SOME BASIC THEOREMS OF DISTRIBUTION-FREE STATISTICS!

By C. B. Bew’

University of Washington and San Diego State College

1. Introduction and summary. The object of this article is the analysis of the
concept of distribution-freeness. In Section 2 the common types of distribution-
free (DF) statistics are defined and related. In Section 3 a generalization of the
invariance principle is employed to construct DF statistics for classes of epfs
generated by groups of transformations of the sample space. It is shown in Sec-
tion 4 that a function of several DF statistics is not necessarily DF, but that
independence guarantees the desired result. The existence of a DF statistic is
shown, in Section 5, to be equivalent to the existence of a suitable partition of
the sample space. Several open problems are mentioned in Section 6, the final
section.

2. Preliminaries. In general the notation of this paper is that of [2]. @ will
denote a class of cpfs on R, ; ' (n) will denote the nth power class of the class
Q" of cpfs on R; ; and ©, and QF will denote, respectively, the class of all con-
tinuous cpfs on R; and the class of all strictly monotone continuous cpfs on R; .

DerintTioN 3.1. (i) A mapping T(-, -) of @ X R, into R, is called a statistic
with respect to (wrt) the class Q of cpfs on R, if for each F in @, Tx(-) = T(F, -)
is ®,-measurable. (ii) T’ is called the F-marginal statistic of 7.

It is worthwhile to distinguish five types of distribution-free statistics relative
to a given class Q.

DeriniTION 3.2. A statistic T is said to be of the given type wrt Q if it satisfies
the indicated DF conditions below:

(1) distribution-free (DF') (A)
(ii) nonparametric distribution-free (NPDF') (A), (B)
(iii) structure (ds) (C)
(iv) structure (d,) (C), (D)
(v) strongly distribution-free (SDF) (E)
DF Conditions.

(A) There exists on R; one cpf @ = Q7 such that for each F in @ and real v,
Pelz e R, :T(F,z) < v} = Qr(v). [@r is called the cpf of T.]

(B) Ty = Tgforall Fand Gin Q.

(C) @ = @' (n) for some class @ of cpfs on R; and

Tr(xl y "y xn) = q’[F($1), ST F(x”)]'
(D) The function ® of condition (C) is symmetric.
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(E) & = @(n) for some class € C ©F ; and for each F and G in © there
exists on R, a cpf Qr(FG'; -), depending only on FG ', such that
Pem{z e Ry : T(G™, ) < v} = Qr(FG'; ) for all real v.

It is immediate from the definitions that

Lemma 2.1,

(i) T is DF wrt Q iff for each F and G in Q the measures PTs = PeTq" on ®; .

(ii) T is SDF wrt € (n) C @ (n) iff PrmTatw = PamTrin on @, whenever
F,G, H and J arein @ and FG™' = HJ .

(iii) The following three conditions are equivalent: (a) T 7s NPDF wrt Q. (b)
Each T7'(®,) is a o-subalgebra of ®, and is similar wrt @; and T (A) = Te'(4)
for all F and G in Q and all A in ®, . (c) There exists a single measurable function
W such that Ty = Te = W and PsW ' = PeW " on ®, for all F and G in Q.

(iv) Each statistic SDF wrt Q' (n) is also DF wrt Q(n) ; and each statistic NPDF
wrt @ s also DF wrt Q. :

Further, Birnbaum, Rubin and Bell [2], [3] have essentially proved that the
SDF and structure (d,) statistics are equivalent in the following sense.

TureoreM 2.2. If @' < QF , then

(i) each statistic T of structure (dy) wrt Q' (n) is SDF wrt @' (n);

(ii) #f T 7s SDF wrt @' (n), then there exists a statistic S of structure (dn) such
that P¢Ts' = P#Sq" for all F and G in Q; and

(iii) #f, further, @ is symmetrically complete (of order n), then T is symmetric
and SDF wrt ' (n) iff T is of structure (dy,).

With these preliminaries, it is now possible to treat the generation, composition
and existence of the various types of DF statistics.

3. Generation of DF statistics. A basic generation result is obtained by con-
sidering an application of the invariance principle related to the paper of Lukacs
[6]; and illustrated by the following example.

ExampLE 3.1. If Fy is an arbitrary cpf on Ry, let F,,(x) = Fo(b™(z — a));

~Q, = {Fa,b b > O}; T(Fa,b H x) = b_l(x - a); and S(Fa'b 5 %1, T2, X3, 174) =
[y — wo)fxs — 24" Clearly, then, T is DF wrt Q and Qr = F,. Further, S is
NPDF wrt '(4) if Pr,(25 = z) = 0.

