A REVIEW OF THE LITERATURE ON A CLASS
OF COVERAGE PROBLEMS

By Wirriam C. GUENTHER AND PAuL J. TERRAGNO!
University of Wyoming

0. Introduction. In recent years a large number of publications have appeared
on probability problems arising from ballistic applications. Many of these papers
and reports are concerned with topics which are often referred to as coverage
problems. Some of the results are found only in obscure sources which are not
readily available. Consequently it is a difficult and time consuming task to locate
the numerous publications on this subject, a fact that has led to considerable
duplication of effort and waste of time. It is hoped that this review will improve
the situation and be of some use to those who have an interest in problems of
this type.

The discussion of a simple example will serve the purpose of introducing some
of the ideas and language needed for the definition of coverage problems which
is presented later in the introduction. Suppose that a point target is located at
the origin of a two dimensional coordinate system. A weapon with killing radius
R is aimed at the origin with the intention of destroying the point target. When
the weapon arrives at the target, the latter is located at (z1, z3), a randomly
selected position within or on a circle of radius D. That is, the probability density
function of (z1, x3) is g(a1, 22) = (#D*)™, 0 < 2" + z3° < D’. Assume that

aiming errors are circularly normally distributed with unit variance so that the
center of the lethal circle, (1, x2), has p.d.f.,

f(@, @) = (2m) 7 exp[—3(ai + 22)].

Now a given point (z1, ;) will be destroyed if the impact point of the weapon
is within R units of (1, z3). The probability that this happens is

Rz, 22) = // f(zy, x3) dzy da. .

(z1—21) 24 (z9—23) 2 < B2

The probability of destroying the target (that is, the probability that the impact
point is within R units of the target given that the target is as likely to be at one
point as any other in a circle of radius D) is

P(R,D) = ff k(1 , 23)g(21, x2) doy dos .
s{2tajr<p?
The evaluation of this integral will be discussed in Paragraph 2.2.
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Next we turn to the task of defining coverage problems. Let X = (a1, -+, Zn)
be the impact point of the weapon, X' = (1, -+, zn) be the position of the
target at the time of 1mpact Py(X, X') = probability of damaging the target
for given values of X and X’ (sometimes referred to as a damage functlon), and
F(z) = the distribution function of the 1mpact point. Then Py(X’ ) =

*oP1(X, X )dF(X) = probablllty that a given X' is destroyed Let G(X') =
the distribution function of X’. Then P(-) = [ZwPy(X")dG(X’ ) probablhty
of destroying a point target whose p s1t10n is governed by G(X') when aiming
errors have distribution function ¥ (

We will define a coverage problem a)s the computation of a probability of the
type P(-), that is the evaluation of

(01) P = [ f_: Py(X, X') dF(X) dG(X).

All three functions P1(X, X'), F(X), and G(X’) (and consequently P(-)) will
in general depend upon parameters. The integral P(-) may also be interpreted
as the expected proportion of a target destroyed.

A number of special cases of (0.1) are discussed in this review. Section 1 is
devoted to probability content problems. In this situation we have

Py(X,X') =1, X & region C;
=0, otherwise

(sometimes called a zero-one damage function) and the random variable b'd
assumes the position X' = B = (b1, - - -, ba), a fixed point, with probability 1.
Under these conditions (0.1) takes the form

(0.2) P(-) = fc AR (X).

The same damage function is used in Section 2 but the distribution of X " does
not concentrate all the probability at one point. Hence, for these cases (0.1)
reduces to

(03) PC)= [ : fc dF(X) d6(X).

Finally, in Section 3 some examples are considered in which the damage function
is not of the zero-one type. Although the latter two situations are more inter-
esting than the one considered in Section 1, much more literature is available
for the former.

In each of the special cases considered, P(-) is used to stand for the proba-
bility. After it becomes apparent which parameters determine P(-), we will
often replace the dot by these parameters. Thus in the introductory example we
used P(R, D) to denote the fact that the probability depends only on E and D.
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In most of the evaluations X will have the density function
n —1 n
(04) flxr, - ,2,) = [(27r)*"H a;] exp [—% > (x?/«rf)] .
3 1=1

=1

Thus (y1, -, Y»), where y; = z;/0;,% = 1,2, -, n, has an n-dimensional
standard normal distribution.

A bibliography entitled “The Coverage Problem” [51] has been published by
the Sandia Corporation. It contains a list of several hundred references that are
either directly or indirectly related to this field. The majority of papers covered
in this review are listed in that report.

1. Probability content problems.

1.0 Iniroduction. In order to limit this section to a reasonable length, we will
consider only those probability content problems which have received the most
attention in ballistic applications. The region C; will be spherical and the point
B = (b, ---, b,) will be captured by a sphere of radius R whenever X falls
within or on >t (z: — b;)* = R’. Thus if X has the p.d.f. given by (0.4), then
(0.2) can be written

P(-) = ff F(@, v+, %) Ay -+ A2

3 (zi—bi)?sR?
=1

(1.1) L
= f f [(2m)*"T™ exp (—5 Zl y?) dys -+ - dya
2, Lwimbi/on?/ (R/e) M S1
_ . (yi - bi/o'i)2 :I

We note that it is not necessary to consider separately the case in which C; is
elliptical for if C; contains the points within or on iy (z; — b:)?/c; = 1, then
P(-) reduces to Pr[) i1 (y; — bi/o:)?/(ci/e:)® < 1], the same evaluation as
(1.2).

If X bhas a non-singular multivariate normal distribution and the axes of an
elliptical region are not parallel to the coordinate axes, P(-) can still be reduced
to an evaluation of the type (1.2) even though some of the covariances are not
zero (i.e. see [49], Section 1).

1.1 Region centered at the origin, variances equal. The probability given by (1.2)
reduces to

(1.3) P(R/s) = Pr [Z:; yi < Rz/crz:l = Pr[w’ £ R/

. . . . . 2 .
where w” has a chi-square distribution with n degrees of freedom and ¢” is the
common variance.
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There are a number of ways to evaluate (1.3). The most obvious is to use one
of the numerous tables of the chi-square distribution, the limiting factor being
the number of entries. Since Prfw’ = R*/¢’] = Prlw’/n < R*/ns’], the chi-square
divided by degrees of freedom table of Dixon and Massey [8] may also be used
for an approximate solution. It contains more probability levels than most chi-
square tables. Another expression equivalent to (1.3) is

R2/202

Priu < RY/26%] = f [1/T ()™ ™ du
0

which can be found in Pearson’s [42] table of the incomplete I'-function. Finally,
forn = 2 and n = 3 it is easy to verify that

(1.4) P(R/s) = 1 — exp(—R’/24"), n =2,
and ‘

(1.5) * P(R/c) = 28(R/c) — 1 — 2(R/s)$(R/c), n =3,
where

&(z) = [: (2r) Fexp (—8/2) dt, . ¢(z) = (2r)Fexp (—27/2).

