ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY
TRANSFORMATION GROUPS

By R. Borges AND J. PranzacL!
Unawversity of Cologne

0. Summary. We consider a one-parameter exponential family generated by
an arbitrary group of transformations of an abstract sample space. Topological
assumptions about the group are not required. It is shown that such a family
has densities either of the type of the normal distribution or of the type of the
gamma distribution with respect to an invariant measure. This is a generalization
of results of Dynkin (1951), Lindley (1958) and Ferguson (1962 and 1963).

1. Introduction. The important role of exponential distributions in statistical
theory has been emphasized by Lehmann (1959). In [3] it was shown that, under
the condition of mutual absolute continuity of the distributions, one-sided UMP
tests for arbitrary sample sizes and arbitrary levels of significance exist only for
one-parameter exponential families. This special role of exponential families in
statistical theory suggests a closer examination of the properties of this family.
Furthermore, much attention has been devoted to families of distributions which
are generated from a single member of this family by a group of transformations
of the sample space onto itself. We shall study more deeply in this paper proper-
ties of one-parameter exponential families which are generated by a group of
transformations of the sample space (see Definition (2.1) and (2.4) below).

The first remarkable result in this direction was obtained by Dynkin (1951)
in connection with the question of the existence of a set of sufficient statistics.
The following special case of Dynkin’s result is of interest here: If f(x — &),
& ¢ R' is a continuous density of a one-parameter exponential type then f(z) is
either a normal density or can be transformed into a density of a gamma dis-
tribution taking x = log v and ¢ = log o.

Furthermore, for the comparison of the “fiducial” and “Bayesian’ method the
same problem is of interest. Richter (1954) proved [Theorem 15, p. 338] under
relatively weak continuity assumptions on the distribution function that a
fiducial distribution is an ‘“a posteriori” distribution with respect to an “a priori”’
distribution if and only if the parameter # and the sufficient statistic a for & can
be transformed into » = 7(&) and ¢ = T(a) such that (a) the distribution func-
tion depends only on ¢ — 7; (b) the “a priori” distribution for r is the uniform
distribution. (We have put quotation-marks since Richter distinguishes logically
between the degree of credibility, that is “a posteriori”’ and ““a priori” distribu-
tions, and the probability of random or chance experiments.) Lindley (1958)
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found essentially the same theorem under more restrictive differentiability as-
sumptions and, in addition, that “if, for a random sample of any size from the
distribution for z, there exists a single sufficient statistic for ¢ then the fiducial
argument is inconsistent unless”” conditions (a) and (b) above obtain.

In this connection Lindley (1958) proved under differentiability conditions
again that the normal and gamma distributions are the only one-parameter
exponential distributions generated by transformation groups. Ferguson (1962
and 1963 ) reconsidered the problem for location and scale parameter exponential
families in R' without any regularity assumptions and obtained exactly the same
result as Dynkin and Lindley.

In connection with the problem of the existence of optimal confidence pro-
cedures, Neyman (1938) (see also for example [11]) has proved the existence of
type A; confidence procedures with confidence coefficient 8 for one-parameter
exponential families possessing densities with respect to the n-dimensional
Lebesgue measure satisfying certain differentiability assumptions. These con-
fidence procedures are unbiased if the class of confidence procedures with respect
to which they are most accurate (shortest, most selective) contains an unbiased
one. On the other hand, in [2] the existence of subjective most accurate confidence
procedures has been established. These are a.e. invariant and unbiased (Theorem
3.19 of [2]) if the family of distributions under consideration is generated by a
group of transformations and the degree of credibility (a priori distribution) is
a left invariant (Haar) measure. If a one-parameter exponential family generated
by a group is given, it can easily be seen that Neyman’s type A, confidence pro-
cedures are identical with the subjective most accurate ones with respect to a left
invariant (Haar) measure. Naturally the question arises, as to whether the
normal and gamma distributions are the only examples of one-parameter ex-
ponential families generated by groups.