The immediate extension of the above example entails the replacing of the
affine group by an arbitrary group of 1-1 transformations of R, onto E, .

DerFintTioN 3.1. If F is an arbitrary cpf on R, and § = [g] is an arbitrary
group of 1-1 transformations of K, onto R, ,

(a) F, is the cpf on R, induced by the probability measure Prg ' on ®, ; and

(b) &(F, Q) = [F,: 9G]

It is now easy to construct a statistic DF wrt the generated class @(F, G).

TureoreMm 3.1. If F and G are as in Definition 3.1, then

(i) for each ®,-measurable real valued function ¥ on R, , T 7s DF wrt Q(F, G)
if T(F,,z) = ¥g ' (z) for all g and x; and Po, = Ps¥ .

(ii) If, further, D is a sub-o-algebra of B, and s invariant under G, then each
D-measurable real-valued function T is NPDF wrt Q(F, G).
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Proor.

(i) For each A in ®; and g £ G, one has for H
PaT7'(A) = Pu(g¥'(A)) = Pr(g 'g¥ (4))
desired result.

(ii) Clearly, if D is invariant under G, D is similar wrt Q(F, G); and the result
follows from Lemma 2.1.

It is now feasible to consider functions of DF statistics.

4. Functions of DF statistics. It is immediate from the definitions that a
measurable function.of a DF statistic is again a DF statistic of the same type.
That this is not necessarily true for functions of more than one DF statistic is
illustrated below.

ExampLE 4.1.

(i) Let a, b, ¢, and d be four different points of R, such that P,({z}) = r — «
fz=a,=r+ aif t=0b; =s+ aifx =¢; =s — aifx = d, where0 < r, s
andr + s = };and @ = {F,:0 < a < min(r, s)}. For all Fin @, let V(F, x)
= 1if z = a or ¢; =0 otherwise; U(F, z) = 1if ¢ = ¢ or d; = 0 otherwise.
Therefore, P¢(V = 1) = r + s = $ and Pr(U = 1) = 2s for all ¥ in £, and,
hence, both U and V are NPDF wrt @. However, P,(U + V = 1) = P,({a,d})
=71+ s — 2a = 3 — 2a. Consequently, U + V is not DF wrt Q.

(ii) If one now changes the probability measures in (i) above in such a manner
that P,({z}) = r —aifc =a;=rifc =b; =sife =¢; =s + aifz = d,
then neither U nor V is DF wrt Q, but U + V is NPDF wrt Q.

In view of the pathological situation indicated by the preceding example one
now seeks restrictions which guarantee that a function of a set of DF statistics
be itself a DF statistic. For a variety of reasons, not the least of which are sug-
gested by the k-sample statistics of Fisz [4] and Kiefer [5], and the well-known
Studentization results, one is lead to the requirement of independence. Before
investigating this restriction it is worthwhile to give a precise definition of the
independence of a DF statistic wrt a class Q.

DerFiniTioN 4.1. A family {7T,, r ¢ £} of real-valued functions on @ X R, is
said to be mutually independent (MI) wrt the class @ of cpfs on R, if for each
finite subset K of £, and each collection {D, : r ¢ K} of subsets of &,

Py( rl{:c: T.(F,z)eD)}) = Ile({x: T.(F,z)eD,2).

F,, Pglx: T(H, z) ¢ A] =
Pr(¥7'(A)), which is the

i

From the definitions, Lemma 2.1 and elementary product measure considera-
tions, one can establish
LemMma 4.1.
(a) The following two conditions are equivalent:
@) {T1, T2, -+, T4} s a famsly of statistics MIDF wrt Q.
(ii) For each F, G in @ and B ¢ ®;

Pr{x: [Tl(Fy :B), Tty Tk(Fy a:)]eB} = AG(B) = >‘F(B)’

where Az is the product measure X*Pz(T:)z" on ®; .
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(b) Result (a) holds also for NPDF statistics.

One can similarly establish

LemMA 4.2. The following two conditions are equivalent:

@A) {81, Sz, -+, S} s a family of statistics MISDF wrt Q' (n).

(ii) Whenever B ® ; Fy, Gy, Fa, G £ Q and F1G7* = F.G377,
then P;:"l) {x: [Sl(Gin), :c), crey Sk(GF‘), x)] EB} = >‘F1-‘71(B) = )\pz,qg(B),
where Am,s 1s the product measure XsPr(T:)7" on & .

Employing these two lemmas and Theorem 2.2 one proves that functions
of MIDF statistics are themselves DF, and that in the SDF case independence
is not required if @(n) is symmetrically complete.