Formulas similar to (1.4) and (1.5) can be obtained for any n by repeated inte-
gration by parts. Tables are available which permit (1.4) and (1.5) to be evalu-
ated to a high degree of accuracy. In [34] the function ¢~ is given to eighteen
decimal places for z = 0(.0001)2.5 and to twenty decimal places in [35] for
z = 2.5(.001)10. In [36] the integral [Z.(2x)* exp(—3£*)dt and ¢(z) are given
to fifteen decimal places for z = 0(.0001)1(.001)7.800(various)8.285.

Reference [38] contains two single page tables that can be used for the evalu-
ation of (1.4) and (1.5). For the case n = 2 Table 8.1 (p. 171) gives R/o to
four decimal places for P(R/c) = .01(.01).99(.001).999(.0001).9999, .99995,
99999, .999995, .999999, .9999995, 9999999, .99999995, .99999999, .999999995,
.999999999. For the case » = 3 Table 8.6 (p. 203) gives R/s to four decimal
places for P(R/c) = .01(.01).99(.001).999(.0001).9999, .99999, .999999,
.9999999.

1.2 Region not centered at the origin, variances equal. If welet Z; = (z; — b:) /o,
t1=1,2 ---,nin (1.1) we get

(1.6) f f (21r)%n] eXp[—'g- ; (Z; + bi/o) :Ile <o dZn

é R2/q2

which is Pr[ZLl Zf < RY/6’] = Pr[W® £ R’/4’] where W’ has a non-central
chi-square distribution with n degrees of freedom and non-centrality parameter

= SRt = 7
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A number of derivations are available for obtaining the p.d.f. of W™ Perhaps
the simplest is the non-constructive method used by Graybill [17], pages 74-76.
He observes that i Z% and a random variable W* with p.d.f.

(L7) AW, ) = expl—3(W* + NI NW7/j1 27T (3n + )
=

both have the same moment generating function and must have the same distri-
bution. Mann’s book [27] contains a constructive derivation. In his proof he
makes an orthogonal transformation on the Z; and shows that W* = »* 4+ w’
where v and w’ are independent random variables, the first normal and the
second chi-square with n — 1 degrees of freedom. Then to get the p.d.f. of W*
he makes the transformation w® = W cos® §,» = W sin 6 in the joint density
of v and w® and integrates out 6. A recent geometrical derivation by Ruben [48]

leads to the form

(1.8)  R(W5n, N = 3(W/N)'"™ expl—3(W* + N)L -0 \W)

where Ij-9(z) is the modified Bessel function of order 3(n — 2). Of course
(1.8) could be obtained from-(1.7) by using the well known series expansion for

the Bessel function ([57], p. 77).
We seek

R2/q2

(19)  P(R/o,1/0) = H(RYo*n, 1*/o?) = f h(W2 m, ) AW

0

Before discussing numerical evaluations it is interesting to note that a recursion
formula for (1.9) can be derived by integrating by parts with
dv = lexp[—3(W* + ) dW’,  u = (W/N)'" P Liusy(OW).
This yields
(1.10) H(R*/d*;n, \}) = H(R*/o*;n — 2,\))
— (R/X\0)'™™® exp{—3[(R"/c") + N} Iyo-n(RMN/0),

a result observed by Guenther [19] and Quenouille [43].
1.2.1 Two dimensional case. When n = 2, Formula (1.9) becomes

Rlo
(1.11) P(R/o,r/c) = ¢ f 1 I ((r/0)0) di.
0
An alternate derivation of this result is obtained from (1.1) (with » = 2 and

by = by = 0) by rotating the axes through an angle a = arctan (b,/bs) followed
by translating the origin to the center of the circle. These operations yield

(1.12) ff (2re®) ™ exp [—(26°) N} + 2r2 + 7+ 23)] day das .

zi+zf< B2
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Switching to polar coordinates (1.12) becomes
27 R 1 1 9 2
[0 fo mexp[—-ﬁ(t+2rtcos0+r)]tdtd0

200z [T 1 2002 | 1 [ 2
— e—r /20 i e—t /20 [__ f e—rtcosﬂlv d@] dt
o o? T Jo

R
_ et b a2 rt d
e = e Iy < 02) t

which is equivalent to (1.11). Programs for the numerical integration of (1.11)
are discussed in [44] and [3].

Several extensive tables of (1.11) have been prepared. The Bell Aircraft
Corporation has tabulated P(R/q, r/s) in [3] to five decimal places for r/o =
0.00(0.01)3.00, R/s = 0.01(0.01)4.59. Marcum [28] has tabulated q(R/s,7/0) =
1 — P(R/s, r/o) to six decimal places for R/c = 0.10(0.10)20.0 over values of
/o by intervals of .05 as are necessary to cover the range ¢(R/g, r/o) = 0 to
g(R/¢,r/s) = 1. Thus the Bell table covers smaller intervals of R/¢ and r/o but
the ranges of these parameters are much greater in the Marcum table. Both are
rather bulky covering 301 and 185 pages respectively. Abridgements of [28]
appear in [14], [31], [38], [44], and [55].

Di Donato and Jarnagin [6] have published extensive inverse tables of R/¢
(to seven significant figures) for given values of P(R/s, r/c) and r/s. Values
of R/c are given for /¢ = 0.0(0.1)5.00(0.2)10.00(2.0)20.0(5.0)120.0 and
P(R/s, /o) = 0.01(0.01)0.99. Also included is a table of high probabilities for
r/e = 0, .05, .10, .25, .50, .75, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00, 6.00, 8.00, 10.00,
20.00, 30.00, 50.00, 80.00, 120 and P(R/s, r/s) = .99(.0005).999(.0001).9999-
(.00001).99999(.000001).999999. This form of tabulation would be particularly
useful for finding the radius R required if it is desired that the probability of
capturing a point r units from the origin be at least some specified figure, say
1 — a. An abbreviated table appears in [7]. Both references include a discussion
of computational procedures.

A graph has been prepared by Solomon [53] from which it is possible to approxi-
mate (1.11). Curves are given for P(R/c, /o) = .05(.05).95 graphed over
ranges 0 < r/oc < 10,0 £ R/o < 8. To use the graph (his Figure 1), relabel the
vertical axis B/ and the horizontal axis r/q.

1.2.2 Three dimensional case. Using the formula

Iiz) = (2m2) 7" — ¢7)

(see [57], p. 80), it is easy to verify by straight forward integration that (1.9)
can be written as

P(R/o,r/c) = @((r + R)/s) — ®((r — R)/0)

(1.13) .
= (r/a)"[¢((r — R)/o) — &((r + E)/0)].
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Formula (1.13) can be derived directly from (1.1) by choosing (r, 0, 0) as the
center of the sphere (which can be done with no loss of generality) followed by
the substitution z; = r 4+ Z1, 22 = Z;, 3 = Z; and a switch to spherical co-
ordinates.

