ASYMPTOTIC EFFICIENCY OF A CLASS OF ¢-SAMPLE TESTS!

By MapaN LaL Puri

New York University

1. Summary. For testing the equality of ¢ continuous probability distribu-
tions on the basis of ¢ independent random samples, the test statistics of the
form

£ = ;mal( Tw,; — IlN,J')/AN]2

are considered. Here m; is the size of the jth sample, ux,; and A 5 are normalizing
constants, and

N
Ty,; = (l/mf)Z;EN.iZz(v’,i

where Z¢) = 1, if the sth smallest of N = Y_1_; m; observations is from the jth
sample and Z§ = 0 otherwise. Sufficient conditions are given for the joint
asymptotic normality of T ;;j = 1, -+, ¢. Under suitable regularity condi-
tions and the assumption that the ¢th distribution function is F(z + 6:/N?),
the limiting distribution of £ is derived. Finally, the asymptotic relative effi-
ciencies in Pitman’s sense of the £ test relative to some of its competitors viz.
the Kruskal-Wallis H test (which is a particular case of the £ test) and the
classical F test are obtained and shown to be independent of the number ¢ of
samples.

2. Introduction. One of the frequently encountered problems in statistics is
to decide whether differences in various samples should be regarded as due to
differences in the parent populations or due to chance variations which are to
be expected among random samples from the same population. A few tests of
nonparametric nature have been proposed for this c-sample problem. The
Kruskal-Wallis H test [14], Terpestra’s c-sample test [26], the Mood and Brown
c-sample test [22] and Kiefer’s K-sample analogues of the Kolmogorov-Smirnov
and Cramér-von Mises tests [12] are a few of them. Tests for two-sample prob-
lems have been proposed by Wilcoxon [29], Mann and Whitney [19], Mood and
Brown [22], Lehmann [15] and others. Consistency and power properties of
some of these tests have been discussed by Lehmann [15], [16], [17], Mood
(23], Van Dantzig [5] and others. An exhaustive review of this problem is given
n Kruskal and Wallis [14] and Scheffé [25].

The H test of Kruskal and Wallis is a direct generalization of the two-sample
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EFFICIENCY OF C-SAMPLE TESTS 103

Wilcoxon test discussed in detail by Mann and Whitney [19], and its limiting
distribution has been derived by Kruskal [13] under the null hypothesis and by
Andrews [1] under an alternative hypothesis. These results are generalized by
those of the present paper concerning the limiting distribution of the £ test.

The problem discussed in this paper originated from the paper of Chernoff and
Savage [2] and had its basis in the paper of Hodges and Lehmann [10]. In their
paper “The efficiency of some nonparametric competitors of the ¢-test” [10],
Hodges and Lehmann discussed the asymptotic efficiency of the Wilcoxon test
with respect to all translation alternatives. In the same paper they conjectured
that the normal score test which was known to be as efficient as the i-test for
normal alternatives [11a] is at least as efficient as the ¢-test for all other alterna-
tives. The validity of this conjecture was established by Chernoff and Savage
[2], who developed a new theorem for asymptotic normality of normal score test
statistics for the two-sample problem and by a variational argument proved the
Hodges-Lehmann conjecture. The work presented here is an attempt toward
generalizing these results to the c-sample problem.

Formally, we may state the c-sample problem as follows. Let [X:;,7 =1, -- -,
m; ;1 =1,---,c|] be a set of independent random variables and let F(z) be
the probability distribution of X;; . The set of admissible hypotheses designates
that each F () belongs to some class of distribution functions 2. The hypothesis
to be tested, say H, , specifies that F*° is an element of ©, for each ¢, and that
furthermore
(2.1) F®(z) = -+ = F9(x) for all real z.

The class of alternatives to H, can be considered to be all sets (F*"(z), - - -,
F(z)) which belong to € but which violate (2.1). To avoid the problem of ties,
it is assumed throughout that the class @ is the class of continuous distribution
functions.

After finding sufficient conditions for the joint asymptotic normality of

Tyji;j=1,--+, ¢, we study the limiting distributions of £ under a sequence
of admissible alternative hypothesis H + which specifies that for each
i=1,2-,¢;F@) = F(z + 0:/n!) with F & Q but not specified further, and

for some pair (7, 7), 6; # 6; where the 6.’s are real numbers. Limiting probability
distributions of £ will then be found as n — «. The problem will be so formulated
that m.(n)/n tends to some limit s; , 0 < s; < «, as n tends to «.

