y cos 27 (vz;4, — kz;)
j=1

— limy., (1/2N) ﬁ,‘lcos 21 (vtjpr + kzj).
Since »rj4. + kz; is uniformly distributed modulo 1, Weyl’s criterion yields
(2.22) limy., (1/2N) g‘{ cos 27 (v&;4r + kz;) = 0.
Also since »r;y, — kz; is uniformly distributed modulo 1 for k£ # », one has
(2.23) limy.,, (1/2N) ﬁl: cos 2 (vz;4. — kz;) = 0, k# v

The corollary now follows.

COROLLARY 2. x4, + kx; is uniformly distributed modulo 1 for all v > 0,
k> 0,7 >0, and vy, — kx; is uniformly distributed modulo 1 for all v > 0,
k> 0,7 >0,impliesy(r) =0, r> 0.

This is an immediate consequence of Corollary 1 since z;., — z; is now as-
sumed uniformly distributed modulo 1.

COROLLARY 3. vxjy, + kz; is uniformly distributed modulo 1 for all » > 0,
k>0,7>0, . — kz; is uniformly distributed modulo 1 for all » > 0, k >

0k £ v), 7> 0, and
N
limy.. (1/N) Y cos 2tk (Xjpr — ;) = 1= 9(r) =%, 7 = 0.
=1

This follows directly from Corollary 1.
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COROLLARY 4. v, + kx; is uniformly distributed modulo 1 for all v > 0,
k> 0,7>0, v — kx;is uniformly distributed modulo 1 for all v > 0,k > 0
(k #= »), 7> 0, and

limj.e @jur —2;) = 0,72 0,=¢(r) =15, 72 0.
This follows from Corollary 3 on observing that
(2.24) limj.e cos 2k (x4, — ;) = 1
and using a well-known lemma on arithmetic means.
3. Applications. An immediate example of a white sequence is given by
(3.1) z; = aj?, a irrational.

The result follows from Corollary 2 and Weyl’s theorem on the uniform dis-
tribution of polynomials quoted after (1.9). This sequence may be suitable as a
random number generator.

The sequence

3.2) z; = af, « irrational
is not white. Introduce the function

(33) o) = [ " o) du,

then o () has period 1, is continuous, and satisfies

(3.4) 0<o(@) =%

Further, the Fourier expansion of ¢ (z) is

3.5) o(x) =& — 2 (cos 2nkz/2x°k").
k=1

One now has the following theorem.

TaeorREM 2. If z; = of, « trrational, then ¥ (1) = & — o(ar).
All conditions of Corollary 1 are met and

N
(3.6) limyae (1/N) 2 cos 2ak (zj4. — ;) = cos 2nkar.
j=1
Hence,
3.7) Y(r) = kE (cos 2wkar/2x°k").
=1

Comparison of (3.7) with (3.5) yields the result of the theorem.
The integrated power spectrum is obtained from (1.14).

(3.8) Aw) = liz w + g {1_12 _ O'(ow)} sin 277w )

T

It is clear that the sequence of (3.2) does not possess a spectral density.
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A theorem on trigonometrie sum estimation is the following.

TarorREM 3. f () 48 monotonic, f (z) = e >0 or — @) = e> 0 for all
1<z =<N,|f(N) —fQ)| £ B implies D 11" =0 (1 + B + V).

Let

N—1 . . N
(3.9) R = ™9 _ f @ dg,

j=1 1
then R = D /' R;,
o ‘
(3.10) = f (62D _ g @Y g
i
One has

M+ ) i+
G RIS [T - O des 2w [ 15G) - f@) da,
j i

J

(3.12) Bl =2 |fG+ 1) — F()I
(3.12) follows from the monotonicity of f(z). Thus
N—1 N—1

(313) |R| = z,rj;] 17G +1) — f(5)] = 2 ; G+ 1) — 7(j)| = 0(B).

Hence,
N . - N .
(3.14) E ¢ = f ¢ dz + 0(1 + B).
Jj=1 1
Since
N i@ Yo i2nf (2)
(3-15) /; e dw = '/1 m de ’

one has, on application of the second mean value theorem to the real and imagi-
nary parts of the integral,

N .
(3.16) [ ez = 0.

The theorem now follows.
Application of Theorem 3 and Weyl’s criterion to the sequence

3.17) ‘ z; =7, 0<o<l,

establishes its uniform distribution modulo 1. In fact, it further follows from
Theorem 3 that »(j + 7)° + kj° is uniformly distributed modulo 1 for all » >
0,k >0,7>0,and »(j + 7)° — kj° is uniformly distributed modulo 1 for all
v>0,k>0 (k> »), 7> 0.One also has

(3.18) limj,e{ GG+ 7)° =4} =0, 0<eo<l.
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Thus all conditions of Corollary 4 are satisfied and one has the following
theorem.

TueoreM 4. 2; = j,0 < s < 1=y (r) = 75, 72 0.

The sequence of Theorem 4 thus exhibits complete positive correlation. The
integrated power spectrum is

(3.19) A(w) = 45, 0<ow<l
The total energy of the sequence is thus concentrated at « = 0.
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