An abbreviated table of (1.13) has been prepared by Guenther [18]. It gives
P(R/q, r/c) to two decimal places for B/oc = 0(0.5)3.5, r/e = 0(.5)3.5. Other
entries are easy to compute since exponentials and standard normal distributions
are well tabulated (i.e., see [34], [35], and [36]). The table and the approximation
discussed in Paragraph 1.2.3 could also be used for the evaluation of (1.13).

1.2.3 n-dimensional case. The most extensive tables of the non-central chi-
square are apparently those prepared by Haynam and Leone [21]. Their Table I
gives H(R?/d*; n, r’/d") to five decimal places for all combinations of values of

7/¢* = 0(0.1)1.0(0.2)3.0(0.5)5.0(1.0)34.0
n = 1(1)30(2)50(5)100
R*/¢* = 0.01(0.01)0.1(0.1)1.0(0.2)3.0(.5)10.0(1.0)30.0(2)50.0(5.0)165.0,

over 5,000 entries for each degree of freedom and more than one quarter of a
million entries all together. In addition they have a Table IT and Table III
specifically arranged to give power for chi-square tests, but these are not useful
for coverage problems. The biggest objection to these tables is their bulk. It is
hoped that the authors will find some convenient way to condense them so that
they will be more readily publishable.

The Haynam and Leone tables are computed from a series expansion. They
use (1.7) which allows them to replace (1.9) by

2,1, . R2/q2 e—}ze—})\z ) x§n+j—1()\2)j

HR/o5n, W) = [ g 3 i o

After some fairly routine manipulations, they show that

Il

(1.14) H(R%/d*;n, \*) = Z:; P,~+;,,(R2/20'2)§:0Pj(%)\2), n even
= 3 Quuswrn (B/26) 15 AR, nodd

where P.(y) = ¢ "y'/i!, the Poisson density function and
Qy) = e Hri 4+ 3), iz 1
= (2/) fv ” e ™ du. i=0.

Formula (1.14) is used as the basis of their calculations.
If tables are not available, then one of the many approximations for the non-
central chi-square distribution could be used. Some of these are found in [1],

[24], [40], and [41]. According to Pearson,
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(1.15) H(R*/d*;n, ’/d”) = Pr{w’ < M]

M= I:Ii2 + /s :l/n + 37%/d

a2 ' n -+ 3(r%/e?) n + 2r?/q?
and w’ is distributed as central chi-square with fractional degrees of freedom
v = (n + 2°°/6%)%/(n + 3r*/d")®. To evaluate (1.15), again we may use tables
of chi-square, chi-square divided by degrees of freedom, or the incomplete gamma
function. The approximation seems to be reasonably good even though interpo-
lation is required for fractional degrees of freedom. The Haynam and Leone
tables make it possible to investigate the accuracy of the various approximations.
1.3 Region centered at the origin, variances unequal. For this case (1.1) and (1.2)

where

reduce to .
wiey 7O [ [0 Ta] o] 3% ]
(1.17) = Pr [; yi/(R/e0)* < '1].

Some discussion of the n-dimensional case will be found in Section 1.5.

1.3.1 Two dimensional case. The integral (1.16) is expressed in various forms
more adaptable to calculation in [6], [9], [10], [16], [22], and [568] (computing
schemes for numerical integration are discussed in the first five of these refer-
ences). The simplest of these, due primarily to Fettis, is obtained by letting

(1.18) 1 = a1p cos 0, Zy = a1p sin 6, R = Koy, ¢ = afa1,

where 0 < ¢ = 1, followed by replacing 29 by ¢. This changes (1.16) to

(119) P(K,c) = 21% [ [ "pexp (—(AAA + &) — (1 — &) cospl} dodp

_1fF _p2(1+02:| <1—c22
(1.20) = E ‘4. p exp [ —2— 9 Io 4c P dp.

For his numerical integration scheme, Harter [22] changes (1.19) to

2 ("1 —exp {—(K*/4)(1 + &) — (1 — &) cos ¢]}
P(K, c) —;fo 1+ — (10— ¢)coso dé

by letting Z = p°/4¢’ and integrating with respect to Z. Another interesting
form of P(K, c), used by Esperti [9], is obtained from (1.20) by niaking the
substitution s = p’(1 — c*)/4c’, replacing Io(s) by D mo (s/2)™/(m!)* and
integrating term by term. Esperti’s result is

(121) P(K,) = 23 U] <1 T cz)w [1 B "—"i:‘z%]

— 2 m=o (2™m!1)2 \1 + ¢
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where p = 1K’(1/¢* + 1). Finally, letting

Pl dad=z o= (e, K= (o)
and putting ¢; + ¢; = cic2, (1.20) becomes

2 tertea)t e (1 1
(01+62)*-£ ¢ Io[ (:-1_&;> x]dx,

the result of Grad and Solomon. In terms of the original parameters we have

2 2 2 2 2
_oa+t o _ o1+ o _ R
a=—73—, a=—7), |I=57s.

b (1 ot + o}

Harter has tabulated P(K, c) to seven decimal places for K = 0.1(0.1)6.0,
¢ = 0.0(0.1)1.0. The Esperti table gives P(K, ¢) to six decimal places for K =
0.00(0.01)4.99, ¢ = 0.0(0.1)1.0. Hence the main difference between this table
and the one prepared by Harter is the finer intervals for K. The Esperti table
contains about ten times as many entries as Harter’s and also includes three
graphs that are of interest. These display curves of

P(K, ¢) versus K, for ¢ = 0.0(0.1)1.0

P(K, ¢) versus ¢, for K = 0.0(0.1)3.0

K versus ¢, for P(K, ¢) = 0.0(0.1)0.9, 0.99, 0.999, 0.9999, 0.99999.

We note that when n = 2 (1.17) is Pr[y; + ¢’y =< K?). Grad and Solomon
[16] have tabulated

Prlag? + aw? < £ = Prl(a/as)y} + 5 < t/as] = Prlyt + (ar/a2)y: < t/as]

where a; < as and a; + a; = 1. Thus to compare these tables with those of
Harter, set ¢ = (ai/az)? and K = (t/ a2)!. Solomon [54] has extended the original
tables of [16] to include twelve pairs of (a@:2, a1). These are (.5, .5), (.6, .4),
(2/3,1/3), (.7, .3), (.75, .25), (.8, .2), (.875, .125), (.9, .1), (.95, .05), (.99, .01),
and (1, 0). Entries are given to eight decimal places for these values of (a:, a1)
and ¢ = .005(.005).10(.01)1.00(.02)2.50(.025)3.50(.05)5.00(.25)6.00(.50)7.00
(1.00)10.00. In comparing this table to the one prepared by Harter, we find that
not only is the latter table more compact but also it is much more adaptable to
coverage problems. Solomon has also included an inverse table in [54]. The
entry is ¢ which is given for Priawi + awi < ] = .05(.05).95 and the same
twelve pairs of (as, a:) used in his other table. Usefulness is limited by the small
number of values of (as, a1) for which ¢ appears. Parts of Solomon’s tables are
given in Sections 8.3 and 8.4 of [38].