3. The proposed test and its relationship to other tests. The over-all sample
consists of Z$=l m; = N independent random variables X;; ({ = 1, ---, ¢;
Jj =1, --+,m:), where the first subscript refers to the subsample and the second
subscript indexes observations within a subsample. Under the null hypothesis
all the X’s have the same continuous but unknown c.d.f. (cumulative distribu-
tion function) F(x).

Let Z{) = 1, if the ¢th smallest observation from the combined sample of
size N is from the jth sample and otherwise let Z§) = 0. Denote

N
(3.1) miTy,; = D Z$) En.:

Tl
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where Ey ; are given numbers. Then we propose to consider the test statistic £
defined as

(3.2) £ = }_; mi{(Tw,; — wn,i)/AxL
=
where uy,; and 4 y are normalizing constants for the statistics T'x,; ;7 =1, --- ,c.

The £ test presented in this paper includes as special cases a number of well-
known tests. For example, when Ey; = /N, it becomes the Kruskal-Wallis H
test which is a direct generalization of the two-sample Wilcoxon test and is re-
lated to Terpestra’s K-sample test [26]. When ¢ = 2 and Ey . is the expected value
of the 7th order statistic from the standard normal distribution, then the £ test
coincides with the symmetrical two-tail version of the normal score test, also
known as the Fisher-Yates-Terry-Hoeffding ¢; test and which is asymptotically
equivalent to Van der Waerden’s test [30], [31]. For it is then seen that

£ =[N/(N - ml)]["’;"; E(V©? |85):|2

where V® < -.. < V™ is an ordered sample of size N from a standard normal
distribution, and s; < -+ < 8m, are the ranks of Xy, - -+ , Xom, from the com-
bined sample. See Lehmann [17], pp. 236-237. When ¢ = 2, and Ey,; = |3 — i/N|,
the £-test test reduces to the Freund-Ansari test [8] for testing the equality of
dispersion of two populations.

4. Assumptions and notations. Let X1, ---, X;n, be the ordered observa-
tions of a random sample from a population with continuous c.d.f. (cumulative
distribution function) F*”(z);i =1, --- ,c. Let N = D _iym;and \; = m;/N
and assume that for all N, the inequalities 0 < X = Ny, - ;A =1 — X <1
hold for some fixed Ay = 1/c.

Let

S&)(x) = m7' (number of X:; < 2,5 =1, ---, m)

be the sample ¢.d.f. of the m: observations in the 7th set. We shall omit the sub-
seript m; whenever this causes no confusion. Define Hy(z) = )\IS,(,,II) () + -+ +
2SS (x). Thus Hy(x) is the combined sample c.d.f. The combined population
cdf.is H(z) = MFP(z) + -+ + A F(x). Even though H(z) depends on N
through the M\’s, our notation suppresses this fact for convenience and also because
our limit theorems are uniform with respect to F®, --- , F® and A\, -+, ..

Let Z{) = 1 if the sth smallest of N = Y_:ym; observations is from the jth
set and otherwise let Z§) = 0. Denote

N
(4.1) T = mi Tuj = ;ENJ o
where the Ex,; are given numbers. Following Chernoff and Savage [2], we shall
use the representation

(42) Tws = [ JuH (@) 452 ()
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where Ey,; = Jx(2/N). While Jy need be defined only at 1/N,2/N, --- , N/N,
we shall find it convenient to extend its domain of definition to (0, 1] by letting
J» be constant on (¢/N, (¢ + 1)/N].

Let

Iy = {2:0 < Hy(z) < 1}.
Then Iy is a random interval, given by Iy = [X°, X*), where X® < --- <
X™ denote the N observations arranged according to size.

Throughout, K will be used as a generic constant which may depend on Jy
but will not depend on F®, -, F“ my, ---, m; and N. The methods used in
the proof for the asymptotic normality of the T'y,;’s are mainly adaptations of the
methods of Chernoff and Savage [2].

b. Joint asymptotic normality. Before proving the asymptotic normality
of the Ty,;’s we state a few elementary results.

(5.1) H = MFO z AP, i= 1, ¢

(5.2) 1—F? <1 —-H)/MNEA —H)/N; i=1,--,c

(5.3) FP?1—F®)=HQ—-H)/\isH1—-H)/\;; i=1--,c

(5.4) dH = MdFY = \dFY; i=1,--,c
LemMma 5.1. If

(1) J(H) = limy.., Ju(H) exists for 0 < H < 1 and s not constant,
(2) [unlIn(Hy) — J(Hw)]dSH)(z) = o)(N~P),
(3) In(1) = o(N?)
(4) VO (H(2))| = |d'T(H)/dH'| = K[H(1 — H)]P,
fori = 0,1, 2, and for some § > 0, and almost all x (a.a.x),

then, for fived F®, -+, F9 and N\, -+, Ao,
. TN,f — MN,j < ) - -[‘ ]. —x2/2
(5.5) limy.« P (—‘\GNJ =t)= - @n) e dz,
where
+o0 .
(5.6) wos = [ JH@)] P (@)
and

veum2 ol rown - o)