The statistical problems mentioned above suggest investigations of one-
parameter exponential families generated by a transformation group without re-
strictive assumptions such as: the group is isomorphic to the additive group of
reals, only distributions in R' are considered and the distributions are absolutely
continuous with respect to the Lebesgue measure. Our inquiries resulted in the
Theorem given in Section 2 below.

Notations: f | D denotes the function f defined on the domain D. If a is defined
as b we shall write a := b. Furthermore R' denotes the set of real numbers. The
exponential function is always denoted by exp, while e is used for the identity
transformation ex = x. '

2. Basic definitions and formulation of the Theorem. Let (M, X) be a
measurable space and @ be a family of probability measure Ps | X, ¢ ¢ ©.

DeriNITION (2.1). A family @ of probability measures Ps | &, ¢ ¢ 0, is said to
be generated by a group (of transformations), if

(a) the indexing set ® of ® is a group of X-measurable transformations
&, 7, + - - with the product (d7)x = &(rz) and the identity e;
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(b) if 8K := {8z : 2 ¢ K} then P3(3K) = P,(K) for all ¢ ¢ ® and all K ¢ X.
Conditions (a) and (b) are identical with Assumption GI of [2]. These conditions
simplify the usual approach by identifying the indexing parameter of the proba-
bility measure with the transformation from the beginning. Clearly, in particular
examples the usual indexing with parameters has to be replaced by one with
transformations, see for example p. 58 and Section 4 of [2]. An example of families
of distributions generated by a group is the distribution of » identically and
independently distributed random variables X, ---, X, with the distribution

F((x — a)/o) where a¢R' and ¢ > 0. The transformation is obviously
Ta,v(-’”l, ;xn) = (7(231, 7xn) + (a) 7a)'

Definition (2.1) implies
(2.2) Ps(K) = Py(r'K).

This shows that Definition (2.1) is invariant against the choice of P, ¢ ®.

To give still another insight into Definition (2.1) assume that the probability
measures Py | X, & ¢ O, possess densities g(z, &) with respect to a measure u|X
and that they are mutually absolutely continuous. Then another formulation of
(2.2) is:

(2.3) g(z, 9)/g(z, 1) = g(v "'z, 9)/g(r 'z, ¢) ae.

For, an integral transformation yields

Py(r'K) = f 0,9) p (gg) = [ 9% D)

P, .
g g(z, e) & g7z, e) (dz)

On the other hand, obviously P.s(K) = fK lg(z, 8)/g(x, 7)]P,(dz). Hence (2.2)
is equivalent to (2.3), q.e.d.

A family @ of probability measures Ps | X, & ¢ © is called a one-parameter
exponential family [7] if each Ps | & possesses a density

(2.4) g(z, ) = h(z) exp [usT(z) + vsl

with respect to some measure u | . Thereby h | M and T | M are X-measurable
. functions and us , vs € R' are constants depending on . A measure \ | X is called
mvariant, if

(2.5) M7K) = MK) forall 7¢® and K ¢X.

THEOREM. Let ® be a one-parameter exponential family generated by a group of
transformations and assume that ® contains more than two probability measures.
Then there exists an tnvariant measure N | X depending on the family ® such that
the denstty of each Py | & with respect to \ | &K exists and is of one of the following
two types:

(a) f(z, ®) = exp [—3(S(z) — ws)] with ws = w, + aws , where a, = =1
and a.s = a.as ,

(b) f(z, ¢) = (asS(z))” exp [—asS(z)] with p > 0, a,s = a.as and as > 0.

It should be noted that our Definition (2.1) implies
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(2.6) f(z,9) = (8 'z, ¢) ae.

