ON THE COMPLEX WISHART DISTRIBUTION

By M. S. SRIVASTAVA

University of Toronto

- 1. Introduction. Goodman [2] derived the complex Wishart distribution with the aid of characteristic functions and Fourier transforms. In the present paper we give a direct and simplified method of deriving this distribution. At the same time Lemma 13.3.1 of Anderson [1] is generalized to matrices with complex elements. This generalization leads to a straightforward extension of the results of Chapter 13 of Anderson [1] to complex matrices.
- 2. Preliminaries and definitions. For a complex number z = x + iy, \bar{z} denotes the conjugate. A matrix M of elements m_{jk} is denoted by $||m_{jk}||$, the determinant of a square matrix by |M|, the transpose by M'.

For notational convenience, we shall not distinguish between a random variable and its observed values.

The pdf of a p-variate complex Gaussian distribution $\xi' = (z_1, z_2, \dots, z_p)$ is

$$p(\xi) = \pi^{-p} |\Sigma_{\xi}|^{-1} \exp(-\overline{\xi}' \Sigma_{\xi}^{-1} \xi),$$

assuming each of the random variables x and y to have zero mean (See Goodman [2] for definitions).

Lemma 1. If Y is a matrix of complex elements, of order $p \times m$, $p \leq m$, and of rank p, then there exists a unique triangular matrix T with real and positive (>0) diagonal elements and a semi-unitary matrix L, $L\bar{L}' = I$, such that

$$Y(p \times m) = T(p \times p)L(p \times m).$$

Proof. The proof is quite simple and is omitted.

3. Main results. The following theorem is a generalization of Lemma 13.3.1 of Anderson ([1], p. 319) to a matrix Y with complex elements.

Theorem 1. If the density of $Y(p \times m)$ is $f(Y\bar{Y'})$, then the density of $B = Y\bar{Y'}$ is

(1)
$$\{|B|^{m-p}f(B)\pi^{p[m-\frac{1}{2}(p-1)]}\}/[\prod_{i=1}^{p}\Gamma(m-i+1)].$$

Proof. From Lemma 1, we can write

$$(2) Y = TL,$$

where T is a triangular matrix with positive (>0) diagonal elements, and L a semi-unitary matrix.

We shall now find the Jacobian of the transformation, $J(Y \to T, L)$. Differentiating both sides of Equation (2), we have (dY) = (dT)L + T(dL). Premultiplying by T^{-1} , we get $T^{-1}(dY) = T^{-1}(dT)L + (dL)$. Putting $U = T^{-1}(dY)$, and $V = T^{-1}(dT)$, we have U = VL + dL.

Received 16 January 1964; revised 18 August 1964.

Hence the Jacobian of the transformation (2) is given by

$$\begin{split} J(Y \to T, L) &= J(dY \to dT, dL) \\ &= J(dY \to U) \cdot J(U \to V, dL) \cdot J(V, dL \to dT, dL) \\ &= J_1 \times J_2 \times J_3 \quad \text{(say)}. \end{split}$$

It is easy to check that

$$J_1 = |T|^{2m},$$

 $J_3 = \prod_{i=1}^{p} (t_{ii}^{-2i+1}),$

and J_2 is a function of L only, independent of T. Let us denote it by $J_2 = g(L)$. Hence the joint density of T and L is

$$g(L)\prod_{i=1}^{p} (t_{ii}^{2(m-i)+1}) f(T\bar{T}').$$

We find, by integrating out L, that the density of T is

(3)
$$\prod_{i=1}^{p} (t_{ii}^{2(m-i)+1}) f(T\bar{T}') \int_{L\bar{L}'=I} g(L) dL = C_1 \prod_{i=1}^{p} (t_{ii}^{2(m-i)+1}) f(T\bar{T}'),$$

where $C_1 = \int_{L\bar{L}'=I} g(L) dL$, a constant.

Making the transformation

$$B = T\bar{T}'$$
$$= Y\bar{Y}',$$

we have the Jacobian of the transformation

$$2^{-p} \prod_{i=1}^{p} (t_{ii}^{-2(p-i)-1}).$$

Hence the density of B is

(4)
$$C_2 \prod_{i=1}^{p} (t_{ii}^{2(m-p)}) f(B) = C_2 |T\bar{T}'|^{m-p} f(B)$$

$$= C_2 |B|^{m-p} f(B),$$

where $C_2 = 2^{-p}C_1$, a constant. The constant is evaluated in the next section.

ALTERNATIVE PROOF. This is done by obtaining the distribution in two ways and then comparing them.

First. Make transformations Y = AX, $V = X\bar{X}'$, and then $B = AV\bar{A}'$. The distribution of B is

(5)
$$|A|^{2(m-p)}f(B)h(A^{-1}B\bar{A}^{\prime-1}),$$

where h(V) is the Jacobian of the transformation from X to V.

Second. Make a transformation $Y\bar{Y}' = B$. Then the distribution of B is

$$(6) f(B)h(B).$$

Hence, comparing (5) and (6), we have $h(B) = |B|^{m-p}h(I)$, and hence the density of B is Const. $|B|^{m-p}f(B)$.

THEOREM 2. If $A \sim W_c(\Sigma, p, n)$, and $B \sim W_c(\Sigma, p, m)$ are independently

distributed, then $A+B\equiv W\bar{W}'$ and $Z=W^{-1}A\bar{W}'^{-1}$ are statistically independent. Furthermore, the distribution of Z is invariant under the transformation $Z\to\Gamma Z\bar{\Gamma}'$, where Γ is unitary.

The proof of this theorem is straightforward and will be omitted.

The analogue of Theorem 2 of Olkin and Rubin [3] for the characterization of the complex Wishart distribution is under investigation.

4. Evaluation of the constant in (4). From (3), the density of T is given by

$$p(T) = C_1 \prod_{i=1}^{p} t_{ii}^{2(m-i)+1} f(T\bar{T}').$$

Let f be a standard multivariate complex Gaussian distribution. In this case p(T) becomes

$$C_1(\pi^{mp})^{-1} \prod_{i=1}^{p} (t_{ii}^{2(m-i)+1}) \exp - \operatorname{tr} T\bar{T}'.$$

To evaluate the constant, C_1 , we know that

$$1 = C_1(\pi^{mp})^{-1} \int \prod_{i=1}^{p} (t_{ii}^{2(m-i)+1}) (\exp - \operatorname{tr} T\bar{T}') dT$$

= $C_1 2^{-p} \prod_{i=1}^{p} \Gamma(m-i+1) \pi^{p[\frac{1}{2}(p-1)-m]}$.

Therefore the constant C_1 in (3) is equal to $2^p/\prod_{i=1}^p \Gamma(m-i+1)\pi^{p\lfloor \frac{1}{2}(p-1)-m\rfloor}$. Hence the value of the constant C_2 in (4) is equal to

$$1/\prod_{i=1}^{p} \Gamma(m-i+1) \pi^{p[\frac{1}{2}(p-1)-m]}.$$

The complex Wishart distribution is thus obtained by substituting for f in (4), the multivariate complex Gaussian distribution.

REFERENCES

- Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
- [2] GOODMAN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) Ann. Math. Statist. 34 152-177.
- [3] Olkin, I. and Rubin, H. (1962). A characterization of the Wishart distribution. Ann. Math. Statist. 33 1272-1280.