=1
]

J'H (@) H ()] dF? (2) dF (y)
2[R - )

J =1
%]

(5.7) J'H (2)W'TH (y)] dF (z) dF9 (y)

c

1
3 [ e - )
7,k=1 w0lz<ly<o
17k, 1747 kAT

-J'H @)V H ()] dF® (2) dF (y)
+[[FOwl — FO@WH@W HE)] P ).
—oly<zr<®™
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Proor.

r=-+00 .
Tws = [ TdH(@)) d85)(x)

= [JlHy(z)] — JlHy(x)]] dSS) (x)

{z:0<HN(2)<1}

[ TUHA ()] 88 ) + [ TulH(2)) 4S5 ).
{z:0<HpN(2)<1} {z:HN(z)=1}

In the second integral, writing dSS) (z) = d(S%)(z) — FP(z) + F¥(x)),
J[Hx(z)] = J[H(2)] + [Hx(z) — H(z)lJ [H(z)]
+ 3Hxw(z) — H(2)I'J"[6Hy(z) + (1 — 0)H(2)], 2.8z,

where 0 < 6 < 1;and H(z) = > i MFP (), and simplifying, we obtain
c+4

Twj =4+ By + Boy + ;Cm

where
(5.8) A= J[H(x)]dF“"(x)
{z:0<H(z)<1}
(59) Bu = [ JIH@)] dS$(@) — F @)]
{2:0<H (2)<1)
(510)  Buw=| [Hy(z) — H(@)'H ()] dF (z)
{z:0<H(2)<1}
. ) o ’ D) () — FP
Gy O =N fwwm’ [S9(2) — FO (@)W [H (2)] dISS) (z) — FO ()]

1=1---,c

Hy(2) = H@F o, 4+ (1 — 0)H] dS9 (a).

(512) Co = [ [

2
(5.13) Cornar = [ UMHN@)] = JH ()] dSE)(2).
(5.14) Corow = [ TlHx(@)] dS2)(@).

(515) Corsn = fH [IH@) — (Hy@) — H@)HE] 482 ().

The proof of the lemma is accomplished by showing that (i) the A-term is
nonrandom and finite, (ii) By + B.w~ has a Gaussian distribution in the limit and
(iii) the C terms are of higher order.
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That the term

A= J[H(z)] dF? (2)
{z:0<H (2)<1}

is finite and nonrandom follows from Assumption 4 of Lemma 5.1; see also in
this connection [2], p. 986, and in the appendix we have shown that the C terms
are of higher order. Thus, all that is required is to prove

Sus-LEMMA 5.1. By + Boy has a Gaussian distribution in the lymat.

Proor. Integrating B.y by parts, replacing Hy(z) — H(z) by
dia M8 () — FY(z)], and adding By to it, we obtain

=1

(5.16) kel
=40 X
+ [ WIHG)] — \B@]dSE)(@) - FO ()],

B+ B = —5n [ B) dSDG) — FO (@)

=_z[h Z)mxa—EMXM]

(5.17) S |

o 5% WG] = N B(X) — VLX) = & B
where
(5.18) B(z) = f:J'[H(y)] dF? (y)

with z, determined somewhat arbitrarily, say by H(x,) = %; E represents the
expectation and X, - -+, X, have the F® ... F© distributions respectively.

The ¢ summations given by (5.17) involve independent samples of identically
distributed random variables. Therefore, if we show that the first two moments
of these random variables exist, then we can apply the central limit theorem,
with the result that each sum when properly normalized will have a normal
distribution in the limit and hence the sum of ¢ summations will have a normal
distribution in the limit.