CoROLLARY. Under the assumptions of the Theorem there exists a sufficient
statistic S(x) such that the distribution functions Fs(y) of S(x) on the real line have
densities

(a) exp [—3(y — ws)’] or

(b) (asy)? exp [—asyl, y > 0, with respect to some invariant measure over the
real line involving the simple invariance to a group of translations and reflections
in (a) and of multiplications in (b). Conversely, every choice of such an invariant
measure yields an exponential family generated by a group.

3. Properties of the exponential families and a useful convention. We collect

a few well known [7] facts about one-parameter exponential families.
The function ¢ | R' defined by

(3.1) exp [—c(£)] := [u h(z) exp [T (2)]u(d)
is infinitely differentiable with
(32) "(£) <0

for all interior points & of the convex natural parameter space = :
{£: exp c(£) > 0}. The exponential family of probability measures @ | X, ¢ ¢
defined by

g

)

(3.3) Q:(K) := [xh(z)exp [tT(x) + c(¥)lu(dz),
contains ®, since
(3.4) vy = c(ug).

Let ® be a one-parameter exponential family generated by a group and assume
that @ contains more than two probability measures. Since ® is by (2.2) in-
variant against the choice of P, ¢ ® and at least one s is an interior point of =,
all uy are interior points of Z. Hence Es7T and var T exist. Since 7 is only deter-
mined up to a linear transformation by (2.4) we can assume that E.7 = 0 and
var, T = 1. Moreover, for a given T the constants u; an vy are only unique up
to an additive constant, hence we can choose u, = v, = 0. These assumptions
imply ¢(0) = ¢(0) = 0 and ¢”(0) = —1. By a change of the sign of 7', if neces-
sary, the finiteness of sup Z can always be achieved in the case that Z > R'.
Hence we make the following convention.

CoNVENTION. Let ® be a one-parameter exponential family generated by a
group and assume that ® contains at least three probability measures. The prob-
ability measure P, ¢ ® corresponding to the identity is chosen such that

(3.5) u, = ¢(0) =¢(0)=0 ¢'(0)=—1
and
(3.6) fp:=supE < +» if E = R.
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In the example of the gamma distribution this convention implies T'(z) =
z—1,h(z) = 2" exp =, 4o = 1 — 1/cand v, = —plog o + (1 — 1/0),
if u is proportional to the Lebesgue measure. We remark that & = 1. In the ex-
ample of the normal distribution N(a,1), we have T(z) = =z, h(z) =
exp (— 2°/2), us = a and v, = —d’/2, while & = R".

If we deviate from the convention (3.5) we shall use other letters for T, » and
¢. Convention (3.5) implies

(3.7) Ps(K) = [xexp[usT(x) + vs]P.(dx).

4. A homorphism onto a matrix group. At first we study the transformations
of the function 7'(x) and the constants us and vs induced by the group ® of
transformations of x € M. It turns out that these transformations are linear and
can be combined with us and vs to matrices which form a group.

Inserting (2.4) and (3.5) into (2.3) we obtain the following basic transforma-
tion equation,

(4.1) wsT(77'z) + vs = (U — u)T(2) + (05 — v;) ace.

This will be simplified in the following way. Choose a ¢ ¢ © such that us, #= 0.
(The existence of such a us, # 0 is guaranteed by the convention above.) We
define

(4.2) ar := (Urgg — Us)/Usg
and
(4.3) b, 1= (vray — ¥; — Vg,)/Us,
for each 7 £ ©. Then (4.1) implies
(4.4) T(r'z) = a,T(z) + b. ae.
We define now a 3 X 3 matrix
<a, Uy 0>

(4.5) A.:=[0 1 0}.

b, v, 1
It is easily seen that
(4.6) A Ay = A .

For, from (4.4) and (r¢) 'z = ¢ '(+ 'z) we obtain that a,s = a,as and b,s =
asb, + bs. Inserting (4.4) into (4.1) the relations u,s = u, + aus and
v = ¥, + vg + bus follow immediately.

