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1. Introduction. LetQ be a space of points w with a o-field & on Q. Take
{Pg(-), 0 0O} to be a family of probability measures on & for which there is a
o-field @ on ©® with Py(A) ®-measurable for fixed 4 ¢F. The present paper
answers the following two questions. Let the function f on ® be real-valued and
®-measurable. Then (a) when does there exist an F-measurable function f such
that

Pofw:f(w) = f(8)} = 1, all ~g?

(b) If there is a probability measure @ on ®, when does there exist an F-meas-
urable f such that

Polw:f(w) = f(8)} =1, a.s. 0?

We deal with (a) in Section 2, with (b) in Section 3, and apply these results
to sequences of independent random variables in Section 4.

The basic device is to look at those sets A €F which have the property
Pj(A) = Py(A) for all 9 or for almost all 9, and the essential condition is that,
roughly, the field § be rich enough in this type of set.

2. Question (a). We shall say that A ¢J is a strong zero-one set if for each
0 ¢ © the value Py(A) is either zero or one. Let @ be the class of all zero-one sets.
Reflect @ into the parameter set ® by defining the class § € ® in the following
way: S ¢ 8 if there is a set A ¢ @ such that

S = {6:P4(4) = 1}.

ProrosiTioN 1. @ and $ are o-fields.

Proor. Evidently, @ is closed under complementation. It is also immediate
that @ is closed under countable unions since if 4; ¢ €, then Po(U;4;) = 1 if
one of Po(A;) = 1, and equals zero otherwise. Futhermore, 8 is closed under
complementation, and if S;c 8 let A; e @ be such that S; = {0:Ps(4;) = 1};
then UiS,‘ = {GPo(UiAl) = 1} € 8.

Let ®&(f) be the minimal o-field with respect to which f is measurable. Then

THEOREM 1. There exists an F-measurable function f such that Pe{f = f(6)} = 1
for all 6, if and only of B(f) C 8.

Proor. One way is easy. Suppose there does exist such a function f. Consider
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the set S. = {0:7(6) = a}. Then Poff = of = 1if 6 ¢S, and equals zero if 0
is in the complement 8. . Hence S, ¢ 8 which implies that ®&(f) < 8. To go the
other way, take ®(f) C 8. We may suppose f is bounded for if not, take g to be
1-1, Borel measurable, mapping the real line into [0, 1]. If we show that there is
an f such that Po{f = g(f(8))} = 1, all 6, then Polg(f) = f(8)} = 1, all 9. By
the boundedness of f, there is a sequence {f,} of S-measurable simple functions
which converge uniformly to f. Write f, = J_; auls, , where I, s; denotes the set
indicator of S; and let 4, ¢ @ be any set such that S; = {6:P4(4:) = 1}. Note
that if S;and S; are disjoint then Py(A; N 4;) = 0, all 9. Therefore if we define
Ja = Diaula,, then f, is well except on a set B, such that Py(B,) = 0, all 6.
It is easily verified that Ps{f, = f.(6)} = 1, all 6. By the uniform convergence
of f. to f, for every ¢ > 0 and = sufficiently large we have

Po{f(8) — e <fu<f(6) +¢ =1, all o

The limit § = lim, f, is well defined except possibly for a set B with Py(B) = 0
all 6, and set it equal to zero on B. Then for every ¢ > 0,

Poff(6) —e=f=<f6) +¢ =1, all 9

and, letting € go to zero, this completes the proof of the theorem.

There is another way of looking at Theorem 1 in terms of the orthogonality
of the measures involved. Recall that two probabilities P; and P, are said to be
orthogonal if there is a measurable set A4 such that P;(A) = 1 and Px(4) = 0.
Theorem 1 implies that to estimate a function f consistently it is not sufficient
that the probabilities Py be pairwise orthogonal; i.., that for 6; = 6., P, be
orthogonal to Py, . In other words, it is not enough that the probabilities P,
“separate points.” What is necessary and sufficient is that the Py “separate sets,”
that is, given any set S ¢ B(f) there is a set A such that Py(A) = 1 for ¢ S
and Py(A4) = 0, 6 ¢ S°. This becomes clearer in the following important special
case.