First, to turn our attention to moments note that by Assumption 4 of Lemma
5.1 and dFY < (1/0) dH,

|B(z)| < K-[H(z)[1 — H(z)]]"®*
and proceeding as in [2], for any &' such that 2+ F)(—1 +5) > —1
Exof| B s K; i=1,---,j—1,j+1,-,¢
Since

|J(H(z)) — NB(z)| £ K[H(z)(1 — H(z)) @+
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the existence of 2 + & absolute moments of all the terms in equation (5.17)

follows.
To compute the variance of B;y + B,y , note that

oo N .
—\ [ B@) dis (@) — FO ()]

+w .. .
—n f 89 () — FO@)WH@)]dF9 (@), §=1,--,j—1Lj+1,--¢
has mean zero and variance

B [ 1896) - FO@UHGE) aFO @) |

— e[ 80 - FO@ISR) - FOw)
(5:19) T H@WH()] dF() dFP (1)

= FO@I = PO H@WHWF (@) dF),

1= 1, ""j_ 1’.7+1; e, G
Note that the application of Fubini’s theorem permits the interchange of integral

and expectation.
By a similar argunient, the variance of

[T ue) - BE ds @) - FO@)

c +0 . ] .
= - XN f_ _ [8:57(2) — FO()l' (H(2)) dF® (z)

i1
177
is given by
2 v, ) ) ’ '
P ; 1—-F J[H(x)|J [H
w2 [ Fo@L =P ourE@E)]
17

AP (z) dF (y)

1 : ’ . , ’
t ,.2;‘1 Ai M ff_ ocecyen FO(z)[1 — FO(y)W'H ()T H(y))
(5'20) ik, 1745 k7]

-dF® () dF® (y)

1 : &) 0 ’ ’
+ X, i,ki.:x Ai M /IMK,@ FO(y)ll — FO @) [H(z)J'H(y)]

ik, 1525 ko j

-dF® (z) dF® ().
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Adding the ¢ terms given by (5.19) and (5.20) we obtain the variance result
stated in (5.7).

Thus we have shown that By + B.y is the sum of ¢ independent terms, each
of which has mean zero and finite absolute 2 + 3 moments. Hence Sub-Lemma
5.1 follows.

We shall now extend the proof of the above lemma to the case where
F®, ...  F®and N, ---, \ are not fixed. We want to find a set of sufficient
conditions under which the asymptotic normality holds uniformly with respect
to F®, ... F and A, -+, . For this we need the following theorem of
Esseen [6], p. 43.

TueoreMm (Esseen) 5.1. Let Xy, ---, X, be independent observations from a
population with mean zero, variance ¢ and finite absolute 2 + & moments Bois
0 <& =1, then

|F - @ | <c(s )[I>2+6'/7’&6,/2 + Pml/n%]
where F* is the c.d.f. of X, ®* is the approximating normal e.d.f., ¢(3') is a finite
positive constant only depending on &’ and pyisr = Baysr/o* . (If 8’ = 1, then
[F* — &% < c(8")ps/n).

To apply this theorem in our situation, it suffices, since we have shown that
the A term is finite and the C terms are uniformly o,(N~®), to prove the uniform
convergence of By + Bay . For this it suffices to bound poysr = Batsr/ o for
B(X,), ---, B(X,). Since in the above lemma we already bounded the absolute
2 + & moments, all that is required is to bound the variances of B(X:), -- -,
B(X,) away from zero. Thus we have

COROLLARY 5.1. If Conditions 1 to 4 of Lemma 5.1 are satisfied, and F* and
N, 2 =1,---,¢c (where 0 < XN = M, -+, N =1 — N\ < 1 holds for some
fired N0 = 1/c) are restricted to a set for which the variances of B(X,), -+ , B(X,)
are bounded away from zero, then the asymptotic normality holds uniformly with
respect to F®, -+ F and N, --+ , \..

Next we prove

Lemma 5.2. Under the assumptions of Lemma 5.1, the random vector N Ty —
unas 3 Tne — Bwe) ha,s a limiting normal distribution.

PROOF The difference N*(Tw.; — un.,) — N'(B + B{), where B}
BS is the “Byy + Bsy” term for the jth component Ty.; — ux,; , tends to Zero
in probablhty and so, by a well known theorem ([3], p. 299) the vectors N* (Ty,
— puwa; 3 Twe — uwe) and NY(B{R + BSY; - B“) + B$Y) possess
the same hmltmg distributions. Now since the jth component B& + BSY can
be expressed as D i {(1/m:) D_uis B¥i(X:a)}, the proof of the lemma follows
by applying the Central Limit Theorem to each of the ¢ independent vectors

(1/m) 3 [B(Xea), BE(Xea), -+, B(Xe); i = 1,0+, c.
a=1
6. The Covariance of two B-Statistics. By definition
Cov(BY + B, B + BY) = E(BY) + BSY)(BY + BS))

(6.1) — E(B@BY) + E(BSBY) + E(BYBY)
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where

G _ u"n _ @
(62) B = [ o JH@ASE @) = PO (@)
(6.3) B = [Hx(y) — Hy)'H(y)] dF9 (y)

{y:0<H@)<1}

and B} and BSY are given by (5.9) and (5.10) respectively.
Now integrating B{Y by parts and using the facts that