We know from (3.4) that v, = ¢(u,). Thus the element v, of A, is a function of
u, . But even more is true. The elements a, and b, are functions of «, and sign a, .
In order to see this we show at first that

(4.7) c(at + u.) = bk + c(§) + c(u,)
holds true for all £ ¢ = and all 7 £ ©.
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This follows from the standard transformation used in the proof of (2.3). We
obtain from (4.4) and (3.7)
1= [ exp [E1'(2) + e(§)IPo(de)
= [ exp [ET(+7'2) + e(§)IPo(dx)
= Juexp [(af + u)T(2) + bk + () + o(w)|P(dz).

Hence a.¢ + u. ¢ E, and (4.7) is thus a consequence of (3.4).
Differentiating (4.7) twice and setting { = u, = 0 afterwards we obtain from
the second derivative, by (3.2) and by (3.5), that

(4.8) a’ = (—c" ()" >0
and, utilizing also the first derivative of (4.7),
(4.9) b = (—c"(ur)) 7! () sign a. .

By (3.4), (4.8), and (4.9) the matrices A with as > 0 are one-to-one functions
of us . But then the class of all A; with as > 0 forms a group by a.s = a.as .
Hence we establish:

LemMa (4.10). The group of all matrices As with as > 0 is commutative.

Proor. (1) Suppose as = 1 for all 4 with as > 0. Then by (4.6) u.s =
U, + us = us, . Since 4, is a one-to-one function of u, for a, > 0, this implies
A.,s = As, and hence by (4.6) A4y = A4, .

(2) Suppose there is a 7 with 0 < @, < 1 given. Then by (4.8) and (3.5)
u, # 0. Furthermore (4.6) implies that u.» = [u./(1 — a.)](1 — a,"). Hence

(%) limg e % = u./(1 — a,)

is finite, while lim, . u.-» is not. This means that the convex natural parameter
space has at most one finite boundary point.

On the other hand we obtain from (4.8) and (4.6) limu.. ¢’ (4nm) =
—limpse @ ™ = — . Since ¢’ (£) is a continuous function for all interior points
of & it follows that lim,.. . £ 5. Therefore % is bounded from one side by
this limit and (3.6) entails finally lim,.,ux = sup & = & < 4« and 0 =
U € & yields

(**) 0 < Eo = SUPg:6 Us < +°0.
We obtain from (*) at first for all ¢ with 0 < as < 1 that
(%) us = &H(1 — ag).

For as > 1 (#*%) follows similarly by interchanging n with —n above. For
as = 1 we have ug = nuy . Since Z 5 R' this implies us = 0 and hence (##*)
holds.

Since (#%#%) holds if as > 0, it follows that u,s = wus, which in turn implies as
under (1) that 434, = 4.4s, q.ed.

COROLLARY (4.11). If there exists a 7 € © such that |a.| 5 1 then
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(a) 0 < & = supgeo us < + 0,

(b) as =1 — us/& for all 9 ¢ O,

(c) the group of mairices As , & € ©, is commutative.

Proor. By assumption there is a ~ with |a,| 5 1. Then |a,2| 1 and by (4.8)
a,2 > 0. Hence assertion (a) holds by (#*) of Part (2) of the proof of (4.10).
This yields supn—o,+1,... % = SUPpeo t1,..- (1 — @)/ (1 — @a,) £ & < + =,
which implies a. > 0. Assertion (b) follows now from (%) and assertion (c)
from the Lemma, q.e.d.

Finally, we show that there exists a constant k such that

(4.12) b, = —ku, for a, > 0.

For, since ® contains more than two different probability measures and
as; = 030, there is a 9; with us, 0 and as, > 0. By (4.6) and Lemma (4.10) it
follows that b, = (v, — v — vs,)/Us; = (V80 — Vs, — V) Us, = (boy/Us, s .
Setting k = —bs,/us, we obtain (4.12), g.e.d.

5. The normal distributions. In this section we consider the case that u.s =
u, + a.us with |a,| = 1, that is the case & = R'.