DiDonato and Jarnagin [6] have tabulated inverse tables in terms of K for a
given P(K, ¢) and a given c. Values of K are given to seven significant figures
for ¢ = 0, .10(.05)1.00, P(K, ¢) = .99(.0005).9990(.0001).9999(.00001).99999-
(.000001).999999. It is easier to evaluate P(K, ¢) from this inverse table than
from Solomon’s direct table if it is necessary to interpolate between pairs (az , a1).

Another good inverse table has been compiled by Marsaglia [29]. He has tabu-
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lated to four significant figures the r required to make Pr[y; + s’y3' < o] =
Prls’yi + y2 < 7] = .01(.01).99 for s = 1.0(.1)5.0(.2)10.0. In order to identify
his notation with that which we have used previously, we mote that for n = 2
(1.17) is Pr[(o3/03)y; + ys < R’/o3). Hence s = a1/03, the ratio of the larger
standard deviation to the smaller, and r = R/s., the ratio of the radius of the
circle to the smaller standard deviation. In addition to the table graphs are in-
cluded. Curves are given for Prls’y; + y2 < ] = .01, .05(.05).95, .99 graphed
over the ranges 1 < s £ 10,0 < r < 15. Marsaglia refers to [29] as the prelimi-
nary form of his publication and he does not present any computational pro-
cedures.

Two abbreviated inverse tables appear in the literature. These are included
in the articles by Weingarten and DiDonato [58] and by Harter [22]. The former
is more extensive giving K for ¢ = .05(.05)1.0, P(K, ¢) = .05(.05).95(.01).99
while in the Harter article K appears for ¢ = 0(.1)1.0, P(K, ¢) = .5000, .7500,
.9000, .9500, .9750, .9900, .9950, .9975, .9990. ‘

Oberg [37] gives an approximation for R given P(K, ¢), o1, and o2 . With all
the tables now available there should be little demand for this result.

If some of the above tables are not available, or if the needed value of P(K, c)
does not appear for a particular choice of K and ¢, Equation (1.22) may be
useful. It is known that

(122) P(K,c) =g [g(%— 1)%(%'*‘ 1)] - q[g (&1'+ l> ’g(«%‘ 1)]’

so that the Marcum table [28] can be used for its evaluation. Since (1.22) can
be written in the form

i - o[£ (-]
S R () )

the Bell table [3] may also be used. The origin of this result is somewhat obscure
(see p. 349 of [7] for historical background) but the following proof is due to
Fettis [10]. Write

R
g(R,r) =1 — e_}'zf te—*‘!Io(rt) dt
0

(1.23) "
=¥ f te 1 Io(rt) dt.
R

Integrating by parts, (1.23) becomes

(1.24) q(R,7) = e IETO (R + re_wf e (rt) dt.
R
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Next differentiate (1.24) with respect to r. After some simplification it is found
that

aq(R,r)/or = Re ™™ [ (Rr).
Differentiating (1.24) with respect to R yields
dq(R, r)/0R = —Re [ (Ry).
Letting R = oK, r = BK, one gets
89(R, r)/0K = a(dq/0R) + B(dq/dr)
= —Ke (oK) — apli(aBK?)].
Now

K K
f ?2%1%*5_) dK = f — Ke @21 (a8K?) — apl(aBK?)] dK,
0 0

or
K
g(aK, BK) — ¢(0,0) = —fo pe ¥ (aBp”) — aBLi(aBp®)] dp,
so that
g(aK,BK) = 1 — f pe I (aBp”) — aBli(aBe’)] dp.
0

Hence
K

(1.25)  g(BK,aK) — g(aK,BK) = (o’ — §) f pe ¥ I (aBp”) dp.
0

The integral (1.25) is the same as (1.20) if « = 3(1/c + 1), 8 = %(1/c — 1).
Thus (1.25) reduces to (1.22). Kleinecke [25] has published a geometrical proof
of (1.22).

1.3.2. Three dimensional case. The most extensive table available, one well
adapted to coverage problems, has been prepared by Marsaglia [29]. He has
tabulated the value of r to four decimal places for which Pr{yi + s*3 + v’y < ]
= .01(.01).99 )
where

»
Il

1.0(.1)3.0, v = §(.1)3.0
and
1.0(.5)7.0, v = s(.5)7.0.

In terms of R, a1, 02, 03, we have 8 = o3/01, v = 03/01, 7 = R/c1 where g1 =
o2 < o3. The table is 62 pages long and has approximately 30,000 entries. He
has a procedure for approximating Prlyi + s + vy < 7] for values of s
and v beyond those of the table. However, neither it nor any other computational
information is included in the preliminary edition.

S
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Grad and Solomon [16] have tabulated Pra:y; + a3 + asys < #] where
a3 = a; = a; and a; + a2 + a; = 1. Solomon [54] later extended the original
tables. Entries are given to eight decimal places (only four place accuracy is
guaranteed if the a’s are different, six places if one pair of a’s are equal, and eight
places if all three a’s are equal) for ten sets of (as, a2, a1), (3, 1, 1), (4, .3, .3),
(4, 4, .2), (.5, .3,.2), (.6, .2, .2), (.5, 4,.1), (.6, .3, .1), (.7, .2,.1), (8, .1, .1),
(.9, .05, .05) and for ¢t = .01(.01)2.00(.05)5.00(.50)10.00. A small inverse table
for the same ten sets is included in the report. The entry is ¢ for Prlayi +ass +
asys < ] = .05(.05).95. The same statement regarding accuracy given above
still applies. A detailed account of the computing scheme is included in the re-
port. Needless to say, the use of the tables is somewhat restricted by the small
number of sets of (as, a2, a;). A difficult, if not impossible, interpolation prob-
lem arises if the a’s do not coincide with one of the ten sets. Parts of Solomon’s
tables are given in Sections 8.7 and 8.8 of [38].

1.4 Region not centered atl origin, variances unequal (n = 2). For this situation
we seek an evaluation of

(1.26) P(-) = Pr [(yl(l_a/i1§:'1) + (’!/2(1—2/1;:;262) < l:l'

Since (1.26) depends upon four parameters, a fairly complete tabulation of
this function would be extremely bulky. Four tables currently available have been
been prepared by Germond [12], Di Donato and Jarnagin [4], Lowe [26], and
Rosenthal and Rodden [47]. We will describe each of these.

To use the Germond table, one needs h = by/o1, k = by/o2,a = R/e1,b =
R/os . The entry is P(:) = P(h, k, a, b) given to four place accuracy for h =
0.0(0.5)3.0, £ = 0.0(.05)3.0, ¢ = 0.5(0.5)3.0, b = 0.5(0.5)3.0. The computa-
tional procedure is described in the report.

The Lowe table has over twice as many entries as Germond’s. The probability
P(.) is given to three decimal places for B/o; = b = 1, 2, 4, 8, 16, 32, 64, ¢1/02 =
b/a = 1, 2, 4, 8 with eight values for each h = bi/o1 and k = bs/a2 so chosen
“to cover the by, b, region in which the variation of P(-) is appreciable.”