_M . ..
[ a8 - F9@) = 0
dH(z) = }_jl A dF 9 ()

and
Hy(y) — H(y) = ZMS(')(?/) FO(y)]
routine computations yield, for j 5 i,
X c c z=-+00 . .
BB =~ [ [T 189 — FO@ISDW) — 7))
J'H (@) H(y)] dF¥ (z) dF9 (y).
Therefore,
BBRBSY) = - Xx [[ FO@i — FOWWHE)]
; o<z <y<
(64) J'H(y)1 dF® (z) dF9 (y)
— X[ PO - POV H@WHG) PR ).
0y <z<®

Proceeding analogously

EGBSBE) = — 2 [ o FO@N = PO )T H @)
-J'H(y)] dF ¥ () dF 9 (y)
Ly FO ()1 — F9 (2)]-J'H ()]
i —0ly<z<0

J'H(y)] dF¥ (z) dF (y)

(6.5)
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and
BERBE) = g 2n [ PO@i - PO )]
(6.6) -J'H(y)1 dF? () dF " (y)
iz [ FOW — PO EHE@)TH )]
1—1 —0Lly <Lzl
.d F(J)(x) dF(")(y).
Thus
N-Cov (B¥ + B, By’ + BS)
= —2x[ [ F@ - P @] )
'dFG)(x) dF(i')(y)
+ [ P~ FO@) T H )T H)
0y <z<®
-dF(i)(x) dF(l’)(y)]
SRV [ Il FO @)1 — FO(y))-J'H(2)]-J [H(y)]
=1 0 gy <o
(6.7) -dF ¥ (z) dF? (y)

+ f[ FO I — FY(2)]-J'[H(x)]-J'[H(y)]
0y <z
_dF(i)(x) dF(J‘)(y):I

Fen[ [ PO - FOW @) )
i=1 —0<lr<ly<® )
'dF(i)(x) dF(i’)(y)

+ f[ FOl — FO@)]-J'H()]-J H(y)]
0y <z <0

o

AP () dF"’”(y)] i

Combining the material of the previous two sections produces

THEOREM 6.1. Under the assumptions of Lemma 5.1, the random vector T =
(NN Twy — wna), -+ N (Txe — une)) has a limiting normal distribution with
zero mean vector and variance-covariances given by limiting forms of (5.7) and (6.7)
respectively as N — .
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ReMark. The following theorem gives a simple sufficient condition under
which Conditions 1, 2, and 3 of Lemma 5.1 hold.

TaEOREM 6.2. If JN(¢/N) is the expectation of the ith order statistic of a sample
of size N from a population whose cumulative distribution function is the inverse
function of J and |JP[H(z))| £ K[H(1 — H)["P* for 4 = 0, 1, 2; for some
6 > 0 and a.a. z, then

(1) limy.e Jy(H) = J(H).

(ii) Jn(1) = o(N*).

(ili) [ixlIn(Hy) — J(H¥)]d83)(x) = oN"®);5=1,--- ¢

REMARK 1. The condition |JP[H(z)]| £ K[H(1 — H)]""®* a.a. z is weaker
than the condition |J(H)| = K[H(1 — H)]""®™* used by Chernoff and
Savage [2], otherwise Theorem 6.2 is the generalization of the latter’s
Theorem 2. _

REMARK 2. With the use of this theorem, it is easy to verify that if Jy(z/N)
is the expected value of the sth order statistic of a sample of size N from. (7) the
standard normal distribution, (ii) the logistic distribution, (iii) the double
exponential distribution, (iv) the exponential distribution, then the vector
(Twi; -+ ; Tw,) has a limiting normal distribution.

7. The limiting distribution of £ under Pitman’s shift alternatives. From
this section onward, we assume that m; , - - - , m, are nondecreasing functions of
a natural number n that tends to infinity. The dependence on 7 is indicated when
necessary, by writing m.(n), ux,:(n), etc. For convenience, it is assumed that,
for all 7,

lim,., m:(n)/n = s,

exists, and there exist two constants a and b suchthat 0 < a <s; < b < .

In subsequent analysis, we shall concern ourselves with a sequence of ad-
missible alternative hypothesis H which specifies that for each ¢ = 1, --- , ¢;
F®(z) = F(z + 6;/n') with F ¢ Q but not specified further, and for some pair
(2, 7), 0; ¥ 6;. The letter n is used to index a sequence of situations in which
H7} is the true hypothesis. Limiting probability distribution of £ will then be
found as n — .