At first we consider the subgroup of all ¢ with as = 1. Then we obtain from
(4.7) and (4.12) the functional equation

(5.1) c(u, + us) = c(u,) + clus) — kuus .

This is equivalent to a functional equation solved by Sinzow (see Aczél [1] p. 63).
Since ¢(£) is continuous, the unique solution of (5.1) is given by

(5.2) c(us) = (—k/2)uss + lus .

(The reader can easily check that the proof given in [1] p. 6364 does apply to
any additive subgroup of R".)
To prove that (5.2) holds also for & with as = —1, we show at first that

(5.3) bs = kus — 21 for as = —1.

For, as = a, = —1 yields a,s = as. = 1. Hence we obtain from (4.7) and (5.2)
bsu, — bus = c(us — u,) — c(ur — us) = 2l(us — u,), while (4.6) and (4.12)
imply that by — b, = b,y = —ku,s = k(us — u,). The solution of these two
linear equations is (5.3). (Because @ contains more than two probability meas-
ures, there exist 7, & with us — u, # u, = 0.) q.e.d.

Since as = —1 implies us = ug-1, we obtain from (4.7), from (3.5) and from
(5.3) 2c(us) = c(us) + c(us—1) = ¢(0) — bous = —kus’ + 2lus , that is (5.2)
holds also in the case as = —1.

We remark, that Convention (3.5) implies that £ = 1 and [ = 0 if the set of
all us, ¢ € @, is dense in R'. Otherwise there exist solutions of (4.7) with k& » 1
and [ # 0. An example is given at the end of this section. Clearly the constants
k and ! are uniquely determined by the family @® itself. Since ¢(£) is by (3.2)
concave, it follows that £ > 0.
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To simplify the notation we define

(5.4) S(z) := kK HT(x) + 1)

and

(5.5) ws 1= Kus .

Then from (3.7) and (5.2) we obtain that

(5.6) Py(K) = [xexp [—3(S(z) — ws)" + 3S8°(x)]Po(dw).

The comparison with the normal distribution suggests the definition of a measure
N X by

(5.7) MK) := [xexp [38*(x)]P,d(x).

We prove that X is invariant, that is, that (2.5) holds. For this purpose we ob-
serve that (4.4), (4.12) and (5.3) for a, = 1 and a, = —1 resp. yield T'(+"'z) +
l=aT(zx)+ b +1=0a(T(x)+ 1) — aku. a.e. Multiplication by &k results in

(5.8) S(r'z) = a:(S(z) — w,) ae.

By the standard transformation used in the proof of (2.3) we obtain from (5.7),
using (5.8) and (5.6) that

Mr'K) = [xexp [38°(+'2)IP,(dx)
Jrexp [3(S(z) — w,)’ — ¥(S(x) — w,)* + 3§ (x)]P.(dz)
= NMK) q.ed.

Since the integrand in (5.7) is finite, N is o-finite. Therefore, by (5.6), Ps | X
can be written as an integral with respect to an invariant measure:

(5.9) Py(K) = [xexp[—3(S(z) — ws)’IN(dw).

This proves the first part of the Theorem.

Whether the invariant measures » | & are unique up to a multiplicative factor
depends on the group ® and the field &. If & is the class of all subsets of the set
of all integers and ® the group of their translations » | X is proportional to the
counting measure. In the case that X is equal to the Borel field ® over R' and ©
a group which is dense in the group of all translations, » | & is unique and propor-
tional to the Lebesgue measure. But if © is a discrete group of translations of
R' which is not dense in itself and & = ®, then » | ® is not unique. For example,
each integral over a non negative periodic function with respect to Lebesgue
measure is invariant. In the last case A | & is an invariant measure appropriate
for our purposes. There are clearly certain connections between the multiplicity
of solutions of the functional equation (4.7) and the existence of several invariant
measures in case of groups for which {us : 9 € O} is not dense in R'.