A much more extensive table is the one prepared by Di Donato and Jarnagin.
The entry is R for a given P(-), b1, bz, and o, = a2/a1 = 1. Obviously we can
choose o1 = 1 with no loss of generality. Values of R are given to five significant
figures for

P(-) = .05,.20, .50, .70, .90, .95
by = 0.00, 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 8, 10, 20, 50
by = 0.00,0.50, 1,2, 3,4, 5,6, 8, 10, 20, 30, 50, 80, 120
oy=1,23,4,5 67,8, 10.

A detailed discussion concerning the computing method is contained in this
report and in [5].
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Another extensive table is the one' prepared by Rosenthal and Rodden. It
contains about fifty per cent more entries than the Di Donato and Jarnagin
table. The table was designed to give probabilities of being in a circle centered at
the origin when aiming errors have a normal distribution with unequal variances
and a mean not at the origin. They have evaluated P(-) to five significant figures
for o, = ga/o1 = .2(.2)1, bi/e1 = 0(.5)3.0, b2/a1 = 0(.5)3.0 and over values of
R/o; in intervals of .05 from O up to those values which make the probability
nearly 1. The authors describe their numerical integration scheme and state
that they believe that the overall accuracy is better than =1 in the third decimal
place.

Gilliland [15] has derived a series solution that can be used to evaluate (1.26).
His result is obtained by making the substitution (1.18) in

2 N
exp [—% ; (x; - b;)z/a'g] dxl dxz,

~/;§+z§§k’ 2oy 09

replacing exponential terms by infinite series expansions, and reversing the order
of integration and summation. His result is

(1.27) P(-) = {exp [5(bi/al + bg/ag)]/21rc};Bum(u)
where p has the same value as in (1.21),

Pu(u) = 1 — e*2 /o)

B,, = im!(4c’/(1 + c2))'"+‘z0 Dp.i,

(1= V1 E (bi/ad) b2/ Ea)™ T C
Do = (Tc%‘) 7 24 @)Iem — 7 — 27y O X 2m = 2 = 24),

and

27
G(p, g, t) = f cos® 20 cos? 0 sin’ 0 do.
o

In the special case by = b, = 0 his series reduces to (1.21), the Esperti result.
When o1 = o2 = o he gets

e_,s 1203 g [ (1'2 /az )m /m !21»] P, ( R2 /2a2) ’

the correctness of which can be verified by integrating (1.7) from 0 to R*/c®
with n = 2. Equation (1.27) appears to be well adapted to use with a desk cal-
culator. An error analysis is included in the paper.

1.5 Some remarks on general theory. A number of papers devoted to expressing
Pr{D_ 2 ai(ys — bs)’ < #],a: > 0,i = 1,2, - - - , m, in various forms have appeared
in the literature in recent years. We will indicate briefly some of the results. Most
of the references mentioned in this section list further references of interest.
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Robbins [45] showed that

Pr [l f_‘( ayl < t] _r i __a(=t)*

2& 7 T DtiZrGn+Ek+1)
where D = []i-: a; and the ¢, are constants easily computed from rather com-
plicated recursive formulas. Pachares [39] improved on this result slightly by

showing
. " & (—0)F BN
[ Za. 1St:| D"zzo k! TGn+Ek+1)

where Q5 = 22,_1 a7'y} . The moments of Q: are easily obtained from the
rth cumulant of Q% which is (r — 1)!D, % ai". Shah and Khatri [52] generalized
the Pachares result showing that .

mBEmm—mfgﬂ
=1

_ tan ) (_1)12kt]+kE(Q*7L*2k)
B ( E b ) 7= j1(2k)!T(3n + 5 + k + 1)
where Q* = 3D 1 a7 (y: — b))%, L* = D% (2a:) "} (y: — b:)b; . The moments
are obtained from the (7, j) cumulant of (Q* L*). Denoting this by K;,; they
have found

z=1

Kr.0= (’I'—' 1)'121=1a1 ) r= 17 2’ tte
Kf,z = T'Z;=1b /(2a'+1), r = 0, 1, 2, e
K'.J'=0a j=1)3)475a"'a T=0’ 1, 2

All three papers give exact expressions for computing bounds on the exact prob-
ability when it has been approximated by a finite number of terms.

A number of investigators have obtained Pr[) 7 ay} < #] by inverting the
characteristic function of the quadratic form and using numerical procedures.
This method was used by Grad and Solomon [16]. Friberger and Jones [11]
give a brief review of some of the numerical methods used by others and present
another of their own. Imhof [23] uses the same procedure to evaluate
Pr[ZLl ai(y,- - b;)2 > t].

In another group of papers the distribution funetion of the quadratic form is
expressed as a linear combination of an infinite number of chi-square or non-
central chi-square distribution functions. Robbins [45] showed that

P agl S 1) = 3 (~1)F dePusu(t/a)

where a = (a1-as -+ - @)™,

F.(t) w" e du,

¢ 1
=£%W%)
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and the dj.are obtained from the ¢, mentioned previously in connection with his
infinite series. Robbins and Pitman [46] obtained the slightly different result

PP[Z; ayi S ] = _ZOOJ'F w25 (t/01)
1= J=

wherec; 20,7 =0,1,2, -+, D reci= 1, a; = min; a;, and the ¢; are obtained
stepwise. Ruben [49] has extended these results, proving

Pr [g ai(y: — b)) t] = ?:: ¢ Frny2i(t/p) = ,;o d; Gntaii(t/D),

where hisc;and d; (7 = 0, 1,2, - - -) can be computed several ways, the most con-
venient being recursively. Here Gn,.(t/p) = H(’/p; n, <) in our notation, that is,
it is the integral of the non-central chi-square p.d.f. A discussion is included on the
appropriate choice of p. All three papers give bounds on the error after & terms.

Imbhof [23] has included another interesting result in his paper. He extends the
Pearson approximation getting

PrlY ai(y: — b)* > t] = Pr[w’ > ¢]
=1

where w® has a chi-square distribution with fractional degrees of freedom h’ =
ci/ct . Heret = (t — ¢1)(K'/e2)* + 1 and

¢ = 2, ai(1 + jb3), i=123.

2. Zero-one damage function, X’ probability not concentrated at one point.
2.0 Introduction. In Section 0 we observed that when the damage function is
equal to unity inside or on C; and to zero elsewhere, then (0.1) simplifies to

(2.1) P(-) = [: fc aF(X) d(X).

In general C; will depend upon both X’ and X. For the cases to be reviewed X
will have the density function (0.4).

When o; = 0,4 = 1,2, ---, n and C) is the region Y iy (z; — i)’ <R’,
then P(-) can be simplified somewhat. In Section 1.2 we have already observed

that for this situation
2 2
dF(X) = H(’%; ’)
o

e ™a
where r* = D5, z.’. Hence in these cases (2.1) becomes
. 0 2 2
(2.2) P(.) = L H (% %, §2> da(X).