We first prove the following

THEOREM 7.1. If

(1) for all 2,

limyaw mi(n)/n = s;

exists,

(2) Conditions (1) to (4) of Lemma 5.1 are satisfied,

(3) F9(z) = F(z + 0,;/n') so that for each index n, the hypothesis Hy is valid,
then the random vector [mi(Twy1 — wwi), -+, mH(Twe — un.)] has a Limiting
normal distribution with zero means and covariance matrixz whose (4, j' )th term is

(7.1) 3 — (00 / S o]
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where

(72) A% = fo ' P do — ( fo ' J(2) dx)z

and the limit holds uniformly in $; provided 0 < a < 8; < b < w;7=1,---,¢.
Proor. From Equation (5.7)

limpow N-ox,; = [Z s + 1 >ost+ -21? > s sk:III D> s
1 j

=l 8i =1 e =1
(7‘3) 177 17 tl 17T, Jc )
+-2—< > s.-sk)'Iz /> s
sj 1,k=1 =1
152k, 17 k=]
where
(7.4) L=2f[ eI @) ddy,
0 <z<y<l
1 1 2
p— 2 ) —
(7.5) _fo T (z) dz (fo J(z) da:)
and
(76) L=z 4 -7 @I ) d
0 <y<z<l
1 1 2
) = *(z) dx — d).
77) foJ(x) . (fo J(z) de

Thus, omitting the routine algebra,
liMpoew N-oy; = (—1 + 2 s Sj) A%,
=1
Similarly, from equation (6.7),
lim,n_,ooN COV(TN,j — MN,j, Ty,jl ol [JN,J'/) = —Az.

Hence using Theorem 6.1, we obtain the desired result.

Denoting m?(T,v, i — un,;)/A by W;, it now follows that the random vector
W = (W;, ---, W,) has a limiting normal distribution with zero mean vector
and with covariance matrix whose (7, j')th term is

[5ﬁ' — (s )t Zc: 8-'] .

=1

We now make the analysis of variance transformation

c [3
So = 2 ehW. where e = s/ s,
=1

/=1

S: = Za,-,vW.-:;i=l,2,~~,c—]

/=1
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where the a’s are chosen to make the transformation orthogonal. It follows that
D Wiis asymptotically chi-square with ¢ — 1 degrees of freedom.
Now recalling that

W = miTy: — un:(0)]/A
and letting
ry = ’mi‘[l-m.-’(o) - #N.i(O)]/A

we write £as £ = iy (W, + r;)? and this has the same limiting distribution as
&% = D iy (Wi + rF)? where r¥ = limy.. 7: reduces to

¥ = limp,o mi [[:w [J {}; A F (x 4 b y; "‘)} - J{F(x)}] dF(x)]/A.

We assume that the above limit exists and is finite. Noting that ZLI ssw.=0
and D i sir¥ = 0, it follows from a theorem of Mann and Wald [20] that

THEOREM 7.3. Suppose that for all i, lim,.., m:/n = s; exists and is positive.
Then under the hypothesis Hy, , if for any real numberst, , - -+ , t.,

litpeo md [f_:” [J {; MF (x + i?)} - J{F(x)}] dF(x)]/A

exists and s finite, then for n — oo, the limiting distribution of the statistic £ is
X2 (\“(H?Y)) where N"(HZ) is the noncentrality parameter given by

NE(HD) = 3 [limn»w mh | N [J {2 Ao F (“ + 0—;79‘)}

) - J{F(x)}}] dF(x)T/A?.

ReMARrk. If the function J is such that J(u) = u, then from (7.8), letting
m; = n-s;, we obtain for A®(H%) the expression

c 2 c c =400
[12/ (Z s,-) ] > s ( 8o limy w0 f nt
1=1 ji=1 a=1 Z=—00

: {F <x +0"—j”’> - F(x)} dF(x))2

n

(7.8)

which is the noncentrality parameter \?(H7y) of the Kruskal-Wallis H test.
(See Andrews [1], p. 726.)

In many situations, the noncentrality parameter A® can be computed easily
with the aid of the following lemma which, though stated in a form appropriate
to our purpose, is due to Hodges and Lehmann [11].

LemMA 7.2 (Hodges-Lehmann). If

(i) F s a continuous cumulative distribution function, differentiable in each of
the open intervals (— «, a1), (a1, @2), - -+, (Qs—1, @), (@5, ©) and the derivative
of F is bounded in each of these intervals and



EFFICIENCY OF C-SAMPLE TESTS 115

(ii) the function (d/dx)J[F(x)] is bounded as x — 4= then

limpeo 0? [:,, [J {; A F (x + ‘1‘-'_“}’2)} —~ J{F(x)}] dF (z)

=(1 zs) 3 sl = 0) [ 2 J{P(@)} aP(2).