Let © be the unit interval I = [0, 1]. Then

CoROLLARY 1. In order that for every Borel measurable function f there exist an
F-measurable function f such that Po{f = f£(0)} = 1, all 6, it 5s necessary and suffi-
cient that for every a € I there exist an A, € F such that

Py(A,) =1 if 0= aq,
=0 if §<a.

Proor. Suppose we wish to estimate f(8) = 6. Then B(f) is the Borel field
and hence it is necessary that 8 be the Borel field, so that the condition of the
corollary is necessary. If the condition is satisfied, then all intervals of the form
[, 1] are in 8, implying that 8 is the Borel field and hence contains ®&(f) for f
Borel-measurable.

3. Question (b). Let there be a probability measure Q on &. We will say that
A &5 is a weak zero-one set with respect to Q if Pj(A) = Py(A) except for a set
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of 8 values whose @ measure is zero. Let @ be the class of all weak zero-one sets
with respect to Q. Reflect € into the parameter space by defining a class of sets
8§ < ® such that S ¢ 8 if there is a set A ¢ € such that S differs by at most a
set of Q measure zero from the set {§: Ps(A) = 1}.

ProrosiTION 2. € and § are o-fields.

Proor. Again, both € and § are closed under complementation. Let 4, ¢ €;
then the A, are zero-one sets on (U.B,)° where B, is the set off which Py(4;)
equals zero or one. U;B; has @ measure zero and for ¢ in its complement
Po(U;4,) = 1 if one of Py(A;) = 1 and equals zero if all of Ps(4;) = 0 so
that U4, ¢ €. In a way similar to that in Proposition 1 it can be shown that
§ is also closed under countable unions.

If f is ®-measurable, then

THEOREM 2. There exists an F-measurable function f such that Pof f=r0))=1
for almost all 6, (Q) if and only if B(f) C 8.

Proor. The proof is very similar to that of Theorem 1. If there exists such a
function f, let S, be the set [6:f(8) = a}. Then a.s. Pof =2 o} =1if6¢ 8, and
equals zero if 8 ¢ S5, . Therefore S, ¢ § and ®(f) < 8. The argument in the other
direction very nearly duplicates that of Theorem 1.

We may rephrase the above theorem in terms of orthogonality. Let D < ®(f)
be the set of generators of ®&(f); that is ®(f) is the minimal o-field containing D.

COROLLARY 2. There exists an -measurable function f such that Po{f = f(8)} = 1
a.s. (Q) if and only if for every S € D the two probabilities

[Poaw@n, [ Pirewan

are orthogonal.
Proor. If ®&(f) < §, then for S ¢ D there is a set 4 ¢ F such that a.s.

Po(A) = 1, OES,
= 0, fe S,

which establishes the orthogonality of the two probabilities of the corollary.
Conversely, if they are orthogonal, then there is a set A € § such that Pe(4) = 1
orOas@isin Sor S a.s. (Q).

If © is the unit interval 7 and & the Borel field, we may state

CoOROLLARY 3. In order that for every Borel-measurable f there exist an F-meas-
urable f such that Polf = f(6)} = 1 a.s. (Q) it is necessary and sufficient that for
every o € I the two probabilities

[ Pu)QUs) and [ Po(-)Q(db)
[e,1] [0,a)

be orthogonal.
Proor. The proof follows that of Corollary 1.

4. Application to sequences of independent random variables. In this segtion
we start with a space Q carrying a o-field § and a family of probabilities Pg(-)
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on § which for fixed A in § are ®-measurable functions. Let @ be the product
space | [T Q: where each {; is a copy of @, with § the usual product o-field in
constructed starting with the copies &; of & in Q;. Take Py(-) on & to be the
product measure constructed from Py(-) on &. It is not difficult to prove that
Py(A), for fixed A £, is again ®-measurable.