From G(X’) we can find the distribution function of r/c, say Q(r/c). Thus (2.2)
can be replaced by the single integral
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(2.3) P(-)=[H<§;n,§)dcz(£>.

The first six cases of this section fall into this category and are further charac-
terized by the following conditions:

Case I. The distribution of X’ gives equal weight to each point on Y_r; z/* =
D’, no weight elsewhere.

Case II. X' has density function

9X) = V7, 3l < D°
= 0, elsewhere

where V is the volume of the sphere Y 1 zi> < D%
Case IIL. X’ has a density function g(X’) taking on the form (in spherical

coordinates)

p(ryan, +, an1) = (2Dx" N7, 0<r=D
ag=m, t=1, ,n— 2
S ap1 S 27

= 0, elsewhere.

Case IV. r/c has a gamma distribution.

Case V. */¢” has a gamma, distribution.

Case VI. 7/ has a beta distribution.

In the last two cases considered the variances are not equal and the following

conditions hold:
Case VII. C is the region Y i; (z; — zi)* < R’ and the density of X’ is

g(zi, -+, 2n) = [(2#)"'2 InI cn'-]—l exp [—% ,Z:; (xﬁ/oﬁ)z];

=1
Case VIII. n = 2
C, is the region 21 — 81 < 1 < 1 + B1, %2 — Bs < x2 < 73 + B4
g(at, zs) = (4818:) 7, —B1 < 71 < B1, —f2 < 72 < Ba
= 0, elsewhere.

In Cases I, II, and VIII where X " is uniform over some region, say C:, P(.)
may also be interpreted as the expected overlap of regions C; and C; .

2.1 Case I. Here P(-) can be interpreted as the probability that a sphere S,
of radius R captures a point selected at random on the surface of a sphere S,
of radius D if the center of S; is aimed at the center of S, with aiming errors being
spherically normally distributed.

Since r* = D? (2.2) reduces to
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R' D , R' D
@4 P() = fzr_,zz’-m H('&?;”’Tﬁ) d¢(X) = H (ﬁ””?
Consequently all the tables and methods described in Section 1.2 are available
to evaluate this probability.

2.2 Case I1. Now P(-) can be interpreted as the probability that a sphere S;
of radius R captures a point selected at random within or on.a sphere S; of
radius D if the center of S; is aimed at the center of S, with aiming errors being
spherically normally distributed.

The integral (2.2) can be written

(2.5) P()—f f (ﬁ,,ztl,dxi---dx;

2; 1’. SD’

where V = x"2D"/T'((n + 2)/2). To simplify (2.5), change to spherical co-
ordinates. Thus

’
21 = rCOS a1,

’ .
T2 = r Sl a3 COS a2,

!’ * . .
ZTn_y = 78N @ - S0 @y COS 0ty
’ . .
x” 3 r sln al oooooooooo sln aﬂ—l N
—1/ * —2/ ¢ —3 .
[J] = " (sin a1)" (sin @)™ - -+ 8in an-2,

so that (2.5) becomes
ir ir 2 2 J
P(-)=2" ff f (2,n,:2>-|7lda1'--da,._1dr.

Integrating out the o’s yields

P(-) = fODH(%z;n,(:—:>1—§dr
_ Dlo 2 n(r/a)" —1
[ G ) " o
Now integrate (2.6) by parts with
dv = [n(r/a)""/(D/a)"] d(r/a)

R R LW e w 2
u=H(?;n,;é>='/; v e T2 aw”.

After a few routine reductions it is found that

(2.6)

du = — B[ (’;) exp [— (B® + )/26%] d(r/o).

(T / 0’) (n—2)/2
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Thus the integral (2.6) can be changed to
R (R/a)™ [ [y
en (a2 o ) + o b 07
e [ (B + /20 (B )d(r/a).

Another integration by parts with
dv = (r/¢) exp[—(R® + 7*)/24°] d(r/s) and
u = [(R/0)"*/(D/a)"\(r/o)"Ino(Rr/a®),
converts (2.7) to

o (in2)- (3 e s (2

+(Bey [ (e ) T e 1= (8 + /20 (R)2(2) 0 ().

The last integral is equivalent to
R/O' n .D2/o2 1 <r/a_)(n—-2)/2 B ) . \ (,.R , .
(D_/v) ‘/o‘ § R_/a exp [ (R +r )/ 20 ]I (n—2)/2 7 d ;

'R/a\" D’ . R’)
= <_a’) H(__.’n,;z_ .
Consequently we may replace (2.5) by

P (22) - 8)- () oot s ()

(2.8) +<%)”H<g;n’§:)

or, alternatively, because of (1.10),

w0 P(E2)-n(EimeaZ)s (B n(Zin).

The derivation of (2.9) is due to Guenther [20].
When n = 2, (2.8) reduces to

R D\ _ . (R D’)
P(?:)‘H(?’z';?

()t 2 (2)+ () (i),

a result due to Germond [14]. He has tabulated P(R/e, D/s) to four decimal
places for D/o = 0(0.1)6.5, R/e = 0(0.5)3.0(1.0)6.0 and for D/c — R/oc =
—3.2(0.1)3.5, R/o = 3(1)6(2)20. If further values are desired, (2.10) can be
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evaluated from well tabulated functions. Either the Marcum [28] or the Bell
[3] table can be used to evaluate H(R?/¢"; 2, D*/o") and H(D*/s*; 2, R*/d%).
Watson [57] has included a table of ¢ “I;(x) in his book. It is given to seven
decimal places for x = 0.00(.02)16.00.

When n = 3, (2.8) reduces to

R
|—‘" <D+R) ( v >] o7
[(Dz—liD+R ) )
- (R -1 (7)),

a result found in [18] which contains an abbreviated table. The probability
P(R/s, D/o) is given to two decimal places for R/o = 0(.5)3.5, D/o = G(.5)3.5.
Other values can be computed using [34], [35], [36].

There are a number of other ways to evaluate P(-). One of these is to use the
Haynam and Leone [21] tables on (2.9). A second is to use the Pearson [41]
approximation twice. Thus

P<I;e,l;)> = Prwl < Mi] + <R/a) Pr [w; < M),

(2.11)

D/
where
E_z + D'/d* ‘ l_)_2 + RYd*
i = & nF 2+ 30D M= & n T 3B
! n+ 2+ 3(D%d) n + 3(R%/o)

n + 2 + 2(D*/a’) n + 2(R?/o%
and w} and wj are distributed as chi-square with fractional degrees of freedom
vl = [n + 2 + 2(D*/")/In + 2 4 3(D*/d")P’,
v = [n + 2(R*/")/[n + 3(R’/")]".