=1

(7.9)

The proof of this lemma follows by the methods used in Section 3 and 4 of

Hodges-Lehmann (1961).
In case the conditions of Lemma 7.2 are satisfied, then

(710)  NE(HD) = 3 sa(be — B’ ( [:”d;‘i-.fm(x)mx) d:c)2 /&

a=1
where

(711) 5= f;l 5l / 3 s

a=l

and A’ is defined in (7.2).

8. Asymptotic relative effciency. The concept of asymptotic relative efficiency
of one test with respect to another is due to Pitman. An exposition of his work,
together with some extensions is presented by Noether [23a].

THEOREM 8.1. If m: = n-s; and ¢f the distribution function F is such that

(1) limg., 0 [:w [F <x 4 ;%) - F(x)] dF(x)
exists
(2) limg.e n! [:[ {( ;s’> .,Z=l . (w + %ﬁ)}
- J[F(x)]] dF (z) / 4

exists then the asymptotic relative efficiency of the H test with respect to an arbitrary
&£ lest for testing the hypothesis H, against Hr, is given by

400
12 Z Sa {E S llmn_.w[ nt

a—1 )

. [F (x 45 - "“) - F(a:):l dF(x)}2 A
:; s,->2 Zl S <lim,._,m _[ :w n? [J {(1 ; s,-) ;Zl ‘
F (x + % - ”“)} — J{F(z) }] dF(x))

The proof of the above theorem follows by taking the ratio of the two non-
centrality factors after the alternatives have been equated. The details are

(8.1) en,o(F(2)) =(
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omitted since similar considerations have been given in several other papers, e.g.,
Andrews [1], Hannan [9].

COROLLARY 8.1. If in addition to the hypotheses of Theorem 8.1, the hypotheses
of Lemma 7.2 are satisfied, then

52) datb@) =124 ([ P e/ [ L UPENSE) do)

where f is the density of F.

Here ef;, ¢ does not depend upon ¢, a, 8, and is a function of F only.

It may be remarked that (8.2) agrees with the results found by Chernoff-
Savage [2] and Hodges-Lehmann [11] for the two-sample case, and hence the
results of this paper as well as those of [2] apply directly to the c-sample problem.

The asymptotic relative efficiency of the classical & test with respect to an
arbitrary £ test is contained in the following

TaEOREM 8.2. If

(1) for all 7, lim,. mi(n)/n = s: exists and is positive,

(ii) the distribution function F(x) satisfies the assumptions of Lemma 7.2, and

(i) [:«, o* dF (z) — ( f_:‘” . dF(x))z -

exists, then, the asymptotic relative efficiency of the classical § test with respect to an
arbitrary £ test for testing the hypothesis Hy against H, is

(83) Eo(F(z)) = —( /[T L we dF<x>)

Proor. The & statistic is defined as

F _-——Zm,(x - X)? /N

- ]-I=1

where X;. = X1 Xij/msand X = D > ™, X.:,/N. It has been shown by
Andrews [1] that under the hypothesis H P this has a limiting noncentral chi-
square distribution with ¢ — 1 degrees of freedom and noncentrality parameter
N (H7) given by

Z E (Xu - Xt')z

— C i=1 j=1

(8.5) N(HE) = ‘_Z;s.-[(o.- — 8/l

Now proceeding by standard arguments, the proof follows.
In particular, when J = &', where ® is the standard cumulative nermal dis-
tribution function having the density ¢,

0 2
(8.6) ehs(F(z)) = (,, %{%ﬂ

which is known to be the asymptotic efficiency of the two sample normal scores
test with respect to the student’s ¢-test and is always =1. When F(z) is a normal
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distribution function, this is 1. See in this connection Chernoff-Savage [2] and
Hodges-Lehmann [11].
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APPENDIX

10. Higher order terms. Before we prove that the C terms of Lemma 5.1
are uniformly of higher order, we state the following elementary results which
are used repeatedly. (Also in this connection see Chernoff and Savage [2].)

10A. Elementary results.

1. H 2 MF® = A FP; i=1,--,c
2.1 -FY =21 —H)/\Z2 1 —H)/N. i=1--,c
3. F°(0 — F¥) = H1 — H)/\} £ H1 — H)/A\;; i=1,--,c
4. dH = N\ dF® = N\ dF?; i=1---,c

5. Let (ax, by) be the interval Sy, where
(10.1) Sy, = {z: H(1 — H) > nMo/N},
when 7, can be chosen independent of F and \; ;¢ = 1, - -, ¢, such that
(10.2) P{X;;eSy, ;1 =1,---,¢;5=1,---,m} =21 — e

10B. Detailed consideration of the C-terms of Lemma 5.1. First, let us consider

Co = [ 189() — FO@UH@] S (@) — FO@);
o <m<1 !