TaEOREM 4.3.

Q) If {Ty, -+, T4} is a family of statistics MI DF wrt Q then for each real-
valued measurable function U on B, , V = U (T1, +++, Tk) is DF wrt Q. (The
result if valid if in (i) “DF?” s replaced by (i) “NPDF” or (iii) “SDF.”)

(iv) If @ is symmetrically complete and Ty, --- , Tk are each symmetric and
SDF wrt ©'(n), then for each measurable real-valued function V, V(Ty, --+ , Ti)
is symmetric and SDF wrt Q' (n).

Proor. (iv) follows immediately from Theorem 2.2,

(i) Foreach F,GeQ and B¢e ®,, ‘

PeV7(B) = Ppl{z: V(F, z) ¢ B}
= Polz: [Ty(F, z), -+, Tu(F, z)] ¢ U(B)}
= 2e(U(B)) = A(UX(B))

by Lemma 4.1. Therefore, PrVz' = P¢Vg and (i) follows from Lemma 2.1.

(ii) This follows immediately from (i) since in the NPDF case each (T:)r =
(T,)a = T,' .

(iii) For the SDF case by definition @ is of the form ©'(n). Hence, whenever
F,G, Hand J £¢Q and FG' = HJ ', then PsVs'(B) = Pefx: [Ty(G, ), -+,
Tu(@, z)e U(B)} = Aeo(U(B)) = Aas(U(B)) = PgV;'(B). The
result follows from Lemma 2.1.

One turns now to considerations of existence.

6. Existence of DF statistics. Up to this point it has been seen [Theorem 3.1]
that there exist statistics DF wrt classes generated by groups of transformations.
Necessary and sufficient conditions for the existence of statistics DF wrt an
arbitrary class Q follow readily from the two well known results below.

(a) If G is a cpf on R, , then there exist (i) a continuous cpf F on R ; (ii)
Probabilities {p, p1, - -+ } with D_;p; = 1; and (iii) real numbers {a; , az, - - - }
with the property that for all realy, G(y) = (1 — p)F(y) + P ipie (v — ay),
where ¢ is the degenerate cpf with mass 1 at z = 0.

(B) If (Z, D, P) is a NA (nonatomic) probability space, then for each cpf
F on R, , there exists a D-measurable function h on Z such that Ph™" = P, on
®, ,i.e. h hascpf F.
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THEOREM 5.1.

(i) For each @ < 93 and each cpf J on R, , there exists a statistic T of structure
(dn) and, hence, SDF wrt @' (n) having cpf Qr = J.

(i1) There exusts a statistic T DF wrt @ and having cpf Qr = G with continuous
part (1 — p)F and discrete part p_, pie (- — as) iff for each J in Q there exists a
partition {Ao(J), A1(J), -+ } of Ra such that

(a) P(Ai(J)) = ppifori = 1;and
(b) PyisNA on Ao(J).

(iii) There exists a statistic T NPDF wrt @ and having cpf Qr = G of the type in
(ii) iff there exists a o-algebra D contained in ®, and a similar partition
{Ao,Al, s } ofR,,suchthat

(a,) .Pp(A,) = pp.forz =1 (andallFeQ);and
(b) 4o N D 2s a NA o-ring of sets similar wrt Q.

Proor. ,

(i) From the DF-ness of G(z) and elementary product space considerations
it follows that Se(z1, -+ -, 2») = [G(21), - -+, G(z.)] is a mapping such that
P§Y 83" is equal to Lebesgue measure A, on the Borel sets ®,(I) of the n-dimen-
sional unit hypercube I, . Result (8) then, guarantees the existence of a real-
valued measurable function h on I, such that PS5V Sg'h™ = \h ' = P, on ®, .

Now one defines T(G;x1, - - - ,Za) = hSe(z1, - -+ , Zs) = AlG(z), - - -, G(2a)].
Since T has structure (d»), Theorem 2.2 guarantees the desired result.

(ii) (Necessity). If T is DF wrt @ and Qr = G, then foreach Hin 2and 7z = 1
let A:(H) = Tx'({a}), where a; is a real number such that Px{Ts = a:} > 0,
and let Ao(H) = R, — Uiz 4:(H).

Clearly, Pe(A;(H)) = pp;forz = 1 and Py is NA on 4(H).

(ii) (Sufficiency). For each J in Q, one concludes, on applying result (B) to
the conditional probability space induced by P; on Ao(J) N ®, , that there is a
measurable and real-valued function S; on A¢(J) such that P,{z: S,(z) =< v;
zeAy(J)} = (1 — p)F(y) for all real 4.