A third way is to substitute the series (1.7) into (2.6), replace e by its series
expansion, interchange the order of integration and summation, and obtain

(=1)"(D*/26%)** [ R*/24° ]
1 P = 7Y I ’ o
(212)  P() nguz—;w' t(n+ 20+ 2) L(n/2+75+ 102 +]
where I(u, p) is the incomplete gamma integral of Pearson [42]. The series (2.12)
can be evaluated with a desk calculator.
We note that if X' hasa dlstrxbutlon that is uniform over an annulus bounded
by Z,_l x> = D} and D 1 zi> = Dj, Dy > D, the probabilities can be com-
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puted using the results of this section. In this situation the density of r/¢ is

r\ _ n(r/e)" ™ 2& r _ Do
1 <;> " (Dofo)r — (Do)’ a < 7 < 7

= 0, elsewhere,

and

Wy R D\ (D)" R D
@ ) = P p (2.2) - 5 ipsr (7).
where P(R/s, D/c) is defined by (2.8) or (2.9).

2.3 Case III. The interpretation is the same as for Case II except for the
meaning of “at random.” In Section 2.2 @(X') was such that the point X’
was as likely to be in a volume of a given size as in any other volume of the
same size in C;. Now X’ is governed by a probability law under which the
spherical coordinates have independent uniform distributions. It is worth point-
ing out that the result of this section holds whenever r and the vector (a1, - -
an_1) are independent, a somewhat more general result.

The integral (2.2) takes the form
(2.14) P(')=f fH(Rjnf>y(x/ oo, n) doy - - dos
‘ E?_l“;‘zél)z 2 )0_2 1, y n 1 ne

In spherical coordinates this is
D 27 * F's 2 9
R 7 1
P(-)—/o‘ fo L ""L‘H(ﬁ’”’?)ﬂ)’,’—rﬁd‘xl“'dﬁln_ldr

Po(F . \1
= fo H(cr2 ,n,a—2 Bdr.
Thus we may write for (2.14)

(2.15) P (_1;_3 ?) - f " u (f: :m, :_:) 171/7. d(r/a).

For n = 2, (2.15) has been tabulated by Bell [2] to four decimal places for
D/e = 0(0.1)6.5, R/o = 0(0.5)3.0(1.0)6.0 and for D/oc — R/¢ = —3.2(0.1)3.5,
R/oc = 3(1)6(2)20.

A series similar to (2.12) can be derived by following the steps outlined there.
It is

& (—1)Y(DY/24) [ RY/24° n ]
-) = - I . =+l
PO = D im o+ D et +Dz Y
The preceding formulas can be used to give the probability of capturing a
randomly selected point in an annulus bounded by Szt =Diand D i ai =
D%, D, > D, where “randomly” is interpreted as in this section. For this case
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o(r/o) = 1/[(Di/o) — (Di/o)),  Dyfo < 1/a < Dafa
and
D, R D, D, R D,
e Py =2 p(R2) R p (R D),

where P(R/e, D/c) is defined by (2.15).
2.4 Cases IV, V, V1. The densities governing the behavior of r are respectively

au(r/a) = [1/8°T(a)](r/a) e, r/e >0
ax(r"/o") = [1/8°T(a)](r"/o") ¢, r/a" > 0
and
gs(r/o) = [1/d**7'B(a, ©)](r/a)*(d — 1/0)", 0<r/ec < d
where a and 8 are known constants in the gamma distribution and d, a, and b

are known constants in the beta distribution. Following the procedure used to
derive (2.12), one gets for these cases

27 & & (—1)T(a + 25 + 1) /2] [ R*/24° n ]
25«1‘@),—.20,-; g Hort;5m 2t

N2y 1 & Tre+t+)) RY/20* n
s (E) e 7T+ 2/B) [(n/z FiF 02 J”]’

Py(-) = 13 5 (=1(d/2)™6(a + 2 + 2,b)

B(a, b) j=0 =0 2l g!
2 2
-1[————R/2.” #,2'4‘]].
A (n/24+j+ 1) 2
The three formulas for n = 2, 3 have been given by McNolty {30]. If ¢, a, and
b are integers then the complete gamma functions can be evaluated from [50].
If this is not the situation then [56] can be used to evaluate log T'(p), 1 < p < 2
(see the introduction of [42] for further suggestions).
2.5 Case VII. The integral (2.1) takes the form

P = [ [ ]

n
3 (zs—z})2<R32
=1

n 2 ’2

. —{,—exp[—lz‘:(?—;—l—{%)]dxl oo day dzy - - da, .
n , 2 i=1 \o3 g

@m)" I1 o: oi

=1

Pl(') =

If we let z; — z; = Z,; and reverse the order of integration this becomes upon
integrating out 21, - - - , 2,
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n 2
P(-) =/ f 1 eXp[—%g_;Ug—_{:—;ﬁ]d,Zl"'dZM
(2 )n/2H( 2 1/2 + +

n
2
.‘EI zZi<R? =1

Making the substitution Z; = y.(o> + oi*)* we get

(2.17) PC) = ff @%mexp[—%gyf]dyl---dyn.

n
R H G R

The evaluation of (2.17) has already been discussed in Section 1.3 (and in 1.1
lla,+¢n—a t=1,2, , ).

2.6 Case VIII. In this case (2 1) is interpreted as the probability that a rec-
tangle 01 captures a pomt selected at random in a rectangle C, (defined by
—B1 < z1 < B1, —B: < x5 < B) if the center of C; is aimed at the center of C,
with aiming errors being independently normally distributed. It is assumed that
C: lands on the plane of C in such a way that the corresponding sides of the two
rectangles are parallel.

The integral (2. 1) reduces to

[ f j’xl+ﬁl fzz'l‘ﬂg
B1 B2 Lo, Joj—8; Jz4—8s 2may 02
2 2
* exp [—l (f; + :v_: ] dz, dxy dx; dx,
2 o1 [

B1 pzi+i 1 o ,
= [\[ﬁ fl 84 W)}_exp (—.’1}1/20-1) dz; dxl:l
1 Y Z1—P1

29483
= [A(B1, B, al)][A(ﬁz , Bz, 02).

After a routine integration by parts and some reductions it is found that

AL, By o) = A* (3_5 @) _ 1 {/3{ + 6y (B{ + m)

g1 01 31/(11 o1 (]

_B{—qu><l3{ —m)_@ [¢ (ﬁl - > ¢(ﬁl+m)]}
o1 o1 o1 g1

Obviously A (B, Bz, 02) is obtained from (2.19) by changing all subscripts from
1’s to 2’s. Thus (2.18) can be written

(2.20) P(-) = [A%(B1/01, Bi/o1)[A*(Bs/ o2 , Be/a2)].

Germond has given an equivalent result in [13].
Apparently there are no tables for (2.20). However, since only well tabulated

P() =

(2.18)

(2.19)
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functions are involved, the calculation of the probability for given values of the
parameter is routinely done. Germond’s report [13] includes a graph for the
special case in which C; and C; are squares and ¢; = o2 = o. He has plotted
P(-) = P(Bi/s, Bi/o) against the ratio

area of square C; _ 81’ £
= = — or 0=d=16.
area of square C.  fi

Curves are presented for 81/ = 3, 1, 2.