Examples of the form (5.9) are the normal distribution and the distributions
occurring in the discrete local limit theorems [6], possessing probabilities

(5.10) p(n) = Copgexp [—2(Bn — a)’] forn =0, 1, £2, --- .
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To illustrate the necessity of the case a, = —1 we give an example: Consider
the densities

gy, a) = Cexp[—3(y — o) if2k<=y=<2k+1fork =0, %1, ---,

=0 otherwise,
with respect to the Lebesgue measure for « = 0, £1, - -+ . Obviously
g(yy Ol) = g(y ) 0) for o = 0) :t2y e

=g(—(y — @), 0) fora = +1, £3, ---,

which shows that the family of densities g(y, o) can not be generated by transla-
tions only. Furthermore, we have in this example E.Y = Ikt = 0and Var, ¥ =
k' =1 — I}/k # 1, where Y denotes a random variable with density g(y, 0).
For, we have y = S(y) = (T'(y) + 1)/k.

6. The gamma distributions. In this section we consider the case that there
exists a 7 with |a,| # 1 and a, # 0. According to Corollary (4.11.a) the natural
parameter space = is then not R

By Corollary (4.11.b) we have as > 0 for all ¢ £ ® and

(6.1) us = &(1 — ay).

Since a,s = a,as this formula suggests the study of the exponential family @
generated by a group as function of as instead of us . At first we transform the
functional equation (4.7) into one depending on as . Inserting (6.1) and (4.12)
into (4.7) we obtain ¢(£&(1 — @sa,)) = c(&(l — as)) + c(&(l — a,)) —
kit (1 — as)(1 — a,). Setting, as [1] p. 63-64 suggests,

(6.2) d(n) := e(ka(1 — 1)) — k&'(1 — ),
one of Cauchy’s functional equations [1] p. 47-48 results:
(6.3) d(asa,) = d(as) + d(a,).

Since ¢(¢) and hence d(n) is continuous and the set of all as , & € ©, is a mul-
tiplicative group of positive real numbers, there exists a constant p such that

(6.4) d(as) = plogas .
But from (6.2) and (3.2) we find d” () = &' (&(1 — 9)) < 0, so that d(n)

is concave and hence p > 0.
If we now define

(6.5) S(z) := &T(x) + k&
and insert this expression into (3.7) and (4.4) resp. we obtain
(6.6) Ps(K) = [xas” exp [(1 — as)S(x)]P.(dx)

and
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(6.7) S('z) = a.8(x).
We shall now show that
(6.8) S(z) >0 a.e.

holds. This is seen by the following argument. According to the assumption made
at the beginning of this section there exists a ¢ with as > 1 by Corollary (4.11).
Since the set {x : S(z) = 0} is invariant we obtain from (6.6)

0. "P{8(z) £ 0} = a, "P,{8(z) = 0} = P.{S(z) = 0}
+ [sw<oexp [(1 — a.)S(z)]P.(dz).

Setting 7 = 8" and letting n — -+ o it follows by the Monotone Limit Theorem
that 0 = P.{S(z) = 0} 4+ «P,{S(z) < 0} and hence P.{S(z) = 0} = 0, q.e.d.
Knowing that S(z) > 0 a.e. we can define a o-finite measure A | X by

(6.9) MEK) = [x8(z)7? exp S(z)P.(dz).

The invariance property now follows readily from (6.6) and (6.7). We conclude
that Ps | & is in this case also expressible as an integral with respect to an
invariant measure. This proves the second part of the Theorem in Section 2:

(6.10) Py(K) = fx (asS(x))* exp [—asS(z)N(dx).

If the group {as : ¢ ¢ O} is dense in the multiplicative group of positive real
numbers and X the Borel field of R', then \ is the Haar measure of the later
group, that is M(B) = :ch y ' dy. Hence the gamma distributions

P,(B) = [1/T(p)] [5 (y/0)" exp (—y/o)y " dy
are examples.
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