Therefore, if {a;, az, --- } is a set of distinct real numbers and T(H, z) =
Su(z) for x e Ao(H); = a;for x e A;(H)(¢ = 1), T is a statistic DF wrt @ and
having cpf G, since

Pofz: T(H,z) < v} = Pa{Ta(z) S v,2cAd + 2 PalreA;, Ta(zx) < 4}
izl
= (1= p)F(y) + pL pely — ).

(iii) (Necessity). If T is NPDF wrt @ and @ = @G, then by Lemma 2.1 the
desired sets and o-algebra are

A; = T'(fad) fori 2 1; Ao = Ra — U4;; and © = T(®).

(iii) (Suffictency). This follows from the proof of (ii) in replacing “®,”
by “®” and “Ao(J)” by “A,.” From this basic existence theorem follow several
useful corollaries.
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Since, if T(F, z) = z, T is DF wrt each @ containing exactly one cpf; and since
{Ao(F) = ¢, A1(F) = R,} is a partition, one has

COROLLARY 5.2. '

(i) For each statistic T, there exists a class @ such that T is DF [NPDF, SDF]
wrt Q.

(ii) The trivial (constant) statistic T = k is DF and NPDF wrt each Q, and
SDF wrt each @ < Q5 (n).

(iii) If @ contains one degenerate cpf e, then the trivial statistic T = k is the
only statistic DF wrt Q.

The next corollary answers the existence question for the nontrivial cases of
DF and NPDF statistics. [Of course, Theorem 5.1 (i) summarizes the existence
situation for SDF statistics.]

COROLLARY 5.3.

(i) There exists a nontrivial, i.e. nonconstant, statistic DF wrt Q iff there exists
0 < p < 1and a collection {A(H): H & Q} of sets of ®, such that Pr(A(H)) = p
for all H in Q.

(ii) There exists a nontrivial statistic T NPDF wrt Q iff there exists a set A similar
wrt Q@ and such that 0 < Pu(A) < 1 for some H in Q.

From the preceding two lemmas and Example 4.1 one sees that the existence
of a DF statistic is equivalent to the existence of a suitable partition of the sample
space, and that for a degenerate cpf no nontrivial partition exists. Since each
discrete cpf has a decomposition into degenerate cpfs one suspects that there will
be some existence difficulties in this case. On the other hand, from (8) and from
other considerations one sees that for continuous cpfs there is maximum flexi-
bility and, in particular, there exists an infinitude of suitable partitions. More
precisely, it is immediate that

CoOROLLARY 5.4.

(1) Q contains only continuous cpfs iff for each cpf H on R, there exists a statistic
T DF wrt Q and having cpf Qr = H.

(ii) The following two conditions are equivalent:

(a) For each cpf J on Ry , there exists a statistic T NPDF wrt Q@ with Qr = J;
and

(b) ®, contains a o-algebra D similar wrt @ and such that Pr is NA on'D for
some F in Q.

Having considered the generation, structure, composition and existence of
real-valued DF statistics, it is worthwhile making some remarks concerning ex-
tensions, applications and open problems.

6. Concluding remarks, open problems. Before stating some open problems
it should be re-emphasized that the DF property is relative rather than absolute;
that DF concepts relative to the normals have been employed throughout classi-
cal statistics; that a DF statistic is not a single function but a family of marginal
functions; and that the DF and NP properties are not equivalent.
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OrEN PROBLEMS.

(1) How should one choose the ® and ¥ of Theorems 2.2 and 3.1, respectively,
in order that the resulting statistic 7' satisfies reasonable goodness criteria and
has a readily computable cpf Q-? [See Theorem 3.1 (i).]

(2) Which of Theorems 2.2, 3.1, 4.3 and 5.1 are valid for multivariate classes,
vector-valued statistics and stochastic processes?

(3) How is Saunders’ [7] “ample’ estimate of a cpf related to the above DF
statistics? [Essentially, a cpf F(-; z1, --+, 2,) is an ample estimate wrt Q, if
under F the stochastic process {FF'(£):0 < ¢ < 1} has a law §(F ) which does
not depend on F for F in Q. It is easily established that the sample cpf F, is an
ample estimate for  in the univariate random sampling case; and Saunders has
proved that the cpf estimate based on maximum likelihood estimates is ample
for the class of multivariate normals.]

(4) What are necessary and sufficient conditions that (a) the limit of a se-
quence of DF statistics is DF; and (b) each measurable function of a family of
statistics is DF? (S. Pathak has shown that one need only consider linear com-
binations of DF statistics.)
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