3. Other damage functions.

3.0 Introduction. In Section 0 we observed that the most general form of
coverage problem as defined by (0.1) can be interpreted as the probability that a
weapon aimed at the origin damages a point target if aiming errors are governed
by the distribution F(X), the target’s position is determined by the distribution
@(X’) and the damage function is P;(X, X'). If X has density

g(X)=V", X ¢eC,
= 0, otherwise

then (0.1) may also be interpreted as the expected proportion of a target damaged

where the target has a volume (or area) V.
In Sections 1 and 2 the conditional damage function was assumed to be

Pi(X,X)=1 XeC

= 0, otherwise.

In other words, the point X’ was either damaged or it was not. A number of other
reasonable damage functions can be constructed. It would seem desirable to
have Pi(X, X') be a non-increasing function of the distance from X' to X.
The choice

(3.1) Py(X, X') = exp [—Z:; (zi — 35)2/2B2:| )

where B’ is constant, has this property together with the additional advantage
of producing some relatively simple results in the special cases we are about to
consider. Another selection which has some merit is

P(X,X) =1, > (zi — 2:)' < R
=1

= exp{—[g (zi — x:)" — R2]/2B2}, i (z; — z:)" > R

=1

(3.2)

Thus the probability of damaging X’ is 1 if X is within a distance R and a de-
creasing function of the distance between the points otherwise.

Throughout this section we will assume that the damage function is of the
form (3.1). The constant B® can be chosen in various ways depending upon one’s
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objective. If it is known that 50 per cent damage occurs at a distance d, from the
point of impact, then we might select B® so that exp (—ds/2B*) = .50 or B® =
721 dj . We will also assume that X has the density (0.4) and that X’ has a dis-
tribution with non-zero probability in a region C.. Consequently (0.1) may
be written

P()—fcz[f_ f o )"’QHU

(3.3) o

which reduces to

B’ll 1 n
P(-)=[ — = exp > 2) dG(X").
(3-4) \/;'2 I=I1 (03 + B2)% < 2 =1 0' + B

The integral (3.4) will be evaluated for four cases. These are:

Case I. 0, = 0,2 = 1,2, --+ , m. Cy is the region Y 7 zi* = D’. X’ has dis-
tribution which gives equal weight to each point on Y i z;" = D’ no weight
elsewhere.

Case II. C, is the region ) ;- z;" < D? X’ has density function

n

’ ’ —1 2 2

g(x17"'7xn)=V, xT; éD
=1

= 0, elsewhere

where V is the volume of the sphere Y iy z." < D%

Case III. ¢; = 0,4 = 1,2, - -+, n. Cy is the region D iy z;" < D*. X has a
density function taking on the form (in spherical coordinates)
p(r, oy, - -, an) = (2D7" )" 0=r=D

IA
2
lIA

0 T
0= a1 =2n

= 0, elsewhere.

Case IV. 0, = 0,7 = 1,2, - -+, m. ’/o” has a gamma distribution.
Case V. C, is the entire X’ space and
oal, o2t =—i—exp[——z<x/a, ).

(2 )n/2 H

Morgenthaler [32], [33] has suggested the possibility of using an integral of the
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type (0.1), particularly one of the form (3.4), to approximate the corresponding
problem arising in Section 2. For example, to obtain an approximate solution for
Case ITI of Section 2, we might use the result for Case ITI of this section with B®
being chosen to make the apprommatlon as good as possible.

3.1 Case 1. Since iy z:" = D? (3.4) reduces to

. _ B" D’ f ,
(3.0) P( ) = ——_(82 + 0-2)7l/2 exp [ m] 2?-1 z:.2==D2 dG(X ).
Because the multiple integral has the value 1, (3.5) can be written

w2 (2) = mi e {a a)

The evaluation of (3.6) can be accomplished by using [34] and [35].

The integral (3.5) can be interpreted as the probability that a point selected
at random on the surface of a sphere of radius D is captured or damaged by a
weapon aimed at the center of the sphere if aiming errors are spherically normally
distributed and the damage function is (3.1). It also represents the expected
proportion of the surface area damaged if aiming errors and damage behavior are
so governed.

We note that the results of this section hold no matter how G(X') distributes
the probability on the surface of the sphere.

3.2 Case II. Now P(-) is interpreted as the probability that a point selected
“at random” within or on a sphere of radius D is captured or damaged by a
weapon aimed at the center of the sphere if aiming errors have an elliptical
normal distribution and damage behavior is governed by (3.1). “At random”
should be interpreted as in Paragraph 2.2. In addition P(-) represents the ex-
pected proportion of the volume destroyed under these conditions.

The integral (3.4) becomes

_2"B"T((n + 2)/2)
P(.) = o f f
(3.7) ] L& r”
. = exp (—5 Zl 2 :_cli B2) dzy - -+ den
n/2 f B 3 = =103
(2m) I=I1 (¢i + BY)

or

_2"B"T((n + 2)/2)

P = (n [
ig'é‘ (e2+B2)yi< D2

(38)

exp( éz )dyl“‘dyn

1
(2m)m2
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The integral in the bracket has been discussed in Paragraph 1.3 (in 1.1 if ¢; = o,
i=1,2 - ,n).

If X’ has a distribution that is uniform over an annulus, then P(-) can still
be evaluated from (2.13) using (3.8) in place of P(R/e, D/0o).

3.3 Case II1. Changing to spherical coordinates (3.4) becomes

”‘):wf;;zwfopﬁ'[“ fp[‘m]

1

 Sh doy -+ dan_y dr
(3.9) . D p
- u¢2+—_)!32)"/2f0 exp [_m] dr
2 }Bn D/(e2+B2%)}
- (02(-:—)32)"5[0 (2r) Fexp (—£/2) dt.

Hence (3.9) can be written

(3.10) P (B f) (D/a)((217r z:(%}?;("*’)ﬂ {Q l:(1+—Dl{?Z/?)_*] _%}

As in Section 2.3 the above results hold whenever r and the vector (oy, - -,
an_1) are independent allowing p(r, a1, -+, @a—1) to take on a somewhat more
general form than specified in Section 3.0.

The interpretation of (3.9) is the same as for (3.7) except for the fact that the
meaning of “at random” should be the one given in Paragraph 2.3. For an
annulus (2.16) still applies if P(R/o, D/s) is replaced by the P(B/o, D/s) of
(3.10).

3.4 Case IV. When /¢ has a gamma distribution (3.4) reduces to

_ ) Bn _1 rz (72/0-2)41—-1 _—ri :’f

) = f @+ Byr P ( 20+ BZ) By P ( o”ﬂ) d () ‘
Letting r*/o* = 2u/[(1 + B*/4")™" + 2/8], this becomes

(3.11) P(-) = 2°B"T(a)/(¢" + B)"*/(s* + B*) + 2/8].

If r/o has a gamma or beta distribution, series expansions can be obtained as

in Paragraph 2.4.
3.5 Case V. Now (3.4) may be written

P(-)=[ H(a,+B)]

=1

(21r)"’2 1T az]

[ =1
12
which is readily simplified to
(3.12) P() = I1 (o + o + BV

=1
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If o + oif = o (3.12) reduces to

()Ll
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