Let ®; be the minimal o-field with respect to which Ps(4) is a measurable
function on O for every A ¢ & and let ®; be the completion of ®; with respect

to Q.

THEOREM 3. Let f be B-measurable. Then there exits f, F-measurable, such that
Poif = f(8)} =1 all o,
Poff = f(0)} = 1 as. (Q),
if and only if, respectively, .
®f) C®, &Y C&.

Proor. By definition @ is the set of all infinite sequences w = (1, 22, *-+),
z; e Q; . For any given A £ § and « ¢ [0, 1], let A, £ F be the set

A, = {w: lim,,% Do Ix(z) = a}-
=1

By the law of large numbers,
Po(Aa) = 1, po(ﬁ) g «,

= 0, po(zi) < a.

This implies that 4, is a strong zero-one set, and also that @, C § since each
®(Py(A)) is, A any set in &. Further, ®, C §, so that by Theorems 1 and 2 the
condition B(f) C ®;, ®(f) C ®, , respectively, of Theorem 3 is seen to be suffi-
cient for the existence of f. Let us go the other way. If Po{f = f(6)} = 1 all 9,
then for every B e ®(f) there is an F-measurable function § such that
Po{g = I3(6)} = 1 for all 6. Thus, except possibly on a set 4, such that
Py(Ay) = 0 for all 6, § is the set indicator of some A4 & F, so that

Py(A) =1 for 6eB, Py(A°) =1 for 6eB"

Since Py(A) is measurable with respect to ®; , we conclude that B ¢ ®, . A similar
argument goes through for the condition involving ®; .

To give a more concrete application, let X;, X,, -+ be a sequence of inde-
pendent random variables, each having the distribution function F(-; 6), where
6 ¢ [0, 1], and for any fixed « assume F(z; -) is Borel measurable.

CoROLLARY 4. The necessary and sufficient condition for the existence of a func-
tion (X1, Xz, + - +), measurable in the appropriate sense, such that

Pif(Xy, Xz, ++) = 6 =1 forall §el0,1]

is that the Borel field be the smallest o-field with respect to which all the functions
F(z; -) on ©® = [0, 1] are measurable.
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Proor. This follows immediately from Theorem 3. The corresponding con-
dition when “all 6” is replaced by “almost all 8(Q)”’ is clear and its formu-
lation is left to the reader.

The existence of the functions f discussed in the present paper is connected
with problems of estimation in the following way. Assume that the o-field & is
the smallest o-field containing an increasing sequence @; C @2 C - -- of sube-
fields. In the usual estimation problems it may be desired to find a sequence
{f.} of functions such that {f,} is @,-measurable and

Poflimf, = f(6)} = 1 forevery 6¢®.

It is easily seen that the existence of such a sequence implies the existence of a
function f such that

Poif = f(0)} = 1 forevery 6z 0.

Conversely if such a function f exists and if Q is a probability measure on ®
the (martingale) argument of Doob [1] shows that there is a sequence {f,} such
that Pe{lim f, = f(8)} = 1 for almost all ¢ ®. In this paper Doob shows that
Bayes estimators of f when f is the identity map, f(6) = 6, and @ is an arbitrary
probability measure on the Borel sets of the line, are consistent for almost all 6.
To establish the existence of the function f Doob relies on the theorem according
to which, in complete separable metric spaces, the inverse of a one-to-one Borel
map is a Borel map. Corollary 4 makes the recourse to such a theorem unneces-
sary. Further, Theorem 3 makes it possible to obtain similar results for Bayes
estimators of functions f on @ even if { is arbitrary and if the o-field § does not
have a countable set of generators.

In some cases, for instance the independent, identically distributed case
treated in [2] it has been found possible to give explicit necessary and sufficient
conditions for the existence of a sequence {f,} such that f, — f(6) in probability
for each 9. The gap between the consistency for every 6 and consistency for
almost every 8 is discussed further in [3].
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