(103) i=Lo, = Li+1 e
= MCIR + CR); t=1,---,¢1#j
where
o = [ 189() — FO@WHE)] dSD(@) — FO ()]s
(104) SN,
t=1--,¢617#]
and
@ = [ 189 — FO@WIHE) s () — FO@);
(105) v,

i=1-,¢i%]
First note that
(10.8) E(CR) = E{(E(CIR | Xit, -+, Xim)} =0;5=1, -+ ,c;4 5% ].
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Next,
ewr =2 f[ S0 - FO@ISL) — FOWWEEH)]

-dl83) (2) — FP(@)1dISy) (y) — F(y)]

+ 1 890 - FO@IIH@P dSE(@); i=1,---,ci # .

m;- ze8N,
Therefore,

E(C{R)? = E[E{(C"’) | Xty -+ 5 Ximg}]

= ff FO)[1 — F¥(y)]
mz m; JJz,yeSy, ,a<vy
J'H(2)'H(y)] dF? (z) dF (y)

o [ FO@I = FORUTTHG) PO @);
(10.7) x e R
=3 ffzmﬂvm H(z)[1 — H(y)IH(z)(1 — H(z))]¥*
[H(y)(1 — H(y))I"P* dH(z) dH(y)
+ g [, HE@U - HOMHEA - Bl i)
= Ilvc-z + KN:::‘ = 0(}%); [K is generic).

Hence from (10.6) and (10.7), we obtain, using Markoff inequality,
(10.8) [C{R] = 0p,(N~®).

We now consider C5y . Let H, = H(ay), H, = H(by). Then from (10.1)
H, = 1 — H, < K/N. With probability greater than 1 — ¢, there are no ob-
servations in Sy, and

o8| < f " FO (@) H (2)]| dFP (2)
0

+ j: (1 — FO@ ()| dF(x); d=1,---,¢;i5%]
10.9 '
(109) stHl H dH n ' 1 —-H)dH
[H1 — H)9= * Jg, [H(1 — H)|D

1

—(H+3
<Kf H 9% aH < K o,
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Hence
(10.10) [C8R] = op)(N™®); i=1,, 60 %
Consequently,
(10.11) Civ = NCIR + O = 0p(N®); 6=1,---,¢;4 % j.
The proof of Cjx = 0,(N~?) follows by first showing that
Cin = —3N[Cux + Crav — Cran]
where
(a) Cav = [ 188)(@) = FO@)PIH () dH ),
SN
(b) Coaw = fs [S9)(z) — F¥(a)PI"[H ()] dH (),
() Cuan = oo [ @) 4S8 ()

and then showing that each Cixy is 0,(N"®); k = 1, 2, 3. The proofs of the
above statement are omitted since they are essentially contained in the work of

Chernoff and Savage [2].
Next consider
Connr = [ 1Ha(z) — H@P0HA(@) + (1 — DH) 458w,
0<o<1.

With probability >1 — ¢, the interval Iy can be replaced by Sy, without chang-
ing C.41,x . Furthermore since

Supayso IH(:E)/HN(:I})I = 0,(1)
and
Supay« [[1 — H(x))/[1 — Hu(z)]| = 0,(1),

for each € > 0, there exists an 7 > 0 such that with probability greater than
1 — ¢, we have for {x: 0 < Hy(z) < 1},

[0Hx(z) + (1 — 0)H(2)][1 — {6Hx(z) + (1 — 0)H(z)}] > n¢H(z)[1l — H(z)).

Then )
[Cosrn] = K(n¥) PHC oy

where

Cav = [ (Ha(e) — H@PH@I — H@))™* ds$(z)

SN
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and
E(CaN) = E[E(CaN | le, ct iji)]

= ]_%,f ZC:X;'F“)(]. _ F(t))[H(l _ H)]-(i)H dF(j)(iD)

8N 1=1

taf, (1= FO = 2 EG — IO ar(a)

K TR K oy
ngBN‘ B~ BT aH 1 [ (50— DTt an
. K

= yaos-

Consequently Coq1.v = 0,(N~?).

The negligibility of C.i2,» and C.i3,x follows from Assumptions 2 and 3 of
Lemma 5.1 and the proof of the negligibility of C,,4,» proceeds in the same
manner as given by Chernoff and Savage for the term Cyy and therefore is not